Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
J Med Entomol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747350

ABSTRACT

Culex pipiens pallens Coquillett, 1898 (Diptera: Culicidae) was the dominant health threat to mosquito species in Beijing, and it is important to unravel the spatial distribution and environmental correlations of Cx. pipiens pallens in Beijing. 3S technology methods and spatial statistics were used to clarify the distribution pattern. Subsequently, linear and spatial regression were performed to detect the environmental factors linked with the density of Cx. pipiens pallens. The same "middle peak" spatial distribution pattern was observed for Cx. pipiens pallens density at the community, subdistrict, and loop area levels in our study area. In addition, there were various correlated environmental factors at the community and subdistrict scales. At the community scale, the summary values of the Modified Normalized Difference Water Index (MNDWI) in 2 km buffer zone (MNDWI_2K) were negatively correlated, and the summary values of Normalized Difference Built-up Index (NDBI) in 800 m buffer zone (NDBI_800) was positively correlated to the Cx. pipiens pallens density. However, the summary values of Normalized Difference Vegetation Index and Nighttime Light Index significantly affected Cx. pipiens pallens density at the subdistrict scale. Our findings provide insight into the spatial distribution pattern of Cx. pipiens pallens density and its associated environmental risk factors at different spatial scales in the Haidian district of Beijing for the first time. The results could be used to predict the Cx. pipiens pallens density as well as the risk of lymphatic filariasis (LF) infection, which would help implement prevention and control measures to prevent future risks of biting and LF transmission in Beijing.

2.
Parasit Vectors ; 17(1): 222, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745242

ABSTRACT

BACKGROUND: Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS: Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS: An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS: Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.


Subject(s)
Aeromonas hydrophila , Bacteriophages , Culex , Insecticide Resistance , Nitriles , Pyrethrins , Animals , Aeromonas hydrophila/virology , Aeromonas hydrophila/drug effects , Culex/virology , Culex/microbiology , Bacteriophages/physiology , Bacteriophages/isolation & purification , Bacteriophages/genetics , Pyrethrins/pharmacology , Nitriles/pharmacology , Insecticides/pharmacology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Female
3.
Article in Chinese | MEDLINE | ID: mdl-38604685

ABSTRACT

OBJECTIVE: To investigate the microbiota composition and diversity between autogenous and anautogenous Culex pipiens pallens, so as to provide insights into unraveling the pathogenesis of autogeny in Cx. pipiens pallens. METHODS: Autogenous and anautogenous adult Cx. pipiens pallens samples were collected at 25 ℃, and the hypervariable regions of the microbial 16S ribosomal RNA (16S rRNA) gene was sequenced on the Illumina NovaSeq 6000 sequencing platform. The microbiota abundance and diversity were evaluated using the alpha diversity index, and the difference in the microbiota structure was examined using the beta diversity index. The microbiota with significant differences in the abundance between autogenous and anautogenous adult Cx. pipiens pallens samples was identified using the linear discriminant analysis effect size (LEfSe). RESULTS: The microbiota in autogenous and anautogenous Cx. pipiens pallens samples belonged to 18 phyla, 28 classes, 70 orders, 113 families, and 170 genera, and the dominant phyla included Proteobacteria, Bacteroidetes, and so on. At the genus level, Wolbachia was a common dominant genus, and the relative abundance was (77.6 ± 11.3)% in autogenous Cx. pipiens pallens samples and (47.5 ± 8.5)% in anautogenous mosquito samples, while Faecalibaculum (0.4% ± 0.1%), Dubosiella (0.5% ± 0.0%) and Massilia (0.5% ± 0.1%) were specific species in autogenous Cx. pipiens pallens samples. Alpha diversity analysis showed that higher Chao1 index and ACE index in autogenous Cx. pipiens pallens samples than in anautogenous samples (both P values > 0.05), and lower Shannon index (P > 0.05) and Simpson index (P < 0.05) in autogenous Cx. pipiens pallens samples than in anautogenous samples. LEfSe analysis showed a total of 48 significantly different taxa between autogenous and anautogenous Cx. pipiens pallens samples (all P values < 0.05). CONCLUSIONS: There is a significant difference in the microbiota diversity between autogenous and anautogenous Cx. pipiens pallens.


Subject(s)
Culex , Culicidae , Microbiota , Humans , Animals , RNA, Ribosomal, 16S/genetics , Culex/genetics , Culicidae/genetics , Microbiota/genetics
4.
Infect Dis Poverty ; 13(1): 29, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622750

ABSTRACT

BACKGROUND: Culex pipiens pallens and Culex pipiens quinquefasciatus are the dominant species of Culex mosquitoes in China and important disease vectors. Long-term use of insecticides can cause mutations in the voltage-gated sodium channel (vgsc) gene of mosquitoes, but little is known about the current status and evolutionary origins of vgsc gene in different geographic populations. Therefore, this study aimed to determine the current status of vgsc genes in Cx. p. pallens and Cx. p. quinquefasciatus in China and to investigate the evolutionary inheritance of neighboring downstream introns of the vgsc gene to determine the impact of insecticides on long-term evolution. METHODS: Sampling was conducted from July to September 2021 in representative habitats of 22 provincial-level administrative divisions in China. Genomic DNA was extracted from 1308 mosquitoes, the IIS6 fragment of the vgsc gene on the nerve cell membrane was amplified using polymerase chain reaction, and the sequence was used to evaluate allele frequency and knockdown resistance (kdr) frequency. MEGA 11 was used to construct neighbor-joining (NJ) tree. PopART was used to build a TCS network. RESULTS: There were 6 alleles and 6 genotypes at the L1014 locus, which included the wild-type alleles TTA/L and CTA/L and the mutant alleles TTT/F, TTC/F, TCT/S and TCA/S. The geographic populations with a kdr frequency less than 20.00% were mainly concentrated in the regions north of 38° N, and the geographic populations with a kdr frequency greater than 80.00% were concentrated in the regions south of 30° N. kdr frequency increased with decreasing latitude. And within the same latitude, the frequency of kdr in large cities is relatively high. Mutations were correlated with the number of introns. The mutant allele TCA/S has only one intron, the mutant allele TTT/F has three introns, and the wild-type allele TTA/L has 17 introns. CONCLUSIONS: Cx. p. pallens and Cx. p. quinquefasciatus have developed resistance to insecticides in most regions of China. The neighboring downstream introns of the vgsc gene gradually decreased to one intron with the mutation of the vgsc gene. Mutations may originate from multiple mutation events rather than from a single origin, and populations lacking mutations may be genetically isolated.


Subject(s)
Culex , Culicidae , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Insecticides/pharmacology , Introns/genetics , Mosquito Vectors/genetics , Culex/genetics , Mutation , Voltage-Gated Sodium Channels/genetics , Insecticide Resistance/genetics
5.
Pest Manag Sci ; 80(4): 1991-2000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38092527

ABSTRACT

BACKGROUND: Mosquitoes are vectors of various diseases, posing significant health threats worldwide. Chemical pesticides, particularly pyrethroids like deltamethrin, are commonly used for mosquito control, but the emergence of resistant mosquito populations has become a concern. In the deltamethrin-resistant (DR) strain of Culex pipiens pallens, the highly expressed cytochrome P450 9 J34 (CYP9J34) gene is believed to play a role in resistance, yet the underlying mechanism remains unclear. RESULTS: Quantitative polymerase chain reaction with reverse transcription (qRT-PCR) analysis revealed that the expression of CYP9J34 was 14.6-fold higher in DR strains than in deltamethrin-susceptible (DS) strains. The recombinant production of CYP9J34 protein of Cx. pipiens pallens showed that the protein could directly metabolize deltamethrin, yielding the major metabolite 4'-OH deltamethrin. Through dual luciferase reporter assays and RNA interference, the transcription factor homeobox protein B-H2-like (B-H2) was identified to modulate the expression of the CYP9J34 gene, contributing to mosquito resistance to deltamethrin. CONCLUSIONS: Our findings demonstrate that the CYP9J34 protein could directly degrade deltamethrin, and the transcription factor B-H2 could regulate CYP9J34 expression, influencing the resistance of mosquitoes to deltamethrin. © 2023 Society of Chemical Industry.


Subject(s)
Culex , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Insecticides/metabolism , Complement Factor B/metabolism , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Pyrethrins/metabolism , Nitriles/pharmacology , Nitriles/metabolism , Culex/genetics , Culex/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Transcription Factors/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013569

ABSTRACT

Objective To investigate the microbiota composition and diversity between autogenous and anautogenous Culex pipiens pallens, so as to provide insights into unraveling the pathogenesis of autogeny in Cx. pipiens pallens. Methods Autogenous and anautogenous adult Cx. pipiens pallens samples were collected at 25 ℃, and the hypervariable regions of the microbial 16S ribosomal RNA (16S rRNA) gene was sequenced on the Illumina NovaSeq 6000 sequencing platform. The microbiota abundance and diversity were evaluated using the alpha diversity index, and the difference in the microbiota structure was examined using the beta diversity index. The microbiota with significant differences in the abundance between autogenous and anautogenous adult Cx. pipiens pallens samples was identified using the linear discriminant analysis effect size (LEfSe). Results The microbiota in autogenous and anautogenous Cx. pipiens pallens samples belonged to 18 phyla, 28 classes, 70 orders, 113 families, and 170 genera, and the dominant phyla included Proteobacteria, Bacteroidetes, and so on. At the genus level, Wolbachia was a common dominant genus, and the relative abundance was (77.6 ± 11.3)% in autogenous Cx. pipiens pallens samples and (47.5 ± 8.5)% in anautogenous mosquito samples, while Faecalibaculum (0.4% ± 0.1%), Dubosiella (0.5% ± 0.0%) and Massilia (0.5% ± 0.1%) were specific species in autogenous Cx. pipiens pallens samples. Alpha diversity analysis showed that higher Chao1 index and ACE index in autogenous Cx. pipiens pallens samples than in anautogenous samples (both P values > 0.05), and lower Shannon index (P > 0.05) and Simpson index (P < 0.05) in autogenous Cx. pipiens pallens samples than in anautogenous samples. LEfSe analysis showed a total of 48 significantly different taxa between autogenous and anautogenous Cx. pipiens pallens samples (all P values < 0.05). Conclusion There is a significant difference in the microbiota diversity between autogenous and anautogenous Cx. pipiens pallens.

7.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(4): 389-393, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37926475

ABSTRACT

OBJECTIVE: To investigate the infection and genotypes of Wolbachia in common mosquito species in Henan Province, so as to provide insights into management of mosquito-borne diseases. METHODS: Aedes, Culex and Anopheles samples were collected from cowsheds, sheepfolds and human houses in Puyang, Nanyang City and Xuchang cities of Henan Province from July to September, 2022, and the infection of Wolbachia was detected. The 16S rDNA and wsp genes of Wolbachia were amplified and sequenced. Sequence alignment was performed using the BLAST software, and the obtained 16S rDNA gene sequence was compared with the sequence of the 16S rDNA gene in GenBank database. In addition, the phylogenetic trees were created based on 16S rDNA and wsp gene sequences using the software MEGA 11.0. RESULTS: A total 506 female adult mosquitoes were collected from three sampling sites in Nanyang, Xuchang City and Puyang cities from July to September, 2022. The overall detection of Wolbachia was 45.1% (228/506) in mosquitoes, with a higher detection rate in A. albopictus than in Cx. pipiens pallens [97.9% (143/146) vs. 50.6% (85/168); χ2 = 88.064, P < 0.01]. The detection of Wolbachia in Cx. pipiens pallens was higher in Xuchang City (96.8%, 62/64) than in Nanyang (15.6%, 7/45) and Puyang cities (27.1%, 16/59) (χ2 = 89.950, P < 0.01). The homologies of obtained Wolbachia 16S rDNA and wsp gene sequences were 95.3% to 100.0% and 81.7% to 99.8%. Phylogenetic analysis based on wsp gene sequences showed Wolbachia supergroups A and B in mosquito samples, with wAlbA and wMors strains in supergroup A and wPip and wAlbB strains in supergroup B. Wolbachia strain wAlbB infection was detected in A. albopictus in Puyang and Nanyang Cities, while Wolbachia strain wPip infection was identified in A. albopictus in Xuchang City. Wolbachia strain wAlbA infection was detected in Cx. pipiens pallens sampled from three cities, and one Cx. pipiens pallens was found to be infected with Wolbachia strain wMors in Nanyang City. CONCLUSIONS: Wolbachia infection is commonly prevalent in Ae. albopictus and Cx. pipiens pallens from Henan Province, and Wolbachia strains wAlbB and wAlbA are predominant in Ae. albopictus, while wPip strain is predominant in Cx. pipiens pallens. This is the first report to present Wolbachia wMors strain infection in Cx. pipiens pallens in Henan Province.


Subject(s)
Aedes , Culex , Wolbachia , Animals , Humans , Phylogeny , Wolbachia/genetics , Culex/genetics , Aedes/genetics , DNA, Ribosomal
8.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(3): 251-257, 2023 Jun 06.
Article in Chinese | MEDLINE | ID: mdl-37455095

ABSTRACT

OBJECTIVE: To investigate the role of angiotensin-converting enzyme (ACE) in the reproduction of Culex pipiens pallens, so as to provide insights into selection of targets for controlling mosquito vector populations. METHODS: Cx. pipiens pallens was collected from Tangkou County, Shandong Province in 2009. Female and male mosquitoes were selected at 72 hours post-eclosion, and quantitative real-time reverse transcription PCR (qPCR) assay was used to detect the expression of ACE gene in the whole body and reproductive tissues of male mosquitoes and fertilized female mosquitoes before (0 h) and after blood meals (24, 48, 72 h), respectively. Then, 150 female and 150 male mosquitoes at 0 to 4 hours post-eclosion were selected and divided into the wild-type group (WT group), small interfering RNA-negative control group (siNC group) and small interfering RNA-ACE group (siACE group), of 50 mosquitoes in each group. Mosquitoes in the WT group were given no treatment, and mosquitoes in the siNC and siACE groups were given microinjection of siNC and siACE into the hemolymph at a dose of 0.3 µg per mosquito. The knockdown efficiency was checked using qPCR assay, and the reproductive phenotype of mosquitoes was observed. RESULTS: The relative ACE gene expression was higher in the whole body of male mosquitoes (5.467 ± 1.006) relative to females (1.199 ± 0.241) (t = 5.835, P = 0.004) at 72 h post-eclosion, and the highest ACE expression was seen in reproductive tissues of male mosquitoes (199.100 ± 24.429), which was 188.3 times higher than in remaining tissues (1.057 ± 0.340) (t = 6.602, P = 0.002). Blood meal induced high ACE expression in all body tissues of fertilized female mosquitoes, with peak expression at 24 h after blood meals (14.957 ± 2.815), which was 14.8 times higher than that before blood meals (1.009 ± 0.139) (P = 0.002). The transcriptional level of ACEs continued to increase in the ovaries of female mosquitoes after blood meals during the vitellogenesis phase, peaking at 48 h after blood meals (5.500 ± 0.734), which was 5.1 times higher than that before blood meals (1.072 ± 0.178) (P = 0.002). Small RNA interference targeting ACE resulted in a 57.2% reduction in ACE expression in female mosquitoes in the siACE group (0.430 ± 0.070) relative to the siNC group (1.002 ± 0.070) (P = 0.001), and a 41.1% reduction in male mosquitoes in the siACE group (0.588 ± 0.067) relative to the siNC group (1.008 ± 0.131) (P = 0.016). Knockdown of ACE expression resulted in a 48.0% decrease in the number of eggs laid by female mosquitoes in the siACE group [(94.000 ± 27.386) eggs] relative to the siNC group [(180.800 ± 27.386)] (P < 0.001), and a 45.0% decrease in the number of eggs laid by wild female mosquitoes mated with males in the siACE group [(104.500 ± 20.965) eggs] relative to the siNC group [(190.050 ± 10.698) eggs] (P < 0.001). CONCLUSIONS: Reduced ACE expression may inhibit the fecundity of male and female mosquitoes, and ACE may be as a potential target for mosquito vector population suppression.


Subject(s)
Culex , Culicidae , Animals , Female , Male , Angiotensins/pharmacology , Culex/genetics , Culicidae/genetics , Reproduction/genetics , RNA, Small Interfering
9.
Front Microbiol ; 14: 1159835, 2023.
Article in English | MEDLINE | ID: mdl-37152738

ABSTRACT

Introduction: Tahyna virus (TAHV), an arbovirus of the genus Orthobunyavirus, is a cause of human diseases and less studied worldwide. In this study, a new strain of TAHV was isolated from Aedes sp. mosquitoes collected in Panjin city, Liaoning province. However, the competent vector of TAHV in China is still unknown. Methods: The genome of newly isolated TAHV was sequenced and phylogenetic analysis is performed. Aedes albopictus and Culex pipiens pallens were orally infected with artificial virus blood meals (1:1 of virus suspension and mouse blood), the virus was detected in the midgut, ovary, salivary gland and saliva of the mosquitoes. Then, the transmission and dissemination rates, vertical transmission and horizontal transmission of the virus by the mosquitoes were assessed. Results: Phylogenetic analysis revealed that the virus shared high similarity with TAHV and was named the TAHV PJ01 strain. After oral infection with virus blood meals, Ae. albopictus showed positive for the virus in all tested tissues with an extrinsic incubation period of 2 days and a fluctuating increasement of transmission and dissemination rates. Whereas no virus was detected in the saliva of Cx. pipiens pallens. Suckling mice bitten by infectious Ae. albopictus developed obvious neurological symptoms, including inactivity, hind-leg paralysis and difficulty turning over, when the virus titer reached 1.70×105 PFU/mL in the brain. Moreover, TAHV was detected in the eggs, larvae and adults of F1 offspring of Ae. albopictus. Discussion: Ae. albopictus is an efficient vector to transmit TAHV but Cx. pipiens pallens is not. Ae. albopictus is also a reservoir host that transmits the virus vertically, which further increases the risk of outbreaks. This study has important epidemiological implications for the surveillance of pathogenic viruses in China and guiding comprehensive vector control strategies to counteract potential outbreaks in future.

10.
BMC Genomics ; 24(1): 145, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964519

ABSTRACT

BACKGROUND: Mosquitoes are important vectors for a range of diseases, contributing to high rates of morbidity and mortality in the human population. Culex pipiens pallens is dominant species of Culex mosquito in northern China and a major vector for both West Nile virus and Bancroftian filariasis. Insecticide application were largely applied to control the mosquito-mediated spread of these diseases, contributing to increasing rates of resistance in the mosquito population. The voltage-gated sodium channel (Vgsc) gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). While these kdr mutations are known to be critical to pyrethroid resistance, their evolutionary origins remain poorly understood. Clarifying the origins of these mutations is potential to guide further vector control and disease prevention efforts. Accordingly, the present study was designed to study the evolutionary genetics of kdr mutations and their association with the population structure of Cx. p. pallens in Shandong province, China. METHODS: Adult Culex females were collected from Shandong province and subjected to morphological identification under a dissection microscope. Genomic DNA were extracted from the collected mosquitoes, the Vgsc gene were amplified via PCR and sequenced to assess kdr allele frequencies, intron polymorphisms, and kdr codon evolution. In addition, population genetic diversity and related population characteristics were assessed by amplifying and sequencing the mitochondrial cytochrome C oxidase I (COI) gene. RESULTS: Totally, 263 Cx. p. pallens specimens were used for DNA barcoding and sequencing analyses to assess kdr allele frequencies in nine Culex populations. The kdr codon L1014 in the Vgsc gene identified two non-synonymous mutations (L1014F and L1014S) in the analyzed population. These mutations were present in the eastern hilly area and west plain region of Shandong Province. However, only L1014F mutation was detected in the southern mountainous area and Dongying city of Shandong Province, where the mutation frequency was low. Compared to other cities, population in Qingdao revealed significant genetic differentiation. Spatial kdr mutation patterns are likely attributable to some combination of prolonged insecticide-mediated selection coupled with the genetic isolation of these mosquito populations. CONCLUSIONS: These data suggest that multiple kdr alleles associated with insecticide resistance are present within the Cx. p. pallens populations of Shandong Province, China. The geographical distributions of kdr mutations in this province are likely that the result of prolonged and extensive insecticide application in agricultural contexts together with frequent mosquito population migrations. In contrast, the low-frequency kdr mutation detected in central Shandong Province populations may originate from the limited selection pressure in this area and the relative genetic isolation. Overall, the study compares the genetic patterns revealed by a functional gene with a neutral marker and demonstrates the combined impact of demographic and selection factors on population structure.


Subject(s)
Culex , Culicidae , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Female , Humans , Culex/genetics , Insecticides/pharmacology , DNA, Mitochondrial/genetics , Mosquito Vectors/genetics , Mutation , Pyrethrins/pharmacology , Culicidae/genetics , Insecticide Resistance/genetics , Voltage-Gated Sodium Channels/genetics , China , Vascular Endothelial Growth Factor Receptor-2/genetics
11.
Parasit Vectors ; 16(1): 12, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36635706

ABSTRACT

BACKGROUND: Culex pipiens pallens (Diptera: Culicidae) can survive at low temperature for long periods. Understanding the effects of low-temperature stress on the gut microflora and gene expression levels in Cx. pipiens pallens, as well as their correlation, will contribute to the study of the overwintering mechanism of Cx. pipiens pallens. METHODS: The gut bacteria were removed by antibiotic treatment, and the survival of Cx. pipiens pallens under low-temperature stress was observed and compared with the control group. Then, full-length 16S rRNA sequencing and the Illumina HiSeq X Ten sequencing platform were used to evaluate the gut microflora and gene expression levels in Cx. pipiens pallens under low-temperature stress. RESULTS: Under the low-temperature stress of 7 °C, the median survival time of Cx. pipiens pallens in the antibiotic treatment group was significantly shortened by approximately 70% compared to that in the control group. The species diversity index (Shannon, Simpson, Ace, Chao1) of Cx. pipiens pallens decreased under low-temperature stress (7 °C). Non-metric multidimensional scaling (NMDS) analysis divided all the gut samples into two groups: control group and treatment group. Pseudomonas was the dominant taxon identified in the control group, followed by Elizabethkingia and Dyadobacter; in the treatment group, Pseudomonas was the dominant taxon, followed by Aeromonas and Comamonas. Of the 2417 differentially expressed genes (DEGs), 1316 were upregulated, and 1101 were downregulated. Functional GO terms were enriched in 23 biological processes, 20 cellular components and 21 molecular functions. KEGG annotation results showed that most of these genes were related to energy metabolism-related pathways. The results of Pearson's correlation analysis showed a significant correlation between the gut microcommunity at the genus level and several DEGs. CONCLUSIONS: These results suggest that the mechanism of adaptation of Cx. pipiens pallens to low-temperature stress may be the result of interactions between the gut bacterial community and transcriptome.


Subject(s)
Culex , Culicidae , Animals , Transcriptome , Temperature , RNA, Ribosomal, 16S/genetics , Culicidae/genetics
12.
Acta Trop ; 237: 106720, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36288768

ABSTRACT

West Nile virus is perhaps the widest distributed arbovirus globally, being maintained in nature by transmission among ornithophagic Culex mosquitoes and a wide-variety of birds. A factor contributing to the success of the WNV invasion is the ability of the virus to successfully overwinter. Experimental studies on the preservation and transmission of West Nile virus by Culex pipiens pallens under simulated overwintering conditions have shown that Cx. p. pallens has a preservative effect on West Nile virus under low-temperature conditions. After the temperature rises, the virus reproduces rapidly and can spread to susceptible animals while the mosquitos feed on blood. This research is of great significance for exploring how West Nile virus enters new areas and how the cycle of transmission is maintained China.


Subject(s)
Culex , Culicidae , West Nile Fever , West Nile virus , Animals , Mosquito Vectors , Seasons
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-997252

ABSTRACT

Objective To investigate the infection and genotypes of Wolbachia in common mosquito species in Henan Province, so as to provide insights into management of mosquito-borne diseases. Methods Aedes, Culex and Anopheles samples were collected from cowsheds, sheepfolds and human houses in Puyang, Nanyang City and Xuchang cities of Henan Province from July to September, 2022, and the infection of Wolbachia was detected. The 16S rDNA and wsp genes of Wolbachia were amplified and sequenced. Sequence alignment was performed using the BLAST software, and the obtained 16S rDNA gene sequence was compared with the sequence of the 16S rDNA gene in GenBank database. In addition, the phylogenetic trees were created based on 16S rDNA and wsp gene sequences using the software MEGA 11.0. Results A total 506 female adult mosquitoes were collected from three sampling sites in Nanyang, Xuchang City and Puyang cities from July to September, 2022. The overall detection of Wolbachia was 45.1% (228/506) in mosquitoes, with a higher detection rate in A. albopictus than in Cx. pipiens pallens [97.9% (143/146) vs. 50.6% (85/168); χ2 = 88.064, P < 0.01]. The detection of Wolbachia in Cx. pipiens pallens was higher in Xuchang City (96.8%, 62/64) than in Nanyang (15.6%, 7/45) and Puyang cities (27.1%, 16/59) (χ2 = 89.950, P < 0.01). The homologies of obtained Wolbachia 16S rDNA and wsp gene sequences were 95.3% to 100.0% and 81.7% to 99.8%. Phylogenetic analysis based on wsp gene sequences showed Wolbachia supergroups A and B in mosquito samples, with wAlbA and wMors strains in supergroup A and wPip and wAlbB strains in supergroup B. Wolbachia strain wAlbB infection was detected in A. albopictus in Puyang and Nanyang Cities, while Wolbachia strain wPip infection was identified in A. albopictus in Xuchang City. Wolbachia strain wAlbA infection was detected in Cx. pipiens pallens sampled from three cities, and one Cx. pipiens pallens was found to be infected with Wolbachia strain wMors in Nanyang City. Conclusions Wolbachia infection is commonly prevalent in Ae. albopictus and Cx. pipiens pallens from Henan Province, and Wolbachia strains wAlbB and wAlbA are predominant in Ae. albopictus, while wPip strain is predominant in Cx. pipiens pallens. This is the first report to present Wolbachia wMors strain infection in Cx. pipiens pallens in Henan Province.

14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978512

ABSTRACT

Objective To investigate the role of angiotensin-converting enzyme (ACE) in the reproduction of Culex pipiens pallens, so as to provide insights into selection of targets for controlling mosquito vector populations. Methods Cx. pipiens pallens was collected from Tangkou County, Shandong Province in 2009. Female and male mosquitoes were selected at 72 hours post-eclosion, and quantitative real-time reverse transcription PCR (qPCR) assay was used to detect the expression of ACE gene in the whole body and reproductive tissues of male mosquitoes and fertilized female mosquitoes before (0 h) and after blood meals (24, 48, 72 h), respectively. Then, 150 female and 150 male mosquitoes at 0 to 4 hours post-eclosion were selected and divided into the wild-type group (WT group), small interfering RNA-negative control group (siNC group) and small interfering RNA-ACE group (siACE group), of 50 mosquitoes in each group. Mosquitoes in the WT group were given no treatment, and mosquitoes in the siNC and siACE groups were given microinjection of siNC and siACE into the hemolymph at a dose of 0.3 μg per mosquito. The knockdown efficiency was checked using qPCR assay, and the reproductive phenotype of mosquitoes was observed. Results The relative ACE gene expression was higher in the whole body of male mosquitoes (5.467 ± 1.006) relative to females (1.199 ± 0.241) (t = 5.835, P = 0.004) at 72 h post-eclosion, and the highest ACE expression was seen in reproductive tissues of male mosquitoes (199.100 ± 24.429), which was 188.3 times higher than in remaining tissues (1.057 ± 0.340) (t = 6.602, P = 0.002). Blood meal induced high ACE expression in all body tissues of fertilized female mosquitoes, with peak expression at 24 h after blood meals (14.957 ± 2.815), which was 14.8 times higher than that before blood meals (1.009 ± 0.139) (P = 0.002). The transcriptional level of ACEs continued to increase in the ovaries of female mosquitoes after blood meals during the vitellogenesis phase, peaking at 48 h after blood meals (5.500 ± 0.734), which was 5.1 times higher than that before blood meals (1.072 ± 0.178) (P = 0.002). Small RNA interference targeting ACE resulted in a 57.2% reduction in ACE expression in female mosquitoes in the siACE group (0.430 ± 0.070) relative to the siNC group (1.002 ± 0.070) (P = 0.001), and a 41.1% reduction in male mosquitoes in the siACE group (0.588 ± 0.067) relative to the siNC group (1.008 ± 0.131) (P = 0.016). Knockdown of ACE expression resulted in a 48.0% decrease in the number of eggs laid by female mosquitoes in the siACE group [(94.000 ± 27.386) eggs] relative to the siNC group [(180.800 ± 27.386)] (P < 0.001), and a 45.0% decrease in the number of eggs laid by wild female mosquitoes mated with males in the siACE group [(104.500 ± 20.965) eggs] relative to the siNC group [(190.050 ± 10.698) eggs] (P < 0.001). Conclusions Reduced ACE expression may inhibit the fecundity of male and female mosquitoes, and ACE may be as a potential target for mosquito vector population suppression.

15.
Pest Manag Sci ; 78(11): 4579-4588, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35837767

ABSTRACT

BACKGROUND: Due to the development of insecticide resistance in mosquitoes, with worldwide mosquito-borne diseases resurgence in recent years, recent advances in proteome technology have facilitated a proteome-wide analysis of insecticide resistance-associated proteins in mosquitoes. Understanding the complexity of the molecular basis of insecticide resistance mechanisms employed by mosquitoes will help in designing the most effective and sustainable mosquito control methods. RESULTS: After 30 generations, insecticide-selected strains showed elevated resistance levels to the cypermethrin used for selection. Proteome data allowed the detection of 2892 proteins, of which 2885 differentially expressed proteins (DEPs) achieved quantitative significances in four stages (egg, larvae, pupae, adult) of Culex pipiens pallens cypermethrin-resistant strain as compared to the susceptible strain. Among them, a significant enrichment of proteins, including cuticular proteins, enzymes involved in the detoxification (cytochrome P450, glutathione S-transferases, esterase, ATP-binding cassette) and some biological pathways (oxidative phosphorylation, hippo signalling) that are potentially involved in cypermethrin resistance, was observed. Thirty-one representative DEPs (cytochrome P450, glutathione S-transferase, cuticle protein) during Cx. pipiens pallens developmental stages were confirmed by a parallel reaction monitoring strategy. CONCLUSIONS: The present study confirmed the power of isobaric tags for relative and absolute quantification for identifying concomitantly quantitative proteome changes associated with cypermethrin in Cx. pipiens pallens. Proteome analysis suggests that proteome modifications can be selected rapidly by cypermethrin, and multiple resistance mechanisms operate simultaneously in cypermethrin-resistance of Cx. pipiens pallens, Our results interpret that an up-regulated expression of proteins and enzymes like cytochrome P450, glutathione S-transferases, esterase etc. has an impact in insecticide resistance. Previously neglected penetration resistance (cuticular proteins) may play an important role in the adaptive response of Cx. pipiens pallens to insecticides. This information may serve as a basis for future work concerning the possible role of these proteins in cypermethrin resistance in mosquito Cx. pipiens pallens. © 2022 Society of Chemical Industry.


Subject(s)
Culex , Insecticides , Pyrethrins , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cytochrome P-450 Enzyme System/metabolism , Esterases/metabolism , Glutathione/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Insect Proteins/metabolism , Insecticide Resistance/genetics , Insecticides/metabolism , Insecticides/pharmacology , Proteome/metabolism , Pyrethrins/metabolism , Pyrethrins/pharmacology , Transferases/metabolism , Transferases/pharmacology
16.
Pest Manag Sci ; 78(8): 3433-3441, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35545958

ABSTRACT

BACKGROUND: Mosquito control is still the main prevention and control measure for numerous mosquito-borne diseases causing millions of deaths each year. New strategies for mosquito control are in demand. Proteases play an important role in mosquito physiology, therefore this study explored the inhibition of a serpin (serine protease inhibitor) in mosquitoes and its effect on reproductive capacity. RESULTS: A factor Xa inhibitor homolog (named Pipiserpin) was amplified and identified in Culex pipiens pallens mosquitoes. We expressed a recombinant Pipiserpin protein in vitro against which a mouse antiserum was generated. We found that female mosquitoes expressed more Pipiserpin protein than male mosquitoes. After mating, female mosquitoes were fed with blood mixed with different amounts of antisera and results showed that consumption of Pipiserpin impeded ovary development and decreased eggs hatching rates compared to that of the pre-immune serum group. CONCLUSION: We identified a Culex mosquito factor Xa inhibitor, Pipiserpin, which affects female reproductive potential. Our results suggest that Pipiserpin may be a novel target for mosquito population control. The conclusions from our study on Cx. pipiens pallens might serve as a reference for the development of control measures for other mosquitoes as well. © 2022 Society of Chemical Industry.


Subject(s)
Culex , Animals , Factor Xa Inhibitors/pharmacology , Female , Male , Mice , Mosquito Control
17.
Article in English | MEDLINE | ID: mdl-35513264

ABSTRACT

The excessive and improper application of insecticides has caused the evolution of resistance in many mosquito populations, including Culex pipiens pallens (L.). Deltamethrin, a representative pyrethroid insecticide, is the most widely used synthetic insecticide in mosquito-borne control field. Comprehensively identifying genes and regulators associated with deltamethrin resistance and elucidating the manner in which they regulate this process is critical for effective control of mosquitoes. CircRNAs are the upstream regulatory factors of miRNAs and mRNAs, which play a role via the competitive endogenous RNA mechanism. In this study, we used high-throughput circRNA sequencing to identify circRNAs that were expressed differently in deltamethrin-susceptible strain (DS strain) and -resistant strain (DR strain) mosquitoes [NCBI Sequence Read Archive (SRA) database accession number: PRJNA714543]. We detected a total of 12,816 significantly differentially expressed circRNAs (DE-circRNAs). Among them, 6769 circRNAs were up-regulated and 6047 circRNAs were down-regulated in the DR strain compared to DS strain. Among the DE-circRNAs, we further screened that supercont3.352:252102|253283 was significantly over-expressed in the DR strain through qPCR multiple verification (P < 0.05).We used the divergent primer to amplify the rolling circle product and obtained the full-length sequence of supercont3.352:252102|253283 (GeneBank accession number: MW729338). Through software comparison and bioinformatics analysis, we predicted that supercont3.352:252102|253283 might participate in deltamethrin resistance by sponging cpp-miR-1671 and blocking its inhibition on CYP4G15.We further found that the expression of cpp-miR-1671 was significantly lower in DR strain (P < 0.01), while the expression of CYP4G15 was significantly higher in DR strain (P < 0.05).Taken together, the present study provided the most comprehensive circRNA expression profile of mosquitoes, and suggested that supercont3.352:252102|253283 might participate in deltamethrin resistance through the supercont3.352:252102|253283/cpp-miR-1671/CYP4G15 pathway.


Subject(s)
Culex , Culicidae , Insecticides , MicroRNAs , Pyrethrins , Animals , Culex/genetics , Culicidae/genetics , Culicidae/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance/genetics , Insecticides/metabolism , Insecticides/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Nitriles/pharmacology , Pyrethrins/metabolism , Pyrethrins/pharmacology , RNA, Circular/genetics
18.
Parasit Vectors ; 15(1): 54, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35164827

ABSTRACT

The cuticle protein (CP) encoded by CPR63 plays a role in deltamethrin resistance in Culex pipiens pallens. Herein, we investigated the distribution of CPR63 transcripts in this organism and observed high expression levels in legs and wings. Furthermore, expression of CPR63 in the legs of deltamethrin-resistant (DR) strains was 2.17-fold higher than in deltamethrin-susceptible (DS) strains. Cuticle analysis of small interfering RNA (siRNA) groups by scanning electron microscopy (SEM) revealed a significantly thinner cuticle of the tarsi in the siCPR63 group than in the siNC (negative control siRNA) group. Transmission electron microscopy (TEM) revealed that the exocuticle and endocuticle thickness of the tarsi were significantly thinner, which contributes the thinner procuticle of tarsi in the siCPR63 group than in the siNC group. Our results suggested that CPR63 might contribute to the resistance phenotype by thickening the cuticle and thereby possibly increasing the tolerance of mosquitoes to deltamethrin.


Subject(s)
Culex , Insecticides , Pyrethrins , Animals , Insect Proteins/genetics , Insecticide Resistance , Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology
19.
Parasitol Res ; 121(1): 75-85, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34782935

ABSTRACT

Mosquitoes transmit many damaging vector-borne diseases. Unfortunately, the rise of insecticide resistance has become a major obstacle to mosquito control. A preliminary study showed that a CYP6 cluster is significant for deltamethrin resistance in colonized Culex pipiens pallens. Here, several field strains were collected to explore the association of the cluster in deltamethrin tolerance. We examined the effect of deltamethrin treatment on the cluster expression at a deltamethrin concentration of LC50 in these strains using five time points. As a result, both P450 induction and constitutive overexpression were associated with deltamethrin resistance. Deltamethrin could stimulate different expression sets in the P450 cluster in different strains, predominately correlated with the resistance level of the strain. Our results will offer more insight into working with the characterization of P450s related to insecticide resistance.


Subject(s)
Culex , Insecticides , Pyrethrins , Animals , Insect Proteins , Insecticide Resistance , Insecticides/pharmacology , Mosquito Vectors , Nitriles
20.
J Am Mosq Control Assoc ; 37(2): 76-82, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34184047

ABSTRACT

This study examined Culex pipiens pallens responses to different combinations of colors and chemicals employed via a mosquito trap under semifield conditions. Our results indicated that Cx. p. pallens has color and chemical concentration preferences. Culex p. pallens had a 38.0% greater response to white than black color treated traps. Further, Cx. p. pallens showed differences in olfactory attraction depending on the chemical and concentration. Culex p. pallens was 107.6% more attracted to traps employing 500 ppm ammonia than control (i.e., unscented). Similarly, Cx. p. pallens was 117.5%, 128.8%, and 140.3% more attracted to traps employing, respectively, 1,000, 10,000, and 20,000 ppm of ammonia hydrogen carbonate compared to controls. And the response to lactic acid showed that Cx. p. pallens was most attracted to concentrations of 100 and 500 ppm (135.7% and 142.9%, respectively) compared to controls.


Subject(s)
Culex , Culicidae , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...