Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 486
Filter
1.
Trop Med Infect Dis ; 9(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38922037

ABSTRACT

Diverse larval habitats significantly influence female mosquito oviposition. Utilizing traps that simulate these habitats is helpful in the study of the bioecology and characteristics of pathogen-transmitting species during oviposition. This study evaluated the feasibility of different traps in natural environments by comparing sampling methods and detecting the oviposition of epidemiologically important mosquitoes, with emphasis on Haemagogus species, in a fragment of the Atlantic Forest in Silva Jardim, Rio de Janeiro State, Brazil. Monthly collections were conducted from March 2021 to October 2023 using four types of traps: plastic containers, tires, bamboo, and sapucaia. Immatures were collected from these traps using a pipette, placed in plastic bags, and transported to the laboratory. Tire was the most efficient trap, showing the highest mosquito abundance (n = 1239) and number of species (S = 11). Conversely, the plastic container trap exhibited the lowest diversity (H = 0.43), with only two species and a low mosquito abundance (n = 26). The bamboo trap captured six species and recorded the second-highest diversity index (H = 1.04), while the sapucaia trap captured five species and had the third-highest diversity index (H = 0.91). Of the total immatures collected, 1817 reached adulthood, comprising 13 species, two of which are vectors of the sylvatic yellow fever virus: Haemagogus leucocelaenus and Haemagogus janthinomys. In conclusion, detecting key vectors of the sylvatic yellow fever virus in Brazil highlights the need for ongoing entomological and epidemiological surveillance in the study area and its vicinity. These efforts are crucial for monitoring vector presence and activity, identifying potential transmission hotspots, and devising effective control and prevention strategies.

2.
Parasitol Res ; 123(6): 251, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916607

ABSTRACT

Anopheles claviger (Meigen, 1804) (Diptera, Culicidae) is widespread in the western Palaearctic Region, but it was recorded in Karelia (Russia) for the first time. This record is one of the northernmost ones in the Palaearctic Region and Russia, updates the northern border of the An. claviger range. Mosquitoes were collected from July to September 2023 in the southern Karelia (the village of Gomselga, Kondopoga District, and Petrozavodsk) using Krishtal trap (from human) and Mosquito Magnet® trap (Pioneer design, Octenol as attractant). Seven females of An. claviger were collected in Gomselga; one specimen was sampled from Petrozavodsk City parks. Morphological identification of eight females was verified by COI and ITS2 sequences. Phylogenetic analysis of ITS2 and COI sequences confirmed the collected specimens to An. claviger s. s., clustering in both cases in a strongly supported clade clearly differentiated from the closely related species An. petragnani. The high diversity of An. claviger haplotypes from Karelia is in agreement with data from other geographical regions and shows that the records of this species in Gomselga and Petrozavodsk are not accidental.


Subject(s)
Anopheles , Phylogeny , Animals , Anopheles/classification , Anopheles/anatomy & histology , Anopheles/genetics , Anopheles/physiology , Russia , Female , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Sequence Analysis, DNA
3.
Neotrop Entomol ; 53(4): 987-996, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38918340

ABSTRACT

Mosquitoes (Diptera: Culicidae) pose a significant threat to public health worldwide, especially in tropical and subtropical regions, where they act as primary vectors in transmission of infectious agents. In Peru, 182 culicid species have been identified and several species of the genus Culex are known to transmit arboviruses. However, knowledge of mosquito diversity and distribution remains limited, with many studies focusing on specific regions only. Here, we describe a new morphological variation of Cx. (Culex) coronator Dyar and Knab, 1906, and report the presence of Culex (Carrollia) bonnei Dyar, 1921 in the central region of Peru, Huanuco. Specimens were obtained through larvae collections and identified through morphologic characterization, including dissection of male genitalia, and molecular analyses. In total, 17 mosquitoes were analyzed, and the genitalia of the male specimens allowed the identification of Cx. coronator and Cx. bonnei. Partial sequences of the CoxI gene corresponding to these two species were obtained (N = 10). Phylogenetic analysis revealed that the sequences of Cx. coronator grouped in a monophyletic clade with sequences ascribed to other species corresponding to the subgenus Carrollia, while Cx. bonnei specimens formed a monophyletic clade with homologous sequences from GenBank. This study underscores the importance of continued efforts to study the diversity and distribution of mosquitoes in Peru, including their potential role as vectors of human pathogens, to underpin effective disease control and prevention strategies, highlighting the importance of a complemented morphological and molecular analysis.


Subject(s)
Culex , Animals , Peru , Culex/anatomy & histology , Culex/classification , Male , Larva/anatomy & histology , Larva/classification , Genitalia, Male/anatomy & histology , Phylogeny , Female , Mosquito Vectors/anatomy & histology
4.
Med Trop Sante Int ; 4(1)2024 03 31.
Article in French | MEDLINE | ID: mdl-38846112

ABSTRACT

Background and justification: The Republic of Djibouti is located in the Horn of Africa, on the Gulf of Aden and the Bab-el-Mandeb detroit, at the southern entrance to the Red Sea. Prior to its independence in 1977, the Republic of Djibouti was known by two names: "Côte française des Somalis" until 1967, then "Territoire Français de Afars et Issas". As part of our doctoral research on the ecology of mosquitoes in Djibouti, we noted a lack of information on the species encountered, and felt it essential to draw up a list of species before embarking on ecological monitoring. The aim of this work is to survey publications on mosquitoes in Djibouti and to synthesize data from this scientific literature in order to update the national inventory of Culicidae. Materials and methods: An exhaustive search of electronic bibliographic databases (PubMed, Scopus, HAL Open Archive, Science Direct and Google Scholar) was carried out. Reference lists were filtered to access additional articles in order to obtain more data. Two keywords were used: "Djibouti" and "French Territory of Afars and Issas". A selection of scientific publications on Djibouti mosquitoes and/or diseases transmitted by mosquito vectors was made. Researches were conducted in articles selected. The names of the species listed were checked and validated by referring to the site Mosquito Taxonomic Inventory. Results: A total of 13 studies, published between 1970 and 2023, were found. Over the years, the composition of the Culicidae fauna has become well known. In part, the movement of people traveling to and from neighboring countries has been linked to the detection of new species and the reappearance of mosquito species in Djibouti. Numerous studies have been carried out over the years, including purely taxonomic studies and others focusing on the incrimination of mosquito vectors and the characterization of the pathogens they transmit. A total of 37 species, belonging to two subfamilies (Anophelinae and Culicinae), of mosquitoes divided between 7 genera (Aedes, Anopheles, Culex, Culiseta, Lutzia, Mimomyia and Uranotaenia) have been mentioned across the country. The number of species per genus is distributed as follows: 5 species of Aedes including 1 subspecies, 14 species of Anopheles including two subspecies, 12 species of Culex including 1 subspecies, 1 species for each of the genera Culiseta and Lutzia and finally 2 species respectively for the genera Mimomiya and Uranotaenia. Five species have been incriminated as vectors of diseases such as malaria, dengue fever, yellow fever, West Nile virus and chikungunya. Others are known for their potential role in pathogen transmission, including Zika and Rift Valley virus. Discussion - Conclusion: The bibliographical research enabled us to summarize the research carried out over more than half a century in the history of Djibouti, and to update the inventory of the country's mosquitoes, which now includes 37 species. Species names were reviewed and updated, and the case of Anopheles gambiae was also addressed. Two species mentioned as part of the Culicidae fauna of Djibouti appeared to be doubtful and are up for discussion. These results provide a useful information base for defining vector control priorities in Djibouti. They will also inform, guide and facilitate future consultations of our database. In addition, this study will help to identify research ways on mosquitoes in Djibouti.


Subject(s)
Culicidae , Animals , Culicidae/classification , Culicidae/physiology , Djibouti , Mosquito Vectors/classification
5.
Pan Afr Med J ; 47: 80, 2024.
Article in English | MEDLINE | ID: mdl-38708136

ABSTRACT

Introduction: with imported malaria cases in a given population, the question arises as to what extent the local cases are a consequence of the imports or not. We perform a modeling analysis for a specific area, in a region aspiring for malaria-free status. Methods: data on malaria cases over ten years is subjected to a compartmental model which is assumed to be operating close to the equilibrium state. Two of the parameters of the model are fitted to the decadal data. The other parameters in the model are sourced from the literature. The model is utilized to simulate the malaria prevalence with or without imported cases. Results: in any given year the annual average of 460 imported cases, resulted in an end-of-year season malaria prevalence of 257 local active infectious cases, whereas without the imports the malaria prevalence at the end of the season would have been fewer than 10 active infectious cases. We calculate the numerical value of the basic reproduction number for the model, which reveals the extent to which the disease is being eliminated from the population or not. Conclusion: without the imported cases, over the ten seasons of malaria, 2008-2018, the KwaZulu-Natal province would have been malaria-free over at least the last 7 years of the decade indicated. This simple methodology works well even in situations where data is limited.


Subject(s)
Communicable Diseases, Imported , Disease Eradication , Malaria , Seasons , Humans , South Africa/epidemiology , Malaria/prevention & control , Malaria/epidemiology , Prevalence , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/prevention & control , Basic Reproduction Number , Models, Theoretical
6.
Acta Trop ; 256: 107260, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782110

ABSTRACT

Avian haemosporidian parasites are spread worldwide and pose a threat to their hosts occasionally. A complete life cycle of these parasites requires two hosts: vertebrate and invertebrate (a blood-sucking insect that acts as a vector). In this study, we tested wild-caught mosquitoes for haemosporidian infections. Mosquitoes were collected (2021-2023) in several localities in Lithuania using a sweeping net and a CDC trap baited with CO2, morphologically identified, and preparations of salivary glands were prepared (from females collected in 2022-2023). 2093 DNA samples from either individual after dissection (1675) or pools (418 pools/1145 individuals) of female mosquito's abdomens were screened using PCR for the detection of haemosporidian parasite DNA. Salivary gland preparations were analyzed microscopically from each PCR-positive mosquito caught in 2022 and 2023. The average prevalence of haemosporidian parasites for all analyzed samples was 2.0 % and varied between 0.6 % (2021) and 3.5 % (2022). DNA of Plasmodium ashfordi (cytochrome b genetic lineage pGRW02), P. circumflexum (pTURDUS1), P. homonucleophilum (pSW2), P. matutinum (pLINN1), P. vaughani (pSYAT05), Haemoproteus brachiatus (hLK03), H. majoris (hWW2), and H. minutus (hTUPHI01) were detected in mosquitoes. Coquilletidia richiardii (3.5 %) and Culex pipiens (2.9 %) were mosquito species with the highest prevalence of haemosporidian parasite DNA detected. Mixed infections were detected in 16 mosquitoes. In one of the samples, sporozoites of P. matutinum (pLINN1) were found in the salivary gland preparation of Culex pipiens, confirming this mosquito species as a competent vector of Plasmodium matutinum and adding it to the list of the natural vectors of this avian parasite.


Subject(s)
Mosquito Vectors , Plasmodium , Salivary Glands , Animals , Female , Mosquito Vectors/parasitology , Plasmodium/isolation & purification , Plasmodium/genetics , Plasmodium/classification , Salivary Glands/parasitology , Lithuania , Haemosporida/genetics , Haemosporida/isolation & purification , Haemosporida/classification , Culicidae/parasitology , Birds/parasitology , Polymerase Chain Reaction , Culex/parasitology , DNA, Protozoan/genetics
7.
Parasit Vectors ; 17(1): 220, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741172

ABSTRACT

BACKGROUND: Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS: This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS: The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS: Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.


Subject(s)
Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Mosquito Vectors , Animals , Culex/virology , Culex/physiology , Encephalitis Virus, Japanese/physiology , Sweden , Mosquito Vectors/virology , Encephalitis, Japanese/transmission , Encephalitis, Japanese/virology , Female , Saliva/virology , Humans
8.
Insects ; 15(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786909

ABSTRACT

This article presents the current state of knowledge of mosquito species (Diptera: Culicidae) occurring in Poland. In comparison to the most recently published checklists (1999 and 2007), which listed 47 mosquito species, four species (Aedes japonicus, Anopheles daciae, Anopheles hyrcanus, and Anopheles petragnani) are added to the Polish fauna. Our new checklist of Polish mosquito fauna includes 51 species of mosquitoes from five genera: Aedes (30), Anopheles (8), Coquillettidia (1), Culiseta (7), and Culex (5). Aspects of the ecology and biology of the Polish mosquito fauna, with particular emphasis on newly recorded species, are discussed.

9.
Parasitol Res ; 123(5): 218, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777889

ABSTRACT

The most widely used attractant to capture adult female mosquitoes is CO2. However, there are also baits available on the market that emit a scent resembling human skin. These baits were specifically designed to attract highly anthropophilic species such as Aedes albopictus and Aedes aegypti. In this study, we compare the effectiveness of CDC traps baited either with CO2 or with a commercial blend simulating skin odor, BG-Sweetscent, for trapping female mosquitoes during daylight hours in an urban reserve in the City of Buenos Aires. We employed a hurdle generalized linear mixed model to analyze trap capture probability and the number of mosquitoes captured per hour, considering the effects of attractant, mosquito species, and their interaction. Traps baited with CO2 captured ten mosquito species, while those baited with BG-Sweetscent captured six in overall significantly lower abundance. The odds of capturing mosquitoes were 292% higher for the CO2-baited traps than for those baited with BG-Sweetscent. No evidence of a combined effect of attractant type and species on female mosquito captures per hour was found. Results indicated that CDC traps baited with CO2 were more effective than those baited with BG-Sweetscent in capturing more mosquito species and a higher number of mosquitoes within each species, even if the species captured with CO2 exhibited a certain level of anthropophilia. This result has practical implications for mosquito surveillance and control in urban natural reserves.


Subject(s)
Culicidae , Mosquito Control , Animals , Female , Mosquito Control/methods , Culicidae/physiology , Culicidae/classification , Culicidae/drug effects , Pheromones/pharmacology , Carbon Dioxide , Cities , Odorants/analysis , Argentina , Humans
10.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734639

ABSTRACT

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Subject(s)
Culicidae , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Mosquito Vectors , Animals , Croatia , Mosquito Vectors/genetics , Mosquito Vectors/classification , Mosquito Vectors/anatomy & histology , Culicidae/classification , Culicidae/genetics , Electron Transport Complex IV/genetics , Anopheles/genetics , Anopheles/classification , Phylogeny , Gene Library
11.
Environ Entomol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728422

ABSTRACT

Microplastics (MPs) and nanoplastics (NPs) are pervasive environmental pollutants that are commonly ingested by organisms at different trophic levels. While the effects of MPs on aquatic organisms have been extensively studied, the impacts of MP ingestion on the host fitness of terrestrial organisms, mainly insects, have been relatively unexplored. This study investigates the effects of MP and NP ingestion on the survivorship and reproduction of 2 medically important mosquito species, Aedes aegypti Linnaeus (Diptera: Culicidae) and Aedes albopictus Skuse (Diptera: Culicidae). Larval and pupal survivorship of Ae. albopictus were not significantly affected by particle size or concentration, but there was a reduction of Ae. aegypti pupal survivorship associated with the ingestion of 0.03 µm NPs. In addition, there was little observed impact of 0.03 µm NP and 1.0 µm MP ingestion on adult survivorship, fecundity, and longevity. To further investigate the effects of MP ingestion on mosquito fitness, we also examined the effects of MPs of varying shape, size, and plastic polymer type on Ae. aegypti immature and adult survivorship. The data suggest that the polymer type and shape did not impact Ae. aegypti immature or adult survivorship. These findings highlight that understanding the effects of microplastic ingestion by mosquitoes may be complicated by the size, composition, and amount ingested.

12.
Parasit Vectors ; 17(1): 168, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566167

ABSTRACT

BACKGROUND: Mosquitoes inhabiting urban green spaces and cemeteries in Europe represent a crucial facet of public health concern and contribute to the ecological balance. As urbanization intensifies, these areas increasingly serve as vital habitats for various mosquito species, fostering breeding grounds and increasing the risk of disease transmission. METHODS: A study was conducted in the three main cities (inland, coastal, and estuarine) of the Basque Country, northern Spain, to investigate the species composition, abundance, dynamic populations, larval habitats, and host preferences of mosquitoes in urban green spaces and cemeteries. CDC traps and dipping were used to collect mosquitoes for 2 years (2019-2020). RESULTS: A total of 21 mosquito species were identified, with Culex pipiens s.l. being the most abundant and widespread. The three ecological forms of Cx. pipiens were found, and Cx. pipiens pipiens was the most common in both green areas and cemeteries. Morphological identification together with molecular tools identified 65 COI sequences with high homology. The highest species richness was found in the inland city, followed by the coastal city and the estuarine city. Mosquito abundance was significantly higher in green areas compared to cemeteries and in the coastal and estuarine cities compared to the inland city. The investigation of larval breeding sites highlighted the dominance of Cx. pipiens s.l., particularly in semi-artificial ponds, diverse water-holding containers (tyres and buckets) and drainage systems in green areas; in cemeteries, most of the larvae were found in flowerpots and funerary urns. Seasonal activity exhibited variable peaks in mosquito abundance in the different cities, with a notable increase in July or August. Additionally, blood meal analysis revealed that Cx. pipiens s.l. fed on several common urban avian species. CONCLUSIONS: Studies on mosquitoes are essential to understand their role in disease transmission and to design targeted and sustainable management strategies to mitigate the associated risks.


Subject(s)
Culex , Culicidae , Animals , Spain , Parks, Recreational , Cemeteries , Culex/anatomy & histology , Larva
13.
BMC Res Notes ; 17(1): 98, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561830

ABSTRACT

INTRODUCTION: Dermatobia hominis belongs to the Cuterebridae family, Diptera order; These flies inhabit tropical regions where they are called "fly of death" since the larvae are capable of causing lesions in domestic animals, wild animals including humans, the adult females of D. hominis capture other dipteran to oviposit their eggs on them (phoresis), when hematophagous mosquitoes land on an animal and / or human in order to feed on their blood, the eggs hatch and the larvae immediately penetrate the skin where they will develop to later abandon the host, then in the soil and / or other moist substrate the pupal stage develops, finally new adult flies will emerge from the pupae. OBJECTIVE: The primary goal of the present study was to determine as first record, the presence of Psorophora ferox infested with eggs of Dermatobia hominis, Peru. METHODOLOGY: The present study was carried out in an area of the private reserve "El Vencedor", located within the city of Pucallpa, Ucayali Region-Perú. The area is characterized by being humid tropical, with an average temperature of 26ºC and humidity of 92%, while the annual precipitation is approximately 1570 mm3. The capture method was carried out with the help of a hand net type "butterfly" or also called Jama. RESULTS: A total of 668 mosquitoes of different species were collected, the most abundant being Psorophora albigenu and Psorophora ferox, which represented 88.72% and the least abundant was Culex coronator and Uranotaenia apicalis with 0.15% of the total sample collected. CONCLUSIONS: Within these specimens it was captured a mosquito of the species Ps. ferox with the presence of 8 eggs of D. hominis, of which 3 would have hatched, while in the remaining 5, the larvae would remain inside the eggs.


Subject(s)
Culicidae , Diptera , Animals , Female , Adult , Humans , Peru , Larva , Skin , Pupa
14.
Med Vet Entomol ; 38(2): 234-243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489505

ABSTRACT

Mayaro virus (MAYV; Alphavirus: Togaviridae) is an emerging pathogen in Latin America, causing fever and polyarthritis. Sporadic outbreaks of MAYV have occurred in the region, with reported human cases being imported to Europe and North America. Although primarily a risk for those residing in the Amazon basin's tropical forests, recent reports highlight that urbanization would increase the risk of MAYV transmission in Latin America. Urban emergence depends on human susceptibility and the ability of mosquitos like Aedes aegypti  (Linnaeus, 1762) (Diptera: Culicidae) to transmit MAYV. Despite the absence of active MAYV transmission in Argentine, the risk of introduction is substantial due to human movement and the presence of Ae. aegypti in the region. This study aimed to evaluate the susceptibility of different Argentine Ae. aegypti populations to MAYV genotype L (MAYV-L) using dose-response assays and determine barriers to virus infection, dissemination and transmission. Immature mosquito stages were collected in Buenos Aires, Córdoba and Rosario cities. Female Ae. aegypti (F2) were orally infected by feeding on five concentrations of MAYV-L, ranging from 1.0 to 6.0 log10 PFU/mL. Abdomens, legs and saliva were analysed using viral plaque assays. Results revealed that MAYV-L between infection and dissemination were associated with viral doses rather than the population origin. Infection rates varied between 3% and 65%, with a 50% infectious dose >5.5 log10 PFU/mL. Dissemination occurred at 39%, with a 50% dissemination dose of ~6.0 log10 PFU/mL. Dissemination among infected mosquitoes ranged from 60% to 86%, and transmission from disseminated mosquitoes ranged from 11% to 20%. Argentine Ae. aegypti populations exhibited a need for higher viral doses of MAYV-L than those typically found in humans to become infected. In addition, only a small proportion of infected mosquitoes were capable of transmitting the virus. Understanding MAYV transmission in urban areas is crucial for public health interventions.


Subject(s)
Aedes , Alphavirus , Mosquito Vectors , Animals , Aedes/virology , Aedes/physiology , Argentina , Mosquito Vectors/virology , Mosquito Vectors/physiology , Alphavirus/physiology , Female , Alphavirus Infections/transmission , Larva/virology , Larva/growth & development
15.
Gac Sanit ; 2024 Mar 06.
Article in Spanish | MEDLINE | ID: mdl-38519323

ABSTRACT

The first detection of the tiger mosquito, Aedes (Stegomyia) albopictus (Skuse, 1894), in the autonomous community of Galicia (Spain) is reported. The finding has been possible thanks to the collaboration between citizens, the citizen science application Mosquito Alert and the Rede Galega de Vixilancia de Vectores (ReGaViVec). At the beginning of August 2023, a same person submitted through the app several reports consistent with the tiger mosquito in the municipality of Moaña, in Pontevedra. The ReGaViVec entomological team confirmed the species and conducted vector surveillance in the area by placing traps (11 ovitraps and 3 BG-Sentinel 2 with BG-Lure attractant) with a weekly collection frequency. This finding represents the most northwestern detection of the tiger mosquito in the Iberian Peninsula and shows the crucial role of citizen science in vector surveillance.

16.
J Med Entomol ; 61(3): 657-666, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38518800

ABSTRACT

Water mites (Hydrachnidia) commonly parasitize mosquitoes; however, the nature of these parasitic interactions remains poorly understood. We sampled mites collected from mosquitoes taken from CDC light traps placed in a botanical garden in Northern Florida from April to November 2022. Mites were found almost exclusively parasitizing the mosquitoes, Anopheles crucians sensu lato (Wiedemann, 1828), Anopheles quadrimaculatus sensu lato (Say, 1824), and Culex erraticus (Dyar and Knab, 1906). All sampled mites were of the genus Arrenurus. Further identification proved to be impossible given the available resources. Seasonality of the mites corresponded with the seasonality of their hosts, with the highest numbers being recorded in May and September. Nomenclature for mite attachment sites on mosquitoes was developed and provided. Mites most commonly attached to the second abdominal segments of all sampled mosquitoes with varied positions around the segment depending on mosquito species. We found significance for the relationship between the abdominal segment mites attached to and what position on the segment mites would take for Cx. erraticus, which indicates a preference of attaching directly underneath the second and fourth abdominal segments. Such a relationship was not found for either Anopheles species.


Subject(s)
Anopheles , Culex , Mites , Seasons , Animals , Florida , Mites/physiology , Mites/classification , Host-Parasite Interactions , Terminology as Topic , Gardens
17.
Life (Basel) ; 14(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38541677

ABSTRACT

Although tropical forests are home to most of the global diversity, they suffer from the most significant knowledge gaps concerning their fauna. Despite its high biodiversity, Brazil is facing an alarming destruction of habitats, with species becoming extinct before they can be discovered or described via science. Therefore, there is an urgent need to expand wildlife inventories, including entomofauna surveys. The present study aimed to analyze the bionomic aspects and the influence of abiotic factors on mosquito fauna whose immature phases develop in two bamboo species, Guadua tagoara and Bambusa vulgaris, in Tijuca National Park, Rio de Janeiro, Brazil. Immatures were collected in 10 artificially drilled bamboo plants, in five stalk internodes per plant, at two sampling points, from March 2022 to March 2023, during 23 collections. A total of 1845 immatures were obtained, 72.14% at sampling point 1 and 27.86% at sampling point 2. Of this, 1162 individuals reached adulthood, belonging to the following species: Culex iridescens, Culex neglectus, Haemagogus leucocelaenus, Orthopodomyia albicosta, Sabethes identicus, Sabethes melanonymphe, Sabethes purpureus, Toxorhynchites bambusicola, Toxorhynchites sp., Trichoprosopon compressum, Trichoprosopon pallidiventer, Wyeomyia arthrostigma, Wyeomyia codiocampa, Wyeomyia lutzi, Wyeomyia oblita, Wyeomyia personata, Wyeomyia serrata, and Wyeomyia sp. The Tijuca National Park is a tourist spot and receives a large number of visitors. Thus, humans can become an accessible food source for mosquitoes in this area, making the species survey critical since important arbovirus vectors have been recorded in Rio de Janeiro.

18.
Res Sq ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464276

ABSTRACT

Context: Land use change drives both biodiversity loss and zoonotic disease transmission in tropical countryside landscapes. Developing solutions for protecting countryside biodiversity, public health, and livelihoods requires understanding the scales at which habitat characteristics such as land cover shape biodiversity, especially for arthropods that transmit pathogens. Evidence increasingly shows that species richness for many taxa correlates with local tree cover. Objectives: We investigated whether mosquito species richness, community composition, and presence of disease vector species responded to land use and tree cover - and if so, whether at spatial scales similar to other taxa. Methods: We paired a field survey of mosquito communities in agricultural, residential, and forested lands in rural southern Costa Rica with remotely sensed tree cover data. We compared mosquito community responses to tree cover surrounding survey sites measured across scales, and analyzed community responses to land use and environmental gradients. Results: Tree cover was positively correlated with mosquito species richness, and negatively correlated with the presence of the common invasive dengue vector Aedes albopictus, particularly at small spatial scales of 80 - 200m. Land use predicted community composition and Ae. albopictus presence. Environmental gradients of tree cover, temperature, and elevation explained 7% of species turnover among survey sites. Conclusions: The results suggest that preservation and expansion of tree cover at local scales can protect biodiversity for a wide range of taxa, including arthropods, and also confer protection against disease vector occurrence. The identified spatial range of tree cover benefits can inform land management for conservation and public health protection.

19.
Heliyon ; 10(4): e26477, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404807

ABSTRACT

The emergence of several zoonotic mosquito-borne pathogens in Europe, including West Nile virus, Sindbis virus and Usutu virus, has emphasised the importance of consistent surveillance. Considerable fieldwork effort is usually needed to detect low-prevalence pathogens in mosquitoes and screening vertebrate hosts and reservoirs is rarely done simultaneously with mosquito sampling. Zoological gardens offer an opportunity for the surveillance of pathogens, mosquitoes, hosts, and reservoirs concurrently; thus, the aim of this study was undertaking integrated surveillance for mosquito-borne pathogens of wild birds and mosquitoes in Chester Zoo (Cheshire) in the United Kingdom. Mosquitoes were collected in September 2020 and tested for zoonotic bird-hosted arboviruses (i.e., West Nile virus, Usutu virus and Sindbis virus) using RT-qPCRs. Of the 3316 mosquitoes trapped, 98% were identified as Culex spp. The average minimum prevalence of the viruses found in the literature was used to calculate the sample size needed for detecting these viruses with 99% confidence. The testing of 2878 Culex females found no evidence of presence of the three viruses. Significant differences were found in mosquito abundance per sampling site and collection date; furthermore, important sources of immature and resting mosquitoes were found near aviaries. Eighteen wild birds belonging to 11 species were found dead in the zoo from May to December 2020 and were RT-qPCR tested for West Nile virus and Usutu virus; all samples resulted negative for viral infection. It is unlikely that these viruses were present in the zoo during the sampling period; however, since they circulate in Europe and Usutu virus has been isolated in the United Kingdom and may overwinter here, continued monitoring of mosquitoes and wild birds is recommended as virus introduction and dissemination are possible. This study highlights the importance of regular and integrated arboviral surveillance of zoonotic pathogens in zoos providing baseline information to that end.

20.
J Insect Sci ; 24(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38367014

ABSTRACT

Body mass underpins many ecological processes at the level of individuals, populations, and communities. Often estimated in arthropods from linear morphological traits such as body length or head width, these relationships can vary even between closely related taxa. Length-mass relationships of mosquito (Diptera: Culicidae) larvae are poorly known despite the importance of this family to disease and aquatic ecology. To fill this gap, we measured ontogenetic changes in linear traits (body length, head width, and thorax width) and dry and wet masses and estimated length- and width-mass relationships in larvae of 3 culicid species inhabiting different niches: the tropical Aedes albopictus (Skuse, 1894), the temperate Culex pipiens (Linnaeus, 1758), and the snowmelt Ochlerotatus punctor (Kirby, 1837). We compared our results with published length-mass allometries of other aquatic dipteran larvae. We showed that thorax width and body length, but not head width, reliably predicted body mass for our 3 species. The length-mass allometry slopes in aquatic dipterans varied considerably between and within families but were independent of phylogeny, specimen handling, preservation techniques, and data fitting methods. Slope estimates became less precise with decreasing sample size and size range. To obtain reliable estimates of the allometric slopes, we have thus recommended using data on all larval stages for intraspecific allometries and a wide range of species for interspecific allometries. We also cautioned against the indiscriminate use of length-mass allometries obtained for other taxa or collected at lower taxonomic resolutions, e.g., when using length-mass relationships to estimate biomass production at a given site.


Subject(s)
Aedes , Culex , Animals , Larva
SELECTION OF CITATIONS
SEARCH DETAIL
...