Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 557
Filter
1.
J Environ Manage ; 366: 121728, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991334

ABSTRACT

This study develops environmentally benign capping technique to synthesize nanoparticles of Curcuma longa-coated titanium dioxide (CR-TiO2) from titanium isopropoxide by utilizing the extract of Rosa rubiginosa flowers as reducing and chelating agent. The biogenically synthesized nanoparticles revealed excellent anti-bacterial, electrochemical, and photocatalytic properties due to the presence of porous TiO2 nanostructures. The sharp peaks by XRD pattern showed the crystallinity and phase purity of TiO2 nanoparticles. BET analysis proved mesoporous nature of the materials with specific surface area of 134 m2 g -1. The vibrational spectra suggest hydroxyl groups from flavonoids of Curcuma longa acting as functionalizing agent for TiO2 nanoporous structures with visible luminescence, which is proven in fluorescence spectra and is applicable for photocatalytic studies. The anti-bacterial studies showed good inference on TiO2 nanoparticles against Pseudomonas auruginosa and proved it to be an excellent antipseudomonal agent with the oxidative potential. The maximum degradation of phenol red dye in the presence of TiO2 under visible light conditions was observed. The supercapacitor fabricated using the biogenic TiO2 three-electrode system exhibited a specific capacitance of 128 Fg-1 (10 mV s-1), suggesting it as an excellent electrode material. The LSV curve at 50 mV s-1 scan rate showed that oxygen reduction potential (ORR) of CR-TiO2 electrodes was 121 mV. The present study is a new application of nanoparticles in sustainability consideration of the environment as well as a solution to the power crisis with fewer limitations. The well-distinguished antidiabetic and BSA denaturation potential suggests that these porous TiO2 nanostructures can be useful for drug delivery as glucose inhibitors and oral anti-inflammatory drugs with the restriction of adverse side effects.

2.
Avicenna J Phytomed ; 14(2): 202-214, 2024.
Article in English | MEDLINE | ID: mdl-38966628

ABSTRACT

Objective: Curcuma longa Rhizome (CLR), due to its potent antioxidant phytochemical constituents, was investigated for its effects on bisphenol A (BPA)-induced cardiovascular and renal damage. Materials and Methods: Sixty rats were randomly selected, and grouped as control, BPA (100 mg/ kg), BPA and CLR 100 mg/kg, BPA and CLR 200 mg/kg, CLR 100 mg/kg, and CLR 200 mg/kg for 21 days. Oxidative stress indices, antioxidant status, blood pressure parameters, genotoxicity, and immunohistochemistry were determined. Results: Rats exposed to the toxic effects of BPA had heightened blood pressure, lowered frequency of micronucleated polychromatic erythrocytes, and decreased activities of antioxidant enzymes compared with rats treated with CLR. Moreover, administration of CLR significantly (p<0.05) lowered malondialdehyde content and reduced the serum myeloperoxidase activity. Immunohistochemical evaluation revealed significantly (p<0.05) increased expressions of cardiac troponin and Caspase 3 in the BPA group compared with the CLR-treated groups. Conclusion: C. longa ameliorated cardiotoxic and nephrotoxic actions of bisphenol-A via mitigation of oxidative stress, hypertension, and genotoxicity.

3.
Foods ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891002

ABSTRACT

Curcumin, a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, is now considered a candidate drug for the treatment of neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and prion disease, due to its potent anti-inflammatory, antioxidant potential, anticancerous, immunomodulatory, neuroprotective, antiproliferative, and antibacterial activities. Traditionally, curcumin has been used for medicinal and dietary purposes in Asia, India, and China. However, low water solubility, poor stability in the blood, high rate of metabolism, limited bioavailability, and little capability to cross the blood-brain barrier (BBB) have limited the clinical application of curcumin, despite the important pharmacological activities of this drug. A variety of nanocarriers, including liposomes, micelles, dendrimers, cubosome nanoparticles, polymer nanoparticles, and solid lipid nanoparticles have been developed with great success to effectively deliver the active drug to brain cells. Functionalization on the surface of nanoparticles with brain-specific ligands makes them target-specific, which should significantly improve bioavailability and reduce harmful effects. The aim of this review is to summarize the studies on curcumin and/or nanoparticles containing curcumin in the most common neurodegenerative diseases, highlighting the high neuroprotective potential of this nutraceutical.

4.
Article in English | MEDLINE | ID: mdl-38918979

ABSTRACT

Curcumin, as an anti-tumor agent, is not widely used in cancer treatment due to the lack of effective levels of its metabolites in cancerous tissue. Addressing the barriers to the carrier and delivery of drugs to the specific sites of therapeutic action while reducing side effects is a priority. Folate receptor expression is high in malignant and low in normal cells. Folate as a targeted ligand could selectively target cancer cells. Thus, this narrative review aimed to provide an overview of the studies that have investigated the different types of folate-modified curcumin as a carrier and deliverer and their structural properties that enhance therapeutic drug efficacy. A literature search was performed using PubMed, Scopus, Web of Science, and Google Scholar databases. Thirty-eight preclinical studies addressing this topic were identified. The findings of the current review have shown that folate-modified nanoparticles containing curcumin as a promising therapeutic approach can be effective in improving different types of cancers. In vitro studies have shown a higher cellular uptake and cytotoxicity effect, higher cell inhibition, and anti-proliferation with a lower dosage of curcumin. In vivo studies have shown more tumor suppression and smaller tumor volume without toxicity after the administration of folate-modified nanoparticles containing curcumin. Future clinical trials are needed to confirm the beneficial effect of folate-modified curcumin as a new drug delivery platform for cancer treatment.

5.
Curr Issues Mol Biol ; 46(6): 5551-5560, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38921003

ABSTRACT

Extensive research on medicinal herbs for bioactive compounds proposes that they could replace synthetic drugs, reducing side effects and economic burdens. Especially, interest in the synergistic benefits of natural products is increasing, implying that their combined use may enhance therapeutic effectiveness. This study aimed to explore the synergetic effects of turmeric (Curcuma longa L.) and black pepper (Piper nigrum L.) extract on lung normal (MRC-5) and cancer (A549 and NCI-H292) cell lines. The turmeric extract (TM) only affected the lung cancer cell lines, but it had no impact on the MRC-5 cell line. On the other hand, the black pepper extract (BP) did not cause any damage to either the lung normal or cancer cell lines, even at concentrations of up to 400 µg/mL. Response surface methodology was used to predict the ideal synergistic concentrations (EC50) of TM and BP, which were found to be 48.5 and 241.7 µg/mL, respectively. Notably, the selected condition resulted in higher cytotoxicity compared to the exposure to TM alone, indicating a potent synergetic effect. The rate of curcumin degradation under this combined treatment was significantly decreased to 49.72 ± 5.00 nmol/h/µg for A549 cells and 47.53 ± 4.78 nmol/h/µg for NCI-H292 cells, respectively, as compared to curcumin alone. Taken together, this study confirmed the potent synergistic effect of TM and BP on lung cancer cell lines. Further research is required to identify their specific synergetic mechanisms. Our findings provide crucial foundational data on the synergistic effects of TM and BP.

6.
Crit Rev Food Sci Nutr ; : 1-17, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716814

ABSTRACT

The ubiquity and versatility of curcumin (CUR) as a bioactive compound found in foods, cosmetics, and pharmaceuticals create the need for its obtainment in the purest forms from the parent plants, especially Curcuma longa. To have efficient synthesis, extraction, and purification of CUR, environmentally sustainable, green, cost-affordable, and safe methods are of immense significance. To this end, we consider recent advancements in CUR extraction, purification, and biosynthesis in this review. The conventional and novel high-throughput techniques employed in CUR extraction including enzyme-assisted, microwave-assisted, ultrasound-assisted, pressurized liquid (subcritical), supercritical fluid, pulsed electric fields-assisted, and ionic liquids-based extraction techniques were comprehensively discussed. The chemical/bio-syntheses of CUR were considered, and the recent advancements in metabolic engineering strategies to enhance the production of CUR were deliberated. Furthermore, novel technologies associated with CUR purification, such as column chromatography, semi-preparative high-performance liquid chromatography, high-speed counter-current chromatography, preparative supercritical fluid chromatography, and crystallization were discussed in detail. We concluded by discussing the pilot scale and industrial production and food applications of CUR.

7.
Plant Physiol Biochem ; 211: 108644, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710114

ABSTRACT

In this study, we have investigated the effect of carbon quantum dots (FM-CQDs) synthesized from marine fungal extract on Curcuma longa to improve the plant growth and curcumin production. The isolated fungus, Aspergillus flavus has produced a high amount of indole-3-acetic acid (IAA) (0.025 mg g-1), when treated with tryptophan. CQDs were synthesized from the A. flavus extract and it was characterized using ultraviolet visible spectrophotometer (UV-Vis) and high-resolution transmission electron microscopy (HR-TEM). The synthesized CQDs were excited at 365 nm in an UV-Vis and the HR-TEM analysis showed approximately 7.4 nm in size with a spherical shape. Both fungal crude extract (FCE) at 0-100 mg L-1 and FM-CQDs 0-5 mg L-1 concentrations were tested on C. longa. About 80 mg L-1 concentration FCE treated plants has shown a maximum height of 21 cm and FM-CQDs at 4 mg L-1 exhibited a maximum height of 25 cm compared to control. The FM-CQDs significantly increased the photosynthetic pigments such as total chlorophyll (1.08 mg g-1 FW) and carotenoids (17.32 mg g-1 FW) in C. longa. Further, antioxidant enzyme analysis confirmed that the optimum concentrations of both extracts did not have any toxic effects on the plants. FM-CQDs treated plants increased the curcumin content up to 0.060 mg g-1 by HPLC analysis. Semi quantitative analysis revealed that FCE and FM-CQDs significantly upregulated ClCURS1 gene expression in curcumin production.


Subject(s)
Aspergillus flavus , Carbon , Curcuma , Curcumin , Quantum Dots , Quantum Dots/chemistry , Curcuma/metabolism , Curcuma/microbiology , Carbon/metabolism , Carbon/pharmacology , Curcumin/metabolism , Curcumin/pharmacology , Aspergillus flavus/metabolism , Aspergillus flavus/growth & development , Indoleacetic Acids/metabolism , Endophytes/metabolism
8.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38571919

ABSTRACT

Background: Osteoarthritis (OA), the most prevalent form of arthritis, is a degenerative joint disease marked by the progressive deterioration of articular cartilage, leading to clinical manifestations such as joint pain. Objective: This study investigated the effects of Curcuma longa L. extract (CL) containing curcumin, demethoxycurcumin, and bisdemethoxycurcumin on monosodium iodoacetate (MIA)-induced OA rats. Design: Sprague-Dawley rats with MIA-induced OA received CL supplementation at doses of 5, 25, and 40 mg/kg body weight. Results: CL extract administration suppressed mineralisation parameters and morphological modifications and decreased arachidonate5-lipoxygenase and leukotriene B4 levels in articular cartilage. Additionally, it decreased serum prostaglandin E2, NO, and glycosaminoglycanlevels as well as the protein expression of phosphorylated inhibitor kappa B-alpha, phosphorylated p65, cyclooxygenase-2, and inducible nitric oxide synthase in the cartilage of MIA-injected rats. Furthermore, it also reduced matrix metalloproteinases and elevated SMAD family member 3 phosphorylation, tissue inhibitor of metalloproteinases, aggrecan, collagen type I, and collagen type II levels in the articular cartilage of MIA-induced OA rats. Conclusions: This study's findings suggest that CL supplementation helps prevent OA development and is an effective therapy for OA.

9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612606

ABSTRACT

Vulvovaginal candidiasis (VVC) is a real gynecological problem among women of reproductive age from 15 to 49. A recent analysis showed that 75% of women will have an occurrence at least once per year, while 5% are observed to have recurrent vaginal mycosis-these patients may become unwell four or more times a year. This pathology is caused in 85-90% of cases by fungi of the Candida albicans species. It represents an intractable medical problem for female patients due to pain and pruritus. Due to the observation of an increasing number of strains resistant to standard preparations and an increase in the recurrence of this pathology when using local or oral preferential therapy, such as fluconazole, an analysis was launched to develop alternative methods of treating VVC using herbs such as dill, turmeric, and berberine. An in-depth analysis of databases that include scientific articles from recent years made it possible to draw satisfactory conclusions supporting the validity of herbal therapy for the pathology in question. Although phytotherapy has not yet been approved by the Food and Drug Administration, it appears to be a promising therapeutic solution for strains that are resistant to existing treatments. There is research currently undergoing aimed at comparing classical pharmacotherapy and herbal therapy in the treatment of vaginal candidiasis for the purpose of increasing medical competence and knowledge for the care of the health and long-term comfort of gynecological patients.


Subject(s)
Berberine , Candidiasis, Vulvovaginal , United States , Humans , Female , Candidiasis, Vulvovaginal/drug therapy , Phytotherapy , Candida , Vagina
10.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613362

ABSTRACT

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Subject(s)
Glomerulonephritis , Plant Extracts , Testosterone , Male , Animals , Mice , Leydig Cells , Curcuma , Hydrocortisone , Yang Deficiency
11.
Int J Biol Macromol ; 268(Pt 2): 131908, 2024 May.
Article in English | MEDLINE | ID: mdl-38679269

ABSTRACT

Curcuma longa and Sargassum coreanum are commonly used in traditional pharmaceutical medicine to improve immune function in chronic diseases. The present study was designed to systematically elucidate the in vitro and in vivo immuno-enhancing effects of a combination of C. longa and S. coreanum extracts (CS) that contain polyphenols and saccharides as functional molecules in a cyclophosphamide (Cy)-induced model of immunosuppression. In primary splenocytes, we observed the ameliorative effects of CS on a Cy-induced immunosuppression model with low cytotoxicity and an optimal mixture procedure. CS treatment enhanced T- and B-cell proliferation, increased splenic natural killer-cell activity, and restored cytokine release. Wistar rats were orally administered low (30 mg/kg), intermediate (100 mg/kg), or high (300 mg/kg) doses of CS for four weeks, followed by oral administration of Cy (5 mg/kg) for four weeks. Compared with the vehicle group, low-, intermediate-, and high-dose CS treatment accelerated dose-dependent recovery of the serum level of tumor necrosis factor-α, interferon-γ, interleukin-2, and interleukin-12. These results suggest that CS treatment accelerates the amelioration of immune deficiency in Cy-treated primary splenocytes and rats, which supports considering it for immunity maintenance. Our findings provide experimental evidence for further research and clinical application in immunosuppressed patients.


Subject(s)
Killer Cells, Natural , Polyphenols , Rats, Wistar , Spleen , Animals , Polyphenols/pharmacology , Polyphenols/chemistry , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Rats , Spleen/drug effects , Spleen/immunology , Spleen/cytology , Cytokines/metabolism , Male , Cyclophosphamide/pharmacology , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry
12.
Pak J Biol Sci ; 27(3): 132-141, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38686735

ABSTRACT

<b>Background and Objective:</b> The SU84 was isolated from the rhizosphere of <i>Curcuma longa</i> and identified to be <i>Streptomyces</i> sp. via analysis of its 16S rDNA sequence, chemotaxonomy and morphology. This study aimed to isolate major compounds from the extract culture of strain SU84 and evaluate their antibacterial activity. <b>Materials and Methods:</b> The TLC and silica gel column chromatography were used to purify major compounds, elucidate 1,3-dihydroxy-,2',2'-dimethylpyrano-(5,6)-xanthone (compound <b>1</b>) and lupeol (compound <b>2</b>) using mass spectrometry and nuclear magnetic resonance. One new chemical, compound <b>1</b>, was first isolated from microbial sources. Antibacterial, antioxidant and cytotoxic properties of these compounds were carried out. <b>Results:</b> Various bioassays showed that compound <b>1</b> displayed antibacterial property against Gram-positive bacteria, with a minimum inhibitory concentration of 8-32 µg/mL and minimum bactericidal concentration of 32-128 µg/mL. In addition, the purified compounds were tested against normal cell lines using tetrazolium assay. The results did not show cytotoxic property against L929 and Vero cells, with IC<sub>50</sub> values of >512.00 µg/mL. Compounds <b>1</b> and <b>2</b> have also antioxidant properties, with IC<sub>50</sub> values of 16.67±7.48 and 38.86±8.45 µg/mL, respectively. <b>Conclusion:</b> The findings suggested that compounds of <i>Streptomyces</i> sp. SU84 displayed antibacterial and antioxidant properties without cytotoxic activity. Extensive studies of compound <b>1</b> may be useful for the advancement of improved methods for avoidance, control and management of bacterial infections and metabolic-related free radical contribution.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Microbial Sensitivity Tests , Streptomyces , Xanthones , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Xanthones/pharmacology , Xanthones/isolation & purification , Streptomyces/metabolism , Animals , Vero Cells
13.
Int J Biol Macromol ; 266(Pt 2): 131344, 2024 May.
Article in English | MEDLINE | ID: mdl-38574923

ABSTRACT

In this study, we obtained triple-layer films based on furcellaran and gelatin, in which the middle layer was enriched with extract of Curcuma longa in citral. This newly developed material underwent a comprehensive characterisation process to identify significant improvements in its functional properties. Both SEM, XRD and FTIR analyzes indicated the formation of interactions not only between the components but also between the film layers. Notably, the incorporation of the natural extract led to a significant reduction in solubility, decreasing it from 74.79 % to 57.25 %, while enhancing thermal stability expressed as a melting point elevating it from 147.10 °C in the control film to 158.80 °C in the film with the highest concentration of the active ingredient. Simultaneously, the addition of this active ingredient resulted in decreased water contact angle (WCA) values, rendering the film more hydrophilic. The produced films exhibit great promise as packaging materials, particularly within the food industry, and the conducted research is marked by its forward-looking and developmental approach.


Subject(s)
Acyclic Monoterpenes , Alginates , Curcuma , Gelatin , Plant Extracts , Plant Gums , Curcuma/chemistry , Gelatin/chemistry , Plant Extracts/chemistry , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Solubility , Food Packaging/methods , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Spectroscopy, Fourier Transform Infrared
14.
Toxicol Mech Methods ; 34(6): 676-693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38481097

ABSTRACT

Introduction/Background: Curcuma longa, a plant native to the Indian subcontinent has a variety of biological activities. Curcumin is the most abundant and biologically active compound with many therapeutic properties. Demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) - the two other bioactive components present in Curcuma longa, besides curcumin, are collectively termed curcuminoids. Apart from the well-known curcumin, BDMC also has been reported to possess promising biological and pharmacological effects, but very little scientific evidence on its safety assessment has been published.Objective: The present study was undertaken to determine the safety of pure BDMC from Curcuma longa extract in rodents which comprises of general toxicity (both four weeks and three months duration), reproductive/developmental toxicity and genotoxicity studies.Methods: The Good Laboratory Practice studies were carried out in accordance with the test guidelines established by the Organization for Economic Cooperation and Development.Results: No treatment-related adverse findings were seen in general toxicity testing and a no observed adverse effect level (NOAEL) of 1000 mg/kg/day was established after four weeks (sub-acute) and three-months (sub-chronic) dosing. Evaluation of fertility, embryo-fetal, and post-natal reproductive and developmental parameters also showed no adverse findings with a NOAEL of 1000 mg/kg/day established. The results of genotoxicity as evaluated by in vitro reverse mutation assay, and in vivo micronucleus test in mice indicate that BDMC did not induce any genotoxic effects.Conclusion: Oral administration of BDMC is safe in rodents and non-mutagenic, with no adverse effects under experimental conditions.


Subject(s)
Curcuma , Diarylheptanoids , Rhizome , Animals , Curcuma/chemistry , Male , Diarylheptanoids/toxicity , Female , Rhizome/chemistry , Plant Extracts/toxicity , Micronucleus Tests , No-Observed-Adverse-Effect Level , Curcumin/analogs & derivatives , Curcumin/toxicity , Mutagenicity Tests , Rats, Sprague-Dawley , Mice , Dose-Response Relationship, Drug , Rats , Reproduction/drug effects
15.
Article in English | MEDLINE | ID: mdl-38487885

ABSTRACT

OBJECTIVES: In this study, we employed a multi-dimensional data mining approach to examine the clinical instances where Professor Xu Zhiyin treated thyroid nodules. Our aim is to understand the patterns of symptoms, underlying causes, and treatment approaches used for thyroid nodules. By doing so, the intention is to distill the essential aspects, compile Professor Xu Zhiyin's clinical insights, and investigate his scholarly perspectives. METHODS: Professor Xu Zhiyin's clinical diagnoses and treatments spanning from 2009 to 2019 were entered into Microsoft Excel. Subsequently, the collected data was imported into the Medcase V5.2 system to facilitate data mining. Various techniques, such as frequency-based method, association rule analysis, and clustering, including a decentralized system clustering approach, were employed on a set of 346 cases involving patients with thyroid nodules that conformed to the specified criteria. The primary focus was on extracting insights regarding symptoms and the underlying causes from the medical records. By integrating these findings with Professor Xu Zhiyin's clinical expertise, we examined and summarized the outcomes of the data mining process. RESULTS: The fundamental prescriptions were successfully extracted using the techniques for mining across multiple dimensions. Utilizing the scattered grouping of these prescriptions and with reference to the cluster analysis of the frequency-linked system, the fundamental prescriptions proposed by Professor Xu Zhiyin for addressing thyroid nodules encompass the following ingredients: Glycyrrhiza uralensis Fisch, Cortex Moutan, Paeoniae radix rubra, Curcuma longa L., Radix Curcumae, persica seed, Citri Reticulatae Viride Pericarpium, Pinellia ternata, Spica Prunellae, Ostreae concha, Gleditsia sinensis spine, Tuckahoe and Radix Codonopsis. CONCLUSION: The fundamental prescriptions were acquired using the frequency approach, association rule technique, k-means clustering approach, and systematic clustering approach. The research findings corroborate one another, demonstrating that Professor Xu Zhiyin's approach to distinguishing and treating thyroid nodules is embodied in distinct prescriptions tailored to specific diseases.


Subject(s)
Data Mining , Drugs, Chinese Herbal , Thyroid Nodule , Humans , Data Mining/methods , Thyroid Nodule/diagnosis , Thyroid Nodule/therapy , Drugs, Chinese Herbal/therapeutic use , Male , Female , Middle Aged , Adult , Medicine, Chinese Traditional/methods , Drug Prescriptions/statistics & numerical data , Aged , History, 21st Century
16.
Am J Chin Med ; 52(2): 387-415, 2024.
Article in English | MEDLINE | ID: mdl-38490808

ABSTRACT

Turmeric is widely used worldwide, and there are many examples of its use in treating hepatobiliary diseases. The gut-liver axis is a bidirectional relationship between gut microorganisms and the liver that is closely related to the pathogenesis of hepatobiliary diseases. This review systematically summarizes the components of turmeric. It links the studies on turmeric affecting gut microorganisms to its effects on liver and biliary diseases to explain the potential mechanism of turmeric's regulation of the gut-liver axis. Besides, ethnopharmacology, phytochemicals, and clinical adverse events associated with turmeric have been researched. Furthermore, turmeric is a safe agent with good clinical efficacy and without apparent toxicity at a certain amount. By summarizing the influence of turmeric on the liver by regulating the gut-liver axis, especially the gut microbiota, it provides a preclinical basis for using turmeric as a safe and effective therapeutic agent for the prevention and treatment of hepatobiliary diseases based on the gut-liver axis. However, more efforts should be made to exploit its clinical application further.


Subject(s)
Curcuma , Digestive System Diseases , Humans , Curcuma/chemistry , Liver , Digestive System Diseases/drug therapy , Digestive System Diseases/pathology
17.
Foods ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38472831

ABSTRACT

Beverage mixtures based on pineapple juice (80-100%), with varying concentrations of turmeric (0-20%) and ginger (0-20%) juice were developed. The pineapple juice alone exhibited a total soluble solid (TSS) content of 15.90-16.03 °Brix. The total polyphenols content (TPC) varied between 0.32 and 1.79 mg GAE/mL, and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) inhibition was between 40.56% and 86.19% and correlated with the TPC and curcumin and other curcuminoids. The formulations with a high pulp content showed a significantly higher TPC and greater DPPH inhibition than those with a low pulp content. Turmeric and ginger with a high amount of pulp had a higher abundance of volatile compounds. Significant differences were observed by the panelists in the taste and mouthfeel attributes and the low-pulp juices were associated with increased palatability due to the better mouthfeel, higher sweetness, and decreased bitterness, pepperiness, pulpiness, and spiciness. The pineapple juice mixtures with 10% turmeric juice and 10% or less ginger juice were most preferred by sensory panelists.

18.
Front Nutr ; 11: 1324196, 2024.
Article in English | MEDLINE | ID: mdl-38347961

ABSTRACT

The spice turmeric, which has the Latin name Curcuma longa (C. longa), has various physiological effects. This study evaluated the effects of a hot water mixture with supercritical carbon dioxide C. longa extracts, CLE, and the potential active components of C. longa, turmeronols A and B and bisacurone on inflammation and glucose metabolism. First, we investigated the effect of CLE and the potential active components of C. longa on lipopolysaccharide-induced inflammation in RAW264.7 macrophages. We found a significant decrease in the production of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide with CLE, turmeronol A, and bisacurone, Significant inhibition of each of these substances was also observed, except for TNF-α with turmeronol B. The second part of our work was a 12-week randomized, double-blind, placebo-controlled study in healthy but borderline adults aged 40 to 69 years with overweight and normal/prediabetes glycemia. We compared blood inflammatory and glycometabolic markers in the CLE (n = 55) and placebo groups (n = 55). We found significantly lower serum high-sensitivity C-reactive protein and hemoglobin A1c levels in the CLE group. This group also showed significant improvements in postprandial hyperglycemia and insulin sensitivity indices. Our findings indicate that CLE may reduce low-grade inflammation and thus improve insulin sensitivity and postprandial hyperglycemia. Clinical trial registration: https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000051492, UMIN-CTR, UMIN000045106.

19.
Appl Microbiol Biotechnol ; 108(1): 241, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413482

ABSTRACT

The present work aimed to develop, characterize, and evaluate the antibacterial and antibiofilm activity of two nanoemulsions (NEs) containing 500 µg/mL of curcumin from Curcuma longa (CUR). These NEs, produced with heating, contain olive oil (5%) and the surfactants tween 80 (5%) and span 80 (2.5%), water q.s. 100 mL, and were stable for 120 days. NE-2-CUR presented Ø of 165.40 ± 2.56 nm, PDI of 0.254, ζ of - 33.20 ± 1.35 mV, pH of 6.49, and Entrapment Drug Efficiency (EE) of 99%. The NE-4-CUR showed a Ø of 105.70 ± 4.13 nm, PDI of 0.459, ζ of - 32.10 ± 1.45 mV, pH of 6.40 and EE of 99.29%. Structural characterization was performed using DRX and FTIR, thermal characterization using DSC and TG, and morphological characterization using SEM, suggesting that there is no significant change in the CUR present in the NEs and that they remain stable. The MIC was performed by the broth microdilution method for nine gram-positive and gram-negative bacteria, as well as Klebsiella pneumoniae clinical isolates resistant to antibiotics and biofilm and efflux pump producers. The NEs mostly showed a bacteriostatic profile. The MIC varied between 125 and 250 µg/mL. The most sensitive bacteria were Staphylococcus aureus and Enterococcus faecalis, for which NE-2-CUR showed a MIC of 125 µg/mL. The NEs and ceftazidime (CAZ) interaction was also evaluated against the K. pneumoniae resistant clinical isolates using the Checkerboard method. NE-2-CUR and NE-4-CUR showed a synergistic or additive profile; there was a reduction in CAZ MICs between 256 times (K26-A2) and 2 times (K29-A2). Furthermore, the NEs inhibited these isolates biofilms formation. The NEs showed a MBIC ranging from 15.625 to 250 µg/mL. Thus, the NEs showed physicochemical characteristics suitable for future clinical trials, enhancing the CAZ antibacterial and antibiofilm activity, thus becoming a promising strategy for the treatment of bacterial infections caused by multidrug-resistant K. pneumoniae. KEY POINTS: • The NEs showed physicochemical characteristics suitable for future clinical trials. • The NEs showed a synergistic/additive profile, when associated with ceftazidime. • The NEs inhibited biofilm formation of clinical isolates.


Subject(s)
Anti-Infective Agents , Curcumin , Anti-Bacterial Agents/pharmacology , Ceftazidime/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Olive Oil/pharmacology , Gram-Positive Bacteria , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology , Klebsiella pneumoniae , Microbial Sensitivity Tests
20.
Beilstein J Nanotechnol ; 15: 37-50, 2024.
Article in English | MEDLINE | ID: mdl-38213574

ABSTRACT

Leishmaniasis is a neglected tropical disease that has affected more than 350 million people worldwide and can manifest itself in three different forms: cutaneous, mucocutaneous, or visceral. Furthermore, the current treatment options have drawbacks which compromise efficacy and patient compliance. To face this global health concern, new alternatives for the treatment of leishmaniasis have been explored. Curcumin, a polyphenol obtained from the rhizome of turmeric, exhibits leishmanicidal activity against different species of Leishmania spp. Although its mechanism of action has not yet been fully elucidated, its leishmanicidal potential may be associated with its antioxidant and anti-inflammatory properties. However, it has limitations that compromise its clinical use. Conversely, nanotechnology has been used as a tool for solving biopharmaceutical challenges associated with drugs, such as curcumin. From a drug delivery standpoint, nanocarriers (1-1000 nm) can improve stability, increase solubility, promote intracellular delivery, and increase biological activity. Thus, this review offers a deep look into curcumin-loaded nanocarriers intended for the treatment of leishmaniasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...