Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Cell Signal ; 117: 111113, 2024 05.
Article in English | MEDLINE | ID: mdl-38395185

ABSTRACT

The emerging role of glial cells in modulating neuronal excitability and synaptic strength is a growing field in neuroscience. In recent years, a pivotal role of gliotransmission in homeostatic presynaptic plasticity has been highlighted and glial-derived ATP arises as a key contributor. However, very little is known about the glial non-vesicular ATP-release pathway and how ATP participates in the modulation of synaptic strength. Here, we investigated the functional changes occurring in neurons upon chronic inactivity and the role of the purinergic signaling, connexin43 and pannexin1 hemichannels in this process. By using hippocampal dissociated cultures, we showed that blocking connexin43 and pannexin1 hemichannels decreases the amount of extracellular ATP. Moreover, Ca2+ imaging assays using Fluo-4/AM revealed that blocking connexin43, neuronal P2X7Rs and pannexin1 hemichannels decreases the amount of basal Ca2+ in neurons. A significant impairment in synaptic vesicle pool size was also evidenced under these conditions. Interestingly, rescue experiments where Panx1HCs are blocked showed that the compensatory adjustment of cytosolic Ca2+ was recovered after P2X7Rs activation, suggesting that Panx1 acts downstream P2X7Rs. These changes were accompanied by a modulation of neuronal permeability, as revealed by ethidium bromide uptake experiments. In particular, the permeability of neuronal P2X7Rs and pannexin1 hemichannels is increased upon 24 h of inactivity. Taken together, we have uncovered a role for connexin43-dependent ATP release and neuronal P2X7Rs and pannexin1 hemichannels in the adjustment of presynaptic strength by modulating neuronal permeability, the entrance of Ca2+ into neurons and the size of the recycling pool of synaptic vesicles.


Subject(s)
Connexin 43 , Connexins , Receptors, Purinergic P2X7 , Adenosine Triphosphate/metabolism , Connexin 43/metabolism , Connexins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Animals , Mice , Rats , Receptors, Purinergic P2X7/metabolism
2.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36362410

ABSTRACT

Gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. It is produced by interneurons and recycled by astrocytes. In neurons, GABA activates the influx of Cl- via the GABAA receptor or efflux or K+ via the GABAB receptor, inducing hyperpolarization and synaptic inhibition. In astrocytes, the activation of both GABAA and GABAB receptors induces an increase in intracellular Ca2+ and the release of glutamate and ATP. Connexin 43 (Cx43) hemichannels are among the main Ca2+-dependent cellular mechanisms for the astroglial release of glutamate and ATP. However, no study has evaluated the effect of GABA on astroglial Cx43 hemichannel activity and Cx43 hemichannel-mediated gliotransmission. Here we assessed the effects of GABA on Cx43 hemichannel activity in DI NCT1 rat astrocytes and hippocampal brain slices. We found that GABA induces a Ca2+-dependent increase in Cx43 hemichannel activity in astrocytes mediated by the GABAA receptor, as it was blunted by the GABAA receptor antagonist bicuculline but unaffected by GABAB receptor antagonist CGP55845. Moreover, GABA induced the Cx43 hemichannel-dependent release of glutamate and ATP, which was also prevented by bicuculline, but unaffected by CGP. Gliotransmission in response to GABA was also unaffected by pannexin 1 channel blockade. These results are discussed in terms of the possible role of astroglial Cx43 hemichannel-mediated glutamate and ATP release in regulating the excitatory/inhibitory balance in the brain and their possible contribution to psychiatric disorders.


Subject(s)
Astrocytes , Connexin 43 , Rats , Animals , Connexin 43/metabolism , Astrocytes/metabolism , Receptors, GABA-A , Bicuculline/pharmacology , Animals, Newborn , Cells, Cultured , Glutamic Acid/pharmacology , gamma-Aminobutyric Acid/pharmacology , Adenosine Triphosphate/pharmacology
3.
FASEB J ; 36(2): e22134, 2022 02.
Article in English | MEDLINE | ID: mdl-35061296

ABSTRACT

Astrocytes release gliotransmitters via connexin 43 (Cx43) hemichannels into neighboring synapses, which can modulate synaptic activity and are necessary for fear memory consolidation. However, the gliotransmitters released, and their mechanisms of action remain elusive. Here, we report that fear conditioning training elevated Cx43 hemichannel activity in astrocytes from the basolateral amygdala (BLA). The selective blockade of Cx43 hemichannels by microinfusion of TAT-Cx43L2 peptide into the BLA induced memory deficits 1 and 24 h after training, without affecting learning. The memory impairments were prevented by the co-injection of glutamate and D-serine, but not by the injection of either alone, suggesting a role for NMDA receptors (NMDAR). The incubation with TAT-Cx43L2 decreased NMDAR-mediated currents in BLA slices, effect that was also prevented by the addition of glutamate and D-serine. NMDARs in primary neuronal cultures were unaffected by TAT-Cx43L2, ruling out direct effects of the peptide on NMDARs. Finally, we show that D-serine permeates through purified Cx43 hemichannels reconstituted in liposomes. We propose that the release of glutamate and D-serine from astrocytes through Cx43 hemichannels is necessary for the activation of post-synaptic NMDARs during training, to allow for the formation of short-term and subsequent long-term memory, but not for learning per se.


Subject(s)
Astrocytes/metabolism , Basolateral Nuclear Complex/metabolism , Connexin 43/metabolism , Fear/physiology , Memory, Short-Term/physiology , Neurotransmitter Agents/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Glutamic Acid/metabolism , Male , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Serine/metabolism
4.
Reprod Toxicol ; 103: 139-148, 2021 08.
Article in English | MEDLINE | ID: mdl-34146661

ABSTRACT

Bisphenols are a group of environmental endocrine-disrupting chemicals that produce alterations in the expression of intercellular junction proteins of the Blood-Testis Barrier (BTB) involved in spermatogenesis. The association between bisphenol exposure and BTB protein expression is controversial. Therefore, we performed this systematic review and meta-analysis to clarify bisphenol effects on Sertoli cell BTB protein expression in vitro. The Standardized Mean Difference (SMD) with a 95 % confidence interval (95 % CI) was used to evaluate the association between alterations in the BTB protein expression and bisphenol exposure in vitro. Six articles were included in the meta-analysis. Bisphenol-A (BPA) exposure at 200 µM was associated with significant decrease in BTB protein expression (SMD = -2.70, 95 %CI: -3.59, -1.80, p het = 0.46, p = <0.00001). In the moderate (40-50 µM) and low dose (<25 µM), no significant associations were obtained. We also found a non-monotonic dose-response curve of bisphenol effect in ZO-1 protein expression; low and high doses presented a significant decrease compared to control, while moderate dose presented no change. The current temporary Tolerable Daily Intake (tTDI) of BPA is 4 µg/kg bw/day. The 5-25 µM doses of BPA are equivalent to ∼1-5 mg/kg bw, respectively. Although the low dose group (<25 µM) assessed doses below the previous NOAEL value, these doses are above the current tTDI. Thus, it is necessary to conduct more studies with lower bisphenol concentrations to avoid underestimating the potential adverse effects of bisphenols at doses below tTDI.


Subject(s)
Benzhydryl Compounds/toxicity , Blood-Testis Barrier/drug effects , Phenols/toxicity , Endocrine Disruptors/metabolism , Endocrine Disruptors/toxicity , Humans , Intercellular Junctions/drug effects , Male , Occludin/metabolism , Proteins/metabolism , Sertoli Cells/drug effects , Spermatogenesis , Testis/drug effects , Zonula Occludens-1 Protein/metabolism
5.
Mol Neurobiol ; 57(6): 2856-2869, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32388797

ABSTRACT

A key feature of neurotransmission is its ability to adapt to changes in neuronal environment, which is essential for many brain functions. Homeostatic synaptic plasticity (HSP) emerges as a compensatory mechanism used by neurons to adjust their excitability in response to changes in synaptic activity. Recently, glial cells emerged as modulators for neurotransmission by releasing gliotransmitters into the synaptic cleft through pathways that include P2X7 receptors (P2X7R), connexons, and pannexons. However, the role of gliotransmission in the activity-dependent adjustment of presynaptic strength is still an open question. Here, we investigated whether glial cells participate in HSP upon chronic inactivity and the role of adenosine triphosphate (ATP), connexin43 hemichannels (Cx43HCs), and pannexin1 (Panx1) channels in this process. We used immunocytochemistry against vesicular glutamate transporter 1 (vGlut1) to estimate changes in synaptic strength in hippocampal dissociated cultures. Pharmacological manipulations indicate that glial-derived ATP and P2X7R are required for HSP. In addition, inhibition of Cx43 and Panx1 channels reveals a pivotal role for these channels in the compensatory adjustment of synaptic strength, emerging as new pathways for ATP release upon inactivity. The involvement of Panx1 channels was confirmed by using Panx1-deficient animals. Lacking Panx1 in neurons is sufficient to prevent the P2X7R-dependent upregulation of presynaptic strength; however, the P2X7R-dependent compensatory adjustment of synapse density requires both neuronal and glial Panx1. Together, our data supports an essential role for glial ATP signaling and Cx43HCs and Panx1 channels in the homeostatic adjustment of synaptic strength in hippocampal cultures upon chronic inactivity.


Subject(s)
Adenosine Triphosphate/metabolism , Connexins/metabolism , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Animals , Connexin 43/metabolism , Connexins/genetics , Hippocampus/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Rats , Receptors, Purinergic P2X7/metabolism
6.
Int J Mol Sci ; 21(7)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260308

ABSTRACT

At least half of human immunodeficiency virus (HIV)-infected individuals suffer from a wide range of cognitive, behavioral and motor deficits, collectively known as HIV-associated neurocognitive disorders (HAND). The molecular mechanisms that amplify damage within the brain of HIV-infected individuals are unknown. Recently, we described that HIV augments the opening of connexin-43 (Cx43) hemichannels in cultured human astrocytes, which result in the collapse of neuronal processes. Whether HIV soluble viral proteins such as gp120, can regulate hemichannel opening in astrocytes is still ignored. These channels communicate the cytosol with the extracellular space during pathological conditions. We found that gp120 enhances the function of both Cx43 hemichannels and pannexin-1 channels in mouse cortical astrocytes. These effects depended on the activation of IL-1ß/TNF-α, p38 MAP kinase, iNOS, cytoplasmic Ca2+ and purinergic signaling. The gp120-induced channel opening resulted in alterations in Ca2+ dynamics, nitric oxide production and ATP release. Although the channel opening evoked by gp120 in astrocytes was reproduced in ex vivo brain preparations, these responses were heterogeneous depending on the CA1 region analyzed. We speculate that soluble gp120-induced activation of astroglial Cx43 hemichannels and pannexin-1 channels could be crucial for the pathogenesis of HAND.


Subject(s)
Astrocytes/cytology , Connexin 43/metabolism , Connexins/metabolism , HIV Envelope Protein gp120/metabolism , HIV-1/metabolism , Nerve Tissue Proteins/metabolism , Adenosine Triphosphate/metabolism , Animals , Astrocytes/metabolism , Calcium/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Mice , Nitric Oxide/metabolism , Signal Transduction , Time-Lapse Imaging , Up-Regulation
7.
Int J Mol Sci ; 20(18)2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31500276

ABSTRACT

In various models of chronic kidney disease, the amount and localization of Cx43 in the nephron is known to increase, but the intracellular pathways that regulate these changes have not been identified. Therefore, we proposed that: "In the model of renal damage induced by infusion of angiotensin II (AngII), a RhoA/ROCK-dependent pathway, is activated and regulates the abundance of renal Cx43". In rats, we evaluated: 1) the time-point where the renal damage induced by AngII is no longer reversible; and 2) the involvement of a RhoA/ROCK-dependent pathway and its relationship with the amount of Cx43 in this irreversible stage. Systolic blood pressure (SBP) and renal function (urinary protein/urinary creatinine: Uprot/UCrea) were evaluated as systemic and organ outcomes, respectively. In kidney tissue, we also evaluated: 1) oxidative stress (amount of thiobarbituric acid reactive species), 2) inflammation (immunoperoxidase detection of the inflammatory markers ED-1 and IL-1ß), 3) fibrosis (immune detection of type III collagen; Col III) and 4) activity of RhoA/ROCK (amount of phosphorylated MYPT1; p-MYPT1). The ratio Uprot/UCrea, SBP, oxidative stress, inflammation, amount of Cx43 and p-MYPT1 remained high 2 weeks after suspending AngII treatment in rats treated for 4 weeks with AngII. These responses were not observed in rats treated with AngII for less than 4 weeks, in which all measurements returned spontaneously close to the control values after suspending AngII treatment. Rats treated with AngII for 6 weeks and co-treated for the last 4 weeks with Fasudil, an inhibitor of ROCK, showed high SBP but did not present renal damage or increased amount of renal Cx43. Therefore, renal damage induced by AngII correlates with the activation of RhoA/ROCK and the increase in Cx43 amounts and can be prevented by inhibitors of this pathway.


Subject(s)
Angiotensin II/adverse effects , Connexin 43/metabolism , Kidney Diseases/metabolism , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/administration & dosage , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Creatinine/urine , Disease Models, Animal , Gene Expression Regulation , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/urine , Male , Oxidative Stress , Rats , Signal Transduction , Time Factors
8.
J Cell Biochem ; 120(4): 6753-6762, 2019 04.
Article in English | MEDLINE | ID: mdl-30417410

ABSTRACT

Sertoli cells provide the nutritional and metabolic support for germ cells. Wnt/ß-catenin signaling is important for the development of the seminiferous epithelium during embryonic age, although after birth this pathway is downregulated. Cx43 gene codes for a protein that is critical during testicular development. The Cx43 promoter contains TCF/ß-catenin binding elements (TBEs) that contribute CX43 expression in different cell types and which may also be regulating the expression of this gene in Sertoli cells. In this study, we demonstrate that 42GPA9 Sertoli cells respond to treatments that result in accumulation of ß-catenin within the nucleus and in upregulation of CX43 gene transcription. ß-Catenin binds to TBEs located both upstream and downstream of the transcriptional start site (TSS). Luciferase reporter experiments revealed that TBEs located upstream of the TSS are necessary for ß-catenin-mediated upregulation. Our results also indicate that the Wnt/ß-catenin-dependent upregulation of the Cx43 gene in Sertoli cells is accompanied by changes in epigenetic parameters that may be directly contributing to generating a chromatin environment that facilitates the establishment of the transcriptional machinery at this promoter.


Subject(s)
Connexin 43/genetics , Connexin 43/metabolism , Gene Expression Regulation , Promoter Regions, Genetic , Sertoli Cells/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Cells, Cultured , Epigenesis, Genetic , HEK293 Cells , Humans , Male , Mice , Response Elements , Sertoli Cells/cytology , Transcriptional Activation , Wnt Proteins/genetics , beta Catenin/genetics
9.
PeerJ ; 5: e3965, 2017.
Article in English | MEDLINE | ID: mdl-29085760

ABSTRACT

The role of glial cells in pain modulation has recently gathered attention. The objective of this study was to determine healthy spinal microglia and astrocyte morphology and disposition in equine spinal cord dorsal horns using Iba-1 and GFAP/Cx-43 immunofluorescence labeling, respectively. Five adult horses without visible wounds or gait alterations were selected. Spinal cord segments were obtained post-mortem for immunohistochemical and immunocolocalization assays. Immunodetection of spinal cord dorsal horn astrocytes was done using a polyclonal goat antibody raised against Glial Fibrillary Acidic Protein (GFAP) and a polyclonal rabbit antibody against Connexin 43 (Cx-43). For immunodetection of spinal cord dorsal horn microglia, a polyclonal rabbit antibody against a synthetic peptide corresponding to the C-terminus of ionized calcium-binding adaptor molecule 1 (Iba-1) was used. Epifluorescence and confocal images were obtained for the morphological and organizational analysis. Evaluation of shape, area, cell diameter, cell process length and thickness was performed on dorsal horn microglia and astrocyte. Morphologically, an amoeboid spherical shape with a mean cell area of 92.4 + 34 µm2 (in lamina I, II and III) was found in horse microglial cells, located primarily in laminae I, II and III. Astrocyte primary stem branches (and cellular bodies to a much lesser extent) are mainly detected using GFAP. Thus, double GFAP/Cx-43 immunolabeling was needed in order to accurately characterize the morphology, dimension and cell density of astrocytes in horses. Horse and rodent astrocytes seem to have similar dimensions and localization. Horse astrocyte cells have an average diameter of 56 + 14 µm, with a main process length of 28 + 8 µm, and thickness of 1.4 + 0.3 µm, mainly situated in laminae I, II and III. Additionally, a close association between end-point astrocyte processes and microglial cell bodies was found. These results are the first characterization of cell morphology and organizational aspects of horse spinal glia. Iba-1 and GFAP/Cx-43 can successfully immune-label microglia and astrocytes respectively in horse spinal cords, and thus reveal cell morphology and corresponding distribution within the dorsal horn laminae of healthy horses. The conventional hyper-ramified shape that is normally visible in resting microglial cells was not found in horses. Instead, horse microglial cells had an amoeboid spherical shape. Horse protoplasmic astroglia is significantly smaller and structurally less complex than human astrocytes, with fewer main GFAP processes. Instead, horse astrocytes tend to be similar to those found in rodent's model, with small somas and large cell processes. Microglia and astrocytes were found in the more superficial regions of the dorsal horn, similarly to that previously observed in humans and rodents. Further studies are needed to demonstrate the molecular mechanisms involved in the neuron-glia interaction in horses.

10.
J Dent Res ; 93(8): 788-93, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24928097

ABSTRACT

Reactionary dentin formation is an adaptive secretory response mediated by odontoblasts to moderate dentin injury. The implications of this process for neuroimmune interactions operating to contain pathogens have not been fully appreciated. The purpose of the present study was to describe the relationship between reactionary dentinogenesis, the neurogenic changes of dental pulp innervation, and dendritic cell recruitment to caries progression, using a comparative immunohistochemical approach in human teeth from young adult individuals. Reactionary dentin formation during dentin caries progression is associated with changes in the integrity of junctional complexes within the odontoblast layer. Diminished coexpression of Cx43 and zonula occludens 1 implies a reduced level of intercellular connectivity between odontoblasts. Dentin caries also causes overexpression of growth-associated protein 43, a modulator of neural plasticity that promotes extensive sprouting of nerve endings into the reactionary dentin matrix. At the same time, an elevated number of HLA-DR-positive dendritic cells infiltrate the odontoblast layer and subsequently invade reactionary dentin formed underneath the early caries-affected regions. Simultaneous odontoblast layer remodeling, nerve fiber sprouting, and activation of dendritic cells during caries progression suggest a coordinated neuroimmune response to fight caries pathogen invasion and to promote dentin-pulp healing. We propose that reactionary dentin formation hinders pathogen invasion and supports defensive neuroimmune interactions against infection. The eventual understanding of this complex scenario may contribute to the development of novel approaches to dental caries treatment.


Subject(s)
Dental Caries/pathology , Dentin, Secondary/pathology , Dentinogenesis/physiology , Adolescent , Adult , Cell Movement/physiology , Connexin 43/analysis , Dendritic Cells/immunology , Dental Pulp/immunology , Dental Pulp/innervation , Dentin, Secondary/immunology , Dentin, Secondary/innervation , Dentinogenesis/immunology , Disease Progression , GAP-43 Protein/analysis , HLA-DR Antigens/analysis , Humans , Intercellular Junctions/pathology , Nerve Endings/ultrastructure , Nerve Fibers/ultrastructure , Neuroimmunomodulation/physiology , Neuronal Plasticity/physiology , Odontoblasts/pathology , Young Adult , Zonula Occludens-1 Protein/analysis
11.
Exp Cell Res ; 324(1): 30-9, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24698731

ABSTRACT

Bisphosphonates (BPs), potent inhibitors of bone resorption which inhibit osteoclasts, have also been shown to act on osteocytes and osteoblasts preventing apoptosis via connexin (Cx) 43 hemichannels and activating the extracellular signal regulated kinases ERKs. We previously demonstrated the presence of a saturable, specific and high affinity binding site for alendronate (ALN) in osteoblastic cells which express Cx43. However, cells lacking Cx43 also bound BPs. Herein we show that bound [(3)H]-alendronate is displaced by phosphatase substrates. Moreover, similar to Na3VO4, ALN inhibited the activity of transmembrane and cytoplasmic PTPs, pointing out the catalytic domain of phosphatases as a putative BP target. In addition, anti-phospho-tyrosine immunoblot analysis revealed that ALN stimulates tyrosine phosphorylation of several proteins of whole cell lysates, among which the major targets of the BP could be immunochemically identified as Cx43. Additionally, the transmembrane receptor-like PTPs, RPTPµ and RPTPα, as well as the cytoplasmic PTP1B, are highly expressed in ROS 17/2.8 cells. Furthermore, we evidenced that Cx43 interacts with RPTPµ in ROS 17/2.8 and ALN decreases their association. These results support the hypothesis that BPs bind and inhibit PTPs associated to Cx43 or not, which would lead to the activation of signaling pathways in osteoblasts.


Subject(s)
Alendronate/pharmacology , Bone Density Conservation Agents/pharmacology , Connexin 43/metabolism , Enzyme Inhibitors/pharmacology , Osteoblasts/drug effects , Protein Kinases/metabolism , Protein Tyrosine Phosphatases/antagonists & inhibitors , Animals , Cells, Cultured , HeLa Cells , Humans , Osteoblasts/metabolism , Phosphorylation/drug effects , Rats
12.
Glia ; 62(2): 300-16, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24317927

ABSTRACT

The ependymal layer is a preserved structure across vertebrates but its functional significance remains poorly understood. Modern studies emphasize the role played by radial glia (RG) as neurogenic progenitors. We speculated that the cells lining the prosencephalon ventricles of freshwater turtles may have retained key features of RG. To test this idea, we applied an approach that combined cellular, molecular, fine structural, and electrophysiological techniques. In the prosencephalon of juvenile turtles, we found cells with typical radial morphology that expressed four RG proteins: glial fibrillary acidic protein (GFAP), vimentin, S100/S100ß and brain lipid-binding protein (BLBP). Most of these cells expressed the transcription factor Sox2 but few co-expressed Pax6. One type of RG had their somata close to the ventricle lumen and bear multiple cilia. A second class with cell bodies far from the lumen was usually uniciliated. RGs had low input resistances, passive properties and were coupled via Cx43 at the level of the cell bodies and radial processes. A third kind of cell was uncoupled, expressed neuronal proteins (HuC/D and NeuN) and fired spikes. The differential expression of HuC/D and NeuN together with their electrophysiological properties suggested various maturational stages. The occurrence of ependymal patches with a high density of 5-bromo-2-deoxyuridine (BrdU) labeled cells provides evidence of the proliferative capability of ependymal RG. Our data support the view that RG have retained key properties of neuroepithelial cells. The maintenance of proliferating RG could be also related with the outstanding endogenous ability of lower vertebrates for self-repair after injury.


Subject(s)
Cell Differentiation/physiology , Ependyma/metabolism , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Animals , Cerebral Ventricles/metabolism , Ependyma/cytology , Glial Fibrillary Acidic Protein/metabolism , SOXB1 Transcription Factors/metabolism , Spinal Cord/cytology , Spinal Cord/metabolism , Turtles
13.
Cell Biol Int Rep (2010) ; 17(1): e00003, 2010.
Article in English | MEDLINE | ID: mdl-23119141

ABSTRACT

Connexins are membrane proteins that form GJ (gap junction) channels between adjacent cells. Cx43 (connexin 43), the most widely expressed member of the connexin family, has a rapid turnover rate, and its degradation involves both the lysosomal and ubiquitin-proteasome pathway. The goal of this work was to study the effects of geodiamolides, natural peptides from marine sponge that normally are involved with microfilament disruption, on connexin assembly or degradation in the plasma membrane. HTC (hepatocarcinoma cells) expressing Cx43-GFP (green fluorescent protein) were submitted to treatment with 200 nM geodiamolides A, B, H and I for 2 and 4 h. Microfilament distribution and the presence and size of GJ plaques were evaluated by laser scanning confocal microscopy. Among the four peptides tested, only Geo H (geodiamolide H) statistically enhanced the length of GJ plaques. Geodiamolide A also showed activity in the GJ plaque size; however, its effect was less pronounced. Treatment with Geo H could interfere with the delivery of connexins to the degradation structures, similar to proteasomal pathways, keeping the connexins assembled and accumulating GJ plaques. Further experiments, with the cells treated with Geo H, using the fungal antibiotic BFA (brefeldin A), were performed in order to uncouple events leading to GJ assembly from those related to GJ removal, since BFA is known to block protein trafficking within a fused ER (endoplasmic reticulum)/Golgi compartment. GJ plaques were drastically reduced after BFA/Geo H treatment, thus indicating that Geo H affects mainly the delivery pathway of Cx43 protein.

SELECTION OF CITATIONS
SEARCH DETAIL