Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.385
Filter
1.
Biomaterials ; 311: 122695, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38954960

ABSTRACT

Integrating immunotherapy with nanomaterials-based chemotherapy presents a promising avenue for amplifying antitumor outcomes. Nevertheless, the suppressive tumor immune microenvironment (TIME) and the upregulation of cyclooxygenase-2 (COX-2) induced by chemotherapy can hinder the efficacy of the chemoimmunotherapy. This study presents a TIME-reshaping strategy by developing a steric-hindrance effect tuned zinc-based metal-organic framework (MOF), designated as CZFNPs. This nanoreactor is engineered by in situ loading of the COX-2 inhibitor, C-phycocyanin (CPC), into the framework building blocks, while simultaneously weakening the stability of the MOF. Consequently, CZFNPs achieve rapid pH-responsive release of zinc ions (Zn2+) and CPC upon specific transport to tumor cells overexpressing folate receptors. Accordingly, Zn2+ can induce reactive oxygen species (ROS)-mediated cytotoxicity therapy while synchronize with mitochondrial DNA (mtDNA) release, which stimulates mtDNA/cGAS-STING pathway-mediated innate immunity. The CPC suppresses the chemotherapy-induced overexpression of COX-2, thus cooperatively reprogramming the suppressive TIME and boosting the antitumor immune response. In xenograft tumor models, the CZFNPs system effectively modulates STING and COX-2 expression, converting "cold" tumors into "hot" tumors, thereby resulting in ≈ 4-fold tumor regression relative to ZIF-8 treatment alone. This approach offers a potent strategy for enhancing the efficacy of combined nanomaterial-based chemotherapy and immunotherapy.

2.
Prostaglandins Other Lipid Mediat ; : 106866, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960027

ABSTRACT

INTRODUCTION: Inflammation is a fundamental response to various insults, including microbial invasion and tissue injury. While aspirin (ASA) has been widely used for its anti-inflammatory properties, its adverse effects and limitations highlight the need for novel therapeutic alternatives. Recently, a novel salicylic acid derivative, 2-((3-(chloromethyl)benzoyl)oxy)benzoic acid (3-CH2Cl), has emerged as a potential substitute for ASA, offering a simpler, environmentally friendly synthesis and a promising safety profile. AIM OF THE STUDY: This research aims to evaluate the anti-inflammatory mechanism of 3-CH2Cl in a lipopolysaccharide (LPS)-induced mouse model, focusing on its effects on prostaglandin E-2 (PGE-2) concentration, NOX2 and NFkB expression, ROS production, and COX-2 expression. MATERIAL AND METHODS: Utilizing BALB/C mice subjected to LPS-induced inflammation, we investigated the therapeutic potential of 3-CH2Cl. The study included synthesis and tablet preparation, experimental design, peripheral blood plasma PGE-2 measurement, splenocyte isolation and COX-2 expression analysis, nitric oxide and ROS measurement, and immunohistochemical analysis of NOX2 and NFkB expression. RESULTS: 3-CH2Cl significantly reduced PGE-2 levels (p=0.005), NO concentration in liver homogenates (p=0.005) and plasma (p=0.0011), and expression of NOX2 and NFkB in liver (p<0.0001) and splenocytes (p=0.0036), demonstrating superior anti-inflammatory activity compared to ASA. Additionally, it showed potential in decreasing COX-2 expression in splenocytes. CONCLUSION: 3-CH2Cl exhibits potent anti-inflammatory properties, outperforming ASA in several key inflammatory markers in an LPS-induced inflammation model. The reduction of COX-2 expression, alongside the reduction of pro-inflammatory cytokines and oxidative stress markers, suggest it as a promising therapeutic agent for various inflammatory conditions.

3.
IJU Case Rep ; 7(4): 297-300, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966771

ABSTRACT

Introduction: A previous report has shown that cyclooxygenase-2 inhibitors can prevent the recurrence of cystitis glandularis postoperatively. Herein, we present a case of cystitis glandularis in which the tumor volume was markedly reduced by preoperative oral administration of a cyclooxygenase-2 inhibitor. Case presentation: A 45-year-old man with voiding difficulty and lower abdominal pain during urination was referred to our hospital. Cystoscopy revealed multiple cystitis glandularis-like edematous masses on the trigone and the neck of the bladder, completely involving the bilateral ureteral orifices. Cyclooxygenase-2 inhibitor was orally administered at the patient's request. Six weeks later, the tumor volume was markedly reduced, bilateral ureteral orifices were identified, and the voiding difficulty and pain on urination disappeared. Complete transurethral resection of the residual tumor was performed, and the pathological diagnosis was intestinal-type cystitis glandularis. Conclusion: Cyclooxygenase-2 inhibition can be considered a useful therapeutic strategy for cystitis glandularis.

4.
Phytochemistry ; : 114208, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972441

ABSTRACT

Acanthopanacis cortex (the dried root bark of Acanthopanax gracilistylus W. W. Smith) has been used for the treatment of rheumatic diseases in China for over 2000 years. Four previously undescribed lignans (1-4) and 12 known lignans (5-16) were isolated from Acanthopanacis cortex. In this study, the inhibitory activities of compounds 1-16 against neutrophil elastase (NE), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) are reported. The results show that compounds 1-16 exhibit weak inhibitory activities against NE and COX-1. However, compounds 2, 6∼8 and 13∼16 demonstrate better COX-2 inhibitory effects with IC50 values from 0.75 to 8.17 µΜ. These findings provide useful information for the search for natural selective COX-2 inhibitors.

5.
Prostaglandins Other Lipid Mediat ; 174: 106861, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876400

ABSTRACT

The endocannabinoid 2-arachidonoylglycerol (2-AG) has been reported to exhibit anticancer effects, including against colorectal cancer (CRC); however, the detailed mechanisms have not been clarified. Herein, we demonstrated that 2-AG suppressed cyclooxygenase-2 (COX-2) expression induced by prostaglandin E2 in human colon cancer HCA-7 cells. The suppression of COX-2 expression by 2-AG was through the acceleration of processing body (P-body) formation followed by COX-2 mRNA degradation. These effects were restored by TAK-715, a specific inhibitor of p38 MAPK. Therefore, the effect of 2-AG on COX-2 may be distinct from conventional non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibit the function of COX-2, whereas 2-AG suppresses the protein expression of COX-2. Recently, the cardiovascular risks of NSAIDs were reported by the Food and Drug Administration in the United States. Therefore, elucidation of the effect of 2-AG is expected to contribute to the development of an alternative and novel therapeutic option that would have no or fewer risks regarding cardiovascular events.

6.
Dose Response ; 22(2): 15593258241264947, 2024.
Article in English | MEDLINE | ID: mdl-38912334

ABSTRACT

Objective: To investigate the biological role of miR-143 and miR-199a in mediating the progression of osteosarcoma (OS) by targeting cyclooxygenase (COX-2). Introduction: COX-2 plays a crucial role in the development and progression of OS. However, the specific regulatory mechanisms of COX-2 in OS are still not well understood. Methods: The expression levels of COX-2, miR-143 and miR-199a in OS tissues were detected using immunohistochemistry, qPCR, or western blot assays. The targeting relationship between miRNAs and COX-2 was determined. The effect of miRNA and COX-2 on OS cells was evaluated in vitro and in vivo. Results: COX-2 expression was upregulated while miR-143 and miR-199a were downregulated in OS tissues. miR-143 and miR-199a suppressed the proliferation, migration, and invasion of OS cells. The dual-luciferase reporter gene assay showed that COX-2 was a direct target of miR-143 and miR-199a. Genetic knockdown of COX-2 significantly suppressed cell proliferation, induced apoptosis, and inhibited migration and invasion of OS cells. The expression levels of COX-2 and PGE2 were decreased after the overexpression of miR-143 and miR-199a. Additionally, COX-2 silencing inhibited the tumorigenesis of OS and the synthesis of PGE2 in vivo. Conclusions: miR-143 and miR-199a/COX-2 axis modulates the proliferation, invasion, and migration in osteosarcoma.

7.
J Pharm Bioallied Sci ; 16(Suppl 2): S1173-S1180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882764

ABSTRACT

Human intelectin-1 (hITL-1) has been known to be involved in diseases such as asthma, cancer, metabolic disorders, and inflammatory bowel disease. In the present study, we aimed to evaluate hITL-1 as modulator of metabolic syndrome (MetS) using an in silico approach. AQ2 - The eight selected human (h) proteins, namely tumor necrosis factor-alpha (hTNF-alpha), myeloid differentiation primary response protein 88 (hMyD88), toll like-receptor 4 (hTLR4), cyclooxygenase 2 (hCOX 2), vascular cell adhesion molecule 1 (hVCAM 1), nuclear factor kappa B (hNF kappa B), leptin (hleptin), and interleukin 6 (hIL 6), were investigated on the docking analysis of hITL-1 (protein-protein) by using the HDOCK method. Furthermore, physicochemical properties of eight interested proteins were carried out using ProtParam tool. In the present study, two selected proteins, namely hMyD88, hCOX 2, have shown theoretical isoelectric point (PI) values greater than 7.0 which indicates these proteins are basic in nature. The protein-protein docking analysis showed that hNF kappa B exhibited the maximum docking score of -311.95 (kcal/mol) with the target protein hITL 1. Thus, the present find provides a new knowledge in understanding the hITL 1 as modulator of metabolic syndrome.

8.
Mol Neurobiol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842673

ABSTRACT

Arachidonic acid (AA), an important polyunsaturated fatty acid in the brain, is hydrolyzed by a direct action of phospholipase A2 (PLA2) or through the combined action of phospholipase C and diacylglycerol lipase, and released into the cytoplasm. Various derivatives of AA can be synthesized mainly through the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (P450) enzyme pathways. AA and its metabolic enzymes and metabolites play important roles in a variety of neurophysiological activities. The abnormal metabolites and their catalytic enzymes in the AA cascade are related to the pathogenesis of various central nervous system (CNS) diseases, including epilepsy. Here, we systematically reviewed literatures in PubMed about the latest randomized controlled trials, animal studies and clinical studies concerning the known features of AA, its metabolic enzymes and metabolites, and their roles in epilepsy. The exclusion criteria include non-original studies and articles not in English.

9.
Arch Pharm (Weinheim) ; : e2400259, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873921

ABSTRACT

Benzothiazoles are a class of heterocycles with multiple applications as anticancer, antibiotic, antiviral, and anti-inflammatory agents. Benzothiazole is a privileged scaffold in drug discovery programs for modulating a variety of biological functions. This review focuses on the design and synthesis of new benzothiazole derivatives targeting hypoxic tumors. Cancer is a major health problem, being among the leading causes of death. Tumor-hypoxic areas promote proliferation, malignancy, and resistance to drug treatment, leading to the dysregulation of key signaling pathways that involve drug targets such as vascular endothelial growth factor, epidermal growth factor receptor, hepatocyte growth factor receptor, dual-specificity protein kinase, cyclin-dependent protein kinases, casein kinase 2, Rho-related coil formation protein kinase, tunica interna endothelial cell kinase, cyclooxygenase-2, adenosine kinase, lysophosphatidic acid acyltransferases, stearoyl-CoA desaturase, peroxisome proliferator-activated receptors, thioredoxin, heat shock proteins, and carbonic anhydrase IX/XII. In turn, they regulate angiogenesis, proliferation, differentiation, and cell survival, controlling the cell cycle, inflammation, the immune system, and metabolic alterations. A wide diversity of benzothiazoles were reported over the last years to interfere with various proteins involved in tumorigenesis and, more specifically, in hypoxic tumors. Many hypoxic targets are overexpressed as a result of the hypoxia-inducible factor activation cascade and may not be present in normal tissues, providing a potential strategy for selectively targeting hypoxic cancers.

10.
Drug Dev Res ; 85(4): e22217, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845214

ABSTRACT

As a hybrid weapon, two novel series of pyrazoles, 16a-f and 17a-f, targeting both COX-2 and ACE-1-N-domain, were created and their anti-inflammatory, anti-hypertensive, and anti-fibrotic properties were evaluated. In vitro, 17b and 17f showed COX-2 selectivity (SI = 534.22 and 491.90, respectively) compared to celecoxib (SI = 326.66) and NF-κB (IC50 1.87 and 2.03 µM, respectively). 17b (IC50 0.078 µM) and 17 f (IC50 0.094 µM) inhibited ACE-1 comparable to perindopril (PER) (IC50 0.048 µM). In vivo, 17b decreased systolic blood pressure by 18.6%, 17b and 17f increased serum NO levels by 345.8%, and 183.2%, respectively, increased eNOS expression by 0.97 and 0.52 folds, respectively and reduced NF-κB-p65 and P38-MAPK expression by -0.62, -0.22, -0.53, and -0.24 folds, respectively compared to  l-NAME (-0.34, -0.45 folds decline in NF-κB-p65 and P38-MAPK, respectively). 17b reduced ANG-II expression which significantly reversed the cardiac histological changes induced by L-NAME.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Anti-Inflammatory Agents , Antihypertensive Agents , Cyclooxygenase 2 Inhibitors , Pyrazoles , Tetrazoles , Pyrazoles/pharmacology , Pyrazoles/chemistry , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Antihypertensive Agents/chemical synthesis , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Tetrazoles/pharmacology , Tetrazoles/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Rats , Drug Design , Male , Antifibrotic Agents/pharmacology , Antifibrotic Agents/chemistry , Cyclooxygenase 2/metabolism , Blood Pressure/drug effects , Humans , Peptidyl-Dipeptidase A/metabolism
11.
Asian Pac J Cancer Prev ; 25(6): 2059-2067, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38918668

ABSTRACT

OBJECTIVE: This study examined the morphological changes in the colonic mucosa and the presence of inflammation in rats induced with 1,2-dimethylhydrazine (DMH) 30 mg/kg BW over 9, 11, and 13 weeks without a latency period. METHODS: Hematoxylin and eosin staining was performed to assess the morphology and characteristic alteration of the epitheliocytes in the colon. Immunohistochemistry was employed to assess the expression of tumor necrosis factor (TNF)-α and cyclooxygenase-2 (COX-2). The difference in the severity of inflammation and COX-2 expression was examined using one-way analysis of variance. The correlation of COX-2 expression with the severity of inflammation was analyzed using Spearman's rank correlation test. RESULT: Until week 13, chronic inflammation and non-hyperplastic and hyperplastic aberrant crypt foci occurred. The severity of inflammation gradually shifted from high moderate to low moderate. TNF-α expression was high in all groups; however, COX-2 expression was gradually lower with longer duration of induction, which corresponded with the severity of inflammation. CONCLUSION: DMH induction until week 13 without a latency period caused chronic inflammation without the formation of adenoma or adenocarcinoma. A very strong correlation was established between COX-2 expression and inflammation.


Subject(s)
1,2-Dimethylhydrazine , Colorectal Neoplasms , Cyclooxygenase 2 , Inflammation , Tumor Necrosis Factor-alpha , Animals , 1,2-Dimethylhydrazine/toxicity , Rats , Colorectal Neoplasms/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/metabolism , Cyclooxygenase 2/metabolism , Inflammation/chemically induced , Inflammation/pathology , Inflammation/metabolism , Male , Tumor Necrosis Factor-alpha/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Carcinogens/toxicity , Rats, Sprague-Dawley , Aberrant Crypt Foci/pathology , Aberrant Crypt Foci/chemically induced , Aberrant Crypt Foci/metabolism , Colon/pathology , Colon/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/chemically induced , Adenocarcinoma/metabolism
12.
Brain Sci ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38928576

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and restricted and repetitive behaviors. Oxidative stress may be a critical link between mitochondrial dysfunction and ASD as reactive oxygen species (ROS) generated from pro-oxidant environmental toxicants and activated immune cells can result in mitochondrial failure. Recently, mitochondrial dysfunction, autoimmunity, and abnormal lipid mediators have been identified in multiple investigations as an acknowledged etiological mechanism of ASD that can be targeted for therapeutic intervention. METHODS: The relationship between lipid mediator markers linked to inflammation induction, such as phospholipase A2/cyclooxygenase-2 (PLA2/Cox-2), and the mitochondrial dysfunction marker anti-mitochondrial antibodies (AMA-M2), and anti-histone autoantibodies in the etiology of ASD was investigated in this study using combined receiver operating characteristic (ROC) curve analyses. This study also sought to identify the linear combination for a given set of markers that optimizes the partial area under ROC curves. This study included 40 age- and sex-matched controls and 40 ASD youngsters. The plasma of both groups was tested for PLA2/COX-2, AMA-M2, and anti-histone autoantibodies' levels using ELISA kits. ROC curves and logistic regression models were used in the statistical analysis. RESULTS: Using the integrated ROC curve analysis, a notable rise in the area under the curve was noticed. Additionally, the combined markers had markedly improved specificity and sensitivity. CONCLUSIONS: The current study suggested that measuring the predictive value of selected biomarkers related to mitochondrial dysfunction, autoimmunity, and lipid metabolism in children with ASD using a ROC curve analysis could lead to a better understanding of the etiological mechanism of ASD as well as its relationship with metabolism.

13.
Int Arch Allergy Immunol ; : 1-7, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815557

ABSTRACT

INTRODUCTION: Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used in the pediatric age group as pain relievers, antipyretics and anti-inflammatory drugs. Since NSAIDs are used in many medical conditions, there is a need for alternative NSAIDs to be used safely in people with hypersensitivity reactions. Selective and partially selective COX-2 inhibitors and weak COX-1 inhibitors are generally used as safe alternative drugs. The aim of this study was to evaluate safe NSAIDs determined by oral provocation tests (OPTs) according to phenotypes in children with NSAID hypersensitivity reactions. METHODS: The results of the oral provocation test performed with alternative NSAIDs (paracetamol, meloxicam, nimesulide, celecoxib) in patients followed up with the diagnosis of NSAID hypersensitivity reaction in the Pediatric Immunology and Allergy Department between January 2015 and February 2023 were evaluated retrospectively. RESULTS: During the study period, 91 patients underwent OPTs with 109 alternative drugs 48 (52.7%) of whom were girls, with a median age of 15 years. 91 patients had a history of reactions to 117 drugs. As an alternative NSAID; OPT was performed with paracetamol in 58 patients, meloxicam in 44 patients, nimesulide in 5 patients, and celecoxib in 2 patients. Since 15 patients used paracetamol safely at home, no tests were performed with paracetamol. Reactions were observed in 3 of the 73 patients (4.1%) who underwent OPT with paracetamol and in 2 of the 44 (4.5%) who underwent OPT with meloxicam. Reactions to nimesulide were also observed in the latter 2 patients (2/5, 40%), but they appeared to tolerate celecoxib. No reaction was observed in the 2 patients who were tested with celecoxib. CONCLUSION: Paracetamol, meloxicam, and nimesulide can be used as safe alternative drugs in most children with NSAID hypersensitivity. Selective COX-2 inhibitors should be tried as an alternative in patients who cannot tolerate them.

14.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2585-2596, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812159

ABSTRACT

This study investigated the effects and mechanisms of total saponins of Panax japonicus(TSPJ) against liver injury induced by acetaminophen(APAP). Male Kunming mice were randomly divided into a blank control group, TSPJ group(200 mg·kg~(-1), ig), model group, APAP+ TSPJ low-dose group(50 mg·kg~(-1), ig), APAP+ TSPJ medium-dose group(100 mg·kg~(-1), ig), APAP+ TSPJ high-dose group(200 mg·kg~(-1), ig), and APAP+ N-acetyl-L-cysteine group(200 mg·kg~(-1), ip). The administration group received the corresponding medications via ig or ip once a day for 14 consecutive days. After the last administration for one hour, except for the blank control group and TSPJ group, all groups of mice were given 500 mg·kg~(-1) APAP by gavage. After 24 hours, mouse serum and liver tissue were collected for serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), reactive oxygen species(ROS), tumor necrosis factor alpha(TNF-α), interleukin-1 beta(IL-1ß), cyclooxygenase-2(COX-2), IL-6, IL-4, IL-10, as well as lactate dehydrogenase(LDH), glutathione(GSH), superoxide dismutase(SOD), catalase(CAT), total antioxidant capacity(T-AOC), malondialdehyde(MDA), and myeloperoxidase(MPO) liver tissue. Hematoxylin-eosin staining was used to observe the morphological changes of liver tissue. The mRNA expression levels of lymphocyte antigen 6G(Ly6G), galectin 3(Mac-2), TNF-α, IL-1ß, COX-2, IL-6, IL-4, and IL-10 in liver tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expression levels of Ly6G, Mac-2, extracellular regulated protein kinases(ERK), phosphorylated extracellular regulated protein kinases(p-ERK), COX-2, inhibitor of nuclear factor κB protein α(IκBα), phosphorylated inhibitor of nuclear factor κB protein α(p-IκBα), and nuclear factor-κB subunit p65(NF-κB p65) in cytosol and nucleus in liver tissue. The results manifested that TSPJ dramatically reduced liver coefficient, serum ALT, AST, ROS, TNF-α, IL-1ß, IL-6, and COX-2 levels, LDH, MPO, and MDA contents in liver tissue, and mRNA expressions of TNF-α, IL-1ß, and IL-6 in APAP-induced liver injury mice. It prominently elevated serum IL-4 and IL-10 levels, GSH, CAT, SOD, and T-AOC contents, and mRNA expressions of IL-4 and IL-10 in liver tissue, improved the degree of liver pathological damage, and suppressed neutrophil infiltration and macrophage recruitment in liver tissue. In addition, TSPJ lessened the mRNA and protein expressions of neutrophil marker Ly6G, macrophage marker Mac-2, and COX-2 in liver tissue, protein expressions of p-ERK, p-IκBα, and NF-κB p65 in nuclear, and p-ERK/ERK and p-IκBα/p-IκBα ratios and hoisted protein expression of NF-κB p65 in cytosol. These results suggest that TSPJ has a significant protective effect on APAP-induced liver injury in mice, and it can alleviate APAP-induced oxidative damage and inflammatory response. Its mechanism may be related to suppressing ERK/NF-κB/COX-2 signaling pathway activation, thus inhibiting inflammatory cell infiltration, cytokine production, and liver cell damage.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Cyclooxygenase 2 , Liver , NF-kappa B , Panax , Saponins , Signal Transduction , Animals , Acetaminophen/adverse effects , Acetaminophen/toxicity , Mice , Panax/chemistry , Male , Saponins/pharmacology , Saponins/administration & dosage , NF-kappa B/genetics , NF-kappa B/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Liver/drug effects , Liver/metabolism , Signal Transduction/drug effects , Humans , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology
15.
Fitoterapia ; 176: 106021, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762074

ABSTRACT

Acanthopanacis Cortex (A.-C) with a long history of more than1000 years, has been used to treat rheumatism effectively. Nineteen diterpenoids have been isolated from A.-C, including six new compounds (1-6). Among them, compounds 7, 9-11, 13, and 17 were discovered from A.-C for the first time. The structures of 1-6 were determined by analyzing their NMR data and comparing their experimental and calculated electronic circular dichroism spectra. Moreover, the single-crystal X-ray diffraction data of 1, 2, 8, and 14 were provided. The anti-inflammatory activity of 1-5 and 7-18 on neutrophil elastase, cyclooxygenase-1 (COX-1), and cyclooxygenase-2 (COX-2) has been studied in vitro, and the results showed that 15 had almost no inhibitory effects on COX-1 at 200 µM but a significant activity against COX-2 with an IC50 of 0.73 ± 0.006 µΜ. It indicated that compound 15 can provide valuable information for the design of selective COX-2 inhibitors.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase 2 , Diterpenes , Leukocyte Elastase , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Cyclooxygenase 2/metabolism , Leukocyte Elastase/antagonists & inhibitors , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cyclooxygenase 1/metabolism , Acanthaceae/chemistry , Humans , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/isolation & purification , China
16.
Biochem Pharmacol ; : 116259, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705538

ABSTRACT

Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.

17.
Drug Des Devel Ther ; 18: 1711-1725, 2024.
Article in English | MEDLINE | ID: mdl-38799798

ABSTRACT

Imrecoxib, a cyclooxygenase-2 (COX-2) selective non-steroidal anti-inflammatory drug (NSAID), was discovered via the balanced inhibition strategy of COX-1/COX-2. It is indicated for the relief of painful symptoms of osteoarthritis. There have been some pharmacological and therapeutic advances since the approval of imrecoxib in 2011. However, an update review in this aspect is not yet available. Relevant literature until January 2024 was identified by search of PubMed, Web of science, Embase and CNKI. From the perspective of efficacy, imrecoxib provides relief of osteoarthritis symptoms, and potential off-label use for treatment of idiopathic pulmonary fibrosis, perioperative pain, hand-foot syndrome, axial spondyloarthritis, COVID-19, cartilage injury, and malignancies such as lung and colon cancer. From a safety point of view, imrecoxib showed adverse effects common to NSAIDs; however, it has lower incidence of new-onset hypertension than other types of selective COX-2 inhibitors, less gastrointestinal toxicities than non-selective NSAIDs, weaker risk of drug interaction than celecoxib, and more suitable for elderly patients due to balanced inhibition of COX-1/COX-2. From a pharmacoeconomic perspective, imrecoxib is more cost-effective than celecoxib and diclofenac for osteoarthritis patients. With the deepening of the disease pathophysiology study of osteoarthritis, new therapeutic schemes and pharmacological mechanisms are constantly discovered. In the field of osteoarthritis treatment, mechanisms other than the analgesic and anti-inflammatory effects of COX-2 inhibitors are also being explored. Taken together, imrecoxib is a moderate selective COX-2 inhibitor with some advantages, and there would be more clinical applications and research opportunities in the future.


Subject(s)
Cyclooxygenase 2 Inhibitors , Osteoarthritis , Humans , Cyclooxygenase 2 Inhibitors/adverse effects , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Osteoarthritis/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cyclooxygenase 2/metabolism , Animals
18.
Front Chem ; 12: 1366844, 2024.
Article in English | MEDLINE | ID: mdl-38690012

ABSTRACT

Introduction: D-pinitol, a naturally occurring inositol, has diverse biological activities like antioxidant, antimicrobial and anticancer activities. This study aimed to evaluate anti-inflammatory effect of d-pinitol in a chick model. Additionally, in silico studies were performed to evaluate the molecular interactions with cyclooxygenase-2 (COX-2). Methods: The tested groups received d-pinitol (12.5, 25, and 50 mg/kg) and the standard drugs celecoxib and ketoprofen (42 mg/kg) via oral gavage prior to formalin injection. Then, the number of licks was counted for the first 10 min, and the paw edema diameter was measured at 60, 90, and 120 min. Results and Discussion: The d-pinitol groups significantly (p < 0.05) reduced the number of paw licks and paw edema diameters, compared to negative control. When d-pinitol was combined with celecoxib, it reduced inflammatory parameters more effectively than the individual groups. The in silico study showed a promising binding capacity of d-pinitol with COX-2. Taken together, d-pinitol exerted anti-inflammatory effects in a dose-dependent manner, possibly through COX-2 interaction pathway.

19.
Drug Chem Toxicol ; : 1-13, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804252

ABSTRACT

Exposure to Pb, a toxic heavy metal, is a risk factor for renal damage. Borax, an essential trace element in cellular metabolism, is a naturally occurring compound found in many foods. This study investigated the effects of sodium tetraborate (ST), a source of borax, on renal oxidative stress and inflammation in rats exposed to Pb. Wistar Albino rats (n = 24) were divided into four groups: Control (0.5 mL, i.p. isotonic), Pb (50 mg/kg/day/i.p.), ST (4.0 mg/kg/day/oral), and Pb + ST groups. At the end of the five-day experimental period, kidney tissue samples were obtained and analyzed. Histopathologically, the Pb-induced damage observed in the Pb group improved in the Pb + ST group. Immunohistochemically, Pb administration increased the expression of inducible nitric oxide synthase, cyclooxygenase-2, and caspase-3. When evaluated biochemically, Pb application inhibited catalase and glutathione peroxidase (GSH-Px) enzyme activities and activated superoxide dismutase enzyme activity. An increase in malondialdehyde levels was considered an indicator of damage. ST application increases glutathione peroxidase enzyme activity and decreased malondialdehyde levels. These results indicate that ST might play a protective role against Pb-induced renal damage via the upregulation of renal tissue antioxidants and cyclooxygenase-2, inducible nitric oxide synthase, and caspase-3 immunoexpression.

20.
J Obstet Gynaecol ; 44(1): 2337691, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38594870

ABSTRACT

BACKGROUND: Existing treatments for primary dysmenorrhoea (PD), such as NSAIDs, impart side effects. Ge-Gen decoction (GGD), a traditional Chinese medicine, has shown promise in treating PD, but its exact mechanisms remain unclear. Here, we aimed to investigate the efficiency of GGD in alleviating PD using a rat model to understand its precise mechanism of action. METHODS: We established a rat model of dysmenorrhoea induced by oestradiol and oxytocin. The PD rats were administered GGD or Ibuprofen (positive control) intragastrically once daily for seven consecutive days. Serum levels of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2α), ß-endorphin (ß-EP), thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (6-keto-PGF1α) were determined using an enzyme-linked immunosorbent assay (ELISA). The expression levels of oestrogen receptor alpha (ERα) and cyclooxygenase-2 (COX-2) in uterine tissue were measured using immunohistochemical assays, and those of phosphorylated and total extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) were assessed using western blot analysis. RESULTS: Treatment with GGD significantly reduced writhing behaviour, histopathological scores, and levels of COX-2, PGE2, and PGF2α in the serum of PD rats. Additionally, GGD increased ß-EP content and inhibited ERK1/2 activation and ERα expression in uterine tissues. CONCLUSIONS: The results of this study suggest that GGD alleviates PD in rats by suppressing the COX-2-mediated release of PGE2 and PGF2α, modulating the ERα/ERK1/2/COX-2 pathway, and increasing ß-EP content. These results provide insights into the potential mechanisms of GGD in treating PD and support its further investigation as an alternative therapy for this condition.


Ge-Gen decoction is commonly used to alleviate primary dysmenorrhoea. However, its anti-dysmenorrhoea mechanism remains elusive. In this study, using a rat model of primary dysmenorrhoea, we demonstrate that Ge-Gen decoction reduced the levels of cyclooxygenase-2, prostaglandin E2, and prostaglandin F2 alpha in serum and phosphorylated extracellular signal-regulated protein kinases 1 and 2 in the uterus. These results suggest that Ge-Gen decoction alleviates primary dysmenorrhoea via inactivation of the oestrogen receptor alpha/extracellular signal-regulated protein kinases 1 and 2/cyclooxygenase-2 pathway. This study enhances our understanding of the pathogenesis of primary dysmenorrhoea and may potentially inform the development of novel treatment approaches.


Subject(s)
Dysmenorrhea , Estrogen Receptor alpha , Humans , Female , Rats , Animals , Dysmenorrhea/drug therapy , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/therapeutic use , Dinoprostone , Dinoprost/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...