Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters











Publication year range
1.
Angew Chem Int Ed Engl ; : e202411102, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003722

ABSTRACT

Harvesting triplet excitons of heavy atom-free purely organic chromophores under aerated conditions is challenging due to the quenching of long-lived triplet states by molecular oxygen and vibrational dissipation. Herein, we show a supramolecular approach of triplet harvesting via mitigating quenching pathways of a triplet harvester. Specifically, we used a host-guest system based on 2,3:6,7‒naphthalene bis(dicarboximide)-derived cyclophane (NBICy) and carbazole derivative (EtCz). Complexation studies and single-crystal X-ray analysis showed the formation of a rigid host-guest complex (K = ~104 M-1 in CCl4), resulting in triplet-exciton stabilization under aerated conditions via mitigating vibrational interference and oxygen quenching. Photophysical studies elucidate the delayed fluorescence emission from the charge-transfer state (1CT) with a quantum yield (QY) of 6-8% under ambient conditions which increased up to 36 % in an inert atmosphere.

2.
Photochem Photobiol Sci ; 23(8): 1509-1519, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981991

ABSTRACT

[32](1,4)Naphthalenophanes, bearing carbon-bridge chains (syn- and anti-NPs) and nitrogen-bridge chains (syn- and anti-ANPs), were synthesized, and their X-ray structures and photoreactions were investigated. The intramolecular separation distance between the naphthalene cores for ANPs was shorter than that for NPs, suggesting that intramolecular interactions between the naphthalene rings  were more efficient for ANPs compared to NPs. Upon photoirradiation at 300 nm, anti-NP, syn-ANP and anti-ANP produced the corresponding intramolecular [π4s + π4s] cycloadducts, whereas syn-NP gave an unidentified complex product mixture. Quantum yields for the photo-consumption (ΦPC) of NPs and ANPs were evaluated to quantitatively compare their photoreactivity. The ΦPC values of ANPs were approximately two-fold higher than those of ANPs.Noteworthily, the ΦPC value of syn-ANP was estimated to be unity. Based on these results we discuss the effects of the alignments of the naphthalene cores (anti vs. syn) and the bridging elements (C-bridge vs. N-bridge) on the photoreaction efficiencies of [32](1,4)naphthalenophanes.

3.
Angew Chem Int Ed Engl ; : e202410525, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041715

ABSTRACT

Directional electron flow in the photocatalyst enables efficient charge separation, which is essential for efficient photocatalysis of H2 production. Here, we report a novel class of tetracationic cyclophanes (7) incorporating bipyridine Pt(II) and selenoviologen. X-ray single-crystal structures reveal that 7 not only fixes the distances and spatial positions between its individual units but also exhibits a box-like rigid electron-deficient cavity. Moreover, host-guest recognition phenomena are observed between 7 and ferrocene, forming host-guest complexes with a 1:1 stoichiometry in MeCN. 7 exhibits good redox properties, narrow energy gaps, and strong absorption in the visible range (370-500 nm) due to containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that 7 has stabilized dicationic biradical, efficient charge separation, and facilitates directional electron flow to achieve efficient electron transfer due to the formation of rigid cyclophane and electronic architecture. Then, 7 is applied to visible-light-driven hydrogen evolution with high hydrogen production (132 µmol), generation rate (11 µmol/h), turnover number (221), and apparent quantum yield (1.7%), which provides a simplified and efficient photocatalytic strategy for solar energy conversion.

4.
Chemistry ; 30(47): e202401683, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38780869

ABSTRACT

Cyclophane-type dications with two units of xanthylium were designed, with the expectation that intramolecular interaction between cation units could induce changes in absorption and redox behavior. The desired dications were synthesized via the macrocyclic diketone as a key intermediate, which was efficiently obtained by a stepwise etherification. X-ray and UV/Vis measurements revealed that the cyclophane-type dications adopt a stacking structure in both the crystal and solution. Due to the intramolecular interaction caused by π-π stacking of the xanthylium units, a considerable blue shift compared to the corresponding monocations and a two-stage one-electron reduction process were observed in the dications. Furthermore, upon electrochemical reduction of dications, the formation of biradicals via radical cation species was demonstrated by UV/Vis spectroscopy with several isosbestic points at both stages. Therefore, the cation-stacking approach is a promising way to provide novel properties due to perturbation of their molecular orbitals and to stabilize the reduced species even though they have open-shell characters.

5.
Chemistry ; 30(35): e202401016, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38642001

ABSTRACT

Electron delocalization and aromaticity was comparatively evaluated in recently synthesized figure-eight molecules made of two condensed U-shaped polycyclic aromatic hydrocarbon moieties connected either by two single bonds or by two para-phenylene groups. The selected examples include molecules that incorporate eight-membered and sixteen-membered rings, as well as a doubly [5]helicene-bridged (1,4)cyclophane. We probe whether some electron delocalization could occur through the stereogenic single bonds in these molecules: Is aromaticity purely (semi-)local, or possibly also global in these molecules? It was concluded that the situation can go from a purely (semi-)local character when the dihedral angle at the connecting single bonds is large, such as in biphenyl, to a predominantly (semi-)local character with a minor global contribution when the dihedral angle is small, such as in the para-phenylene connectors of the [5] helicene-bridged cyclophane.

6.
Molecules ; 29(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338345

ABSTRACT

The main topic of the article is to provide the characteristics of individual intermolecular interactions present between three lantern-like superphanes and the H2O, NH3, HF, HCN, and MeOH molecules trapped inside them. Despite the large cavity, the freedom of the trapped molecules is significantly limited by the presence of numerous interaction sites on the side chains of the superphane molecule. It is shown that the molecule trapped inside the superphane is stabilized mainly by only one or, less often, two strong hydrogen bonds involving the imino nitrogen atom, but QTAIM calculations also suggest the presence of many other intermolecular interactions, mainly hydrogen bonds involving imino or central hydrogen atoms from the side chains of the superphane molecule. Moreover, it is also shown that the structural simplification of the side chains does not significantly affect both the size of the superphane molecule and the obtained encapsulation energies, which is important in modeling this type of carceplexes. Noticeably, the parent superphane considered here was previously synthesized by the group of Qing He, so the results obtained will help in understanding this type and similar systems.

7.
Molecules ; 29(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398535

ABSTRACT

Prismanes have been attracting interest for nearly 50 years because of their geometric symmetry, highly strained structures, and unique applications due to their high carbon densities and bulky structures. Although [3]-, [4]-, and [5]-prismanes have been synthesised, [6]-prismanes and their derivatives remain elusive. Herein, fluorine chemistry, molecular mechanics, molecular orbital package, and density functional theory calculations were used to design and implement the photoisomerisation of octafluoro[2.2]paracyclophane (selected based on the good overlap of its lowest unoccupied molecular orbitals and short distance between the benzene rings) into octafluoro-[6]-prismane. Specifically, a dilute solution of the above precursor in CH3CN/H2O/dimethyl sulfoxide (DMSO) (2:1:8, v/v/v) solution was irradiated with ultraviolet light, with the formation of the desired product confirmed through the use of nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The product was thermally stable in solution but not under work-up conditions, which complicated the further analysis and single-crystal preparation. The key criteria for successful photoisomerisation were the presence of fluorine substituents in the cyclophane structure and DMSO in the solvent system. A more stable derivative design requires the isolation of prismane products. The proposed fluorination-based synthetic strategy is applicable to developing novel high-strain molecules/materials with three-dimensional skeletons.

8.
J Hazard Mater ; 465: 133449, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38218036

ABSTRACT

Nuclear power emerges as a beacon of hope in tackling the energy crisis. However, the emission of radioactive iodine originating from nuclear waste and accidents poses a serious danger to nature and human well-being. Therefore, it becomes imperative to urgently develop suitable adsorbents capable of iodine capture and long-term storage. It's generally recognized that achieving high iodine capture efficiency necessitates the presence of electron-rich pores/cavities that facilitate charge-transfer (CT) interactions, as well as effective sorption sites capable of engaging in lone pair interactions with iodine. In this study, an unprecedented iodine capture paradigm by nonporous amorphous electron-deficient tetracationic cycloalkanes in vapor and aqueous solutions is revealed, overturning preconceived notions of iodine trapping materials. A newly reported tetracationic cyclophane, BPy-Box4+, exhibited an exceptional iodine vapor sorption capacity of 3.99 g g-1, remarkable iodine removal efficiency in aqueous media, and outstanding reusability. The iodine capture mechanism is unambiguously elucidated by theoretical calculations and the single-crystal structures of cyclophanes with a gradual increase in iodine content, underlining the vital role of host-guest (1:1 or 1:2) interactions for the enhanced iodine capture. The current study demonstrates a new paradigm for enhanced iodine capture by nonporous amorphous electron-deficient cyclophanes through host-guest complexation.

9.
Molecules ; 28(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687183

ABSTRACT

According to Bader's quantum theory of atoms in molecules (QTAIM), the simultaneous presence of a bond path and the corresponding bond critical point between any two atoms is both a necessary and sufficient condition for the atoms to be bonded to one another. In principle, this means that this pair of atoms should make a stabilizing contribution to the molecular system. However, the multitude of so-called counterintuitive bond paths strongly suggests that this statement is not necessarily true. Particularly 'troublesome' are endohedral complexes, in which encapsulation-enforced proximity between the trapped guest (e.g., an atom) and the host's cage system usually 'produces' many counterintuitive bond paths. In the author's opinion, the best evidence to demonstrate the repulsive nature of the intra-cage guest⋯host interaction is the use of some trapping systems containing small escape channels and then showing that the initially trapped entity spontaneously escapes outside the host's cage during geometry optimization of the initially built guest@host endohedral complex. For this purpose, a group of 24 Ng@[3n]cyclophane (3≤n≤6) endohedral complexes is used. As a result, arguments are presented showing that Bader's topological bond path does not necessarily indicate a stabilizing interaction.

10.
Angew Chem Int Ed Engl ; 62(28): e202304058, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37169723

ABSTRACT

A rigid propeller-shaped conjugated triple macrocycle consisting of two nearly perfectly stacked benzene rings and three linking [5]helicene moieties has been synthesized using a glyoxylic Perkin approach. Analysis of the electron delocalization in this atypical aromatic molecule revealed global aromaticity and a 78 π-electron circuit along the edge of its triple loop, to the detriment of the two 6 π-electron circuits in the two stacked benzene rings.

11.
Angew Chem Int Ed Engl ; 62(41): e202305005, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37170481

ABSTRACT

Though the chemistry of resorcinarenes is half a century old, the conformationally-locked resorcinarene crowns are generally constructed using hydrogen bonds or covalent tethers. Often, covalent tethering involves extra post-macrocyclization steps involving upper-rim functionalities. We have leveraged the torsional and steric strains through α-substituents of the lower-rim C-alkyl chains and accomplished conformationally-rigid fluorescent m-cyclophane deep-crowns in a predetermined way. The strategy offers a pre-macrocyclization route conserving upper-rim functionalities, an aspect overlooked in resorcinarene chemistry. X-ray structural and computational analyses unveil the cause for conformational rigidity in m-cyclophanes due to α-branching in C-alkyls (linear vs. α-/ß-branched). The conformationally-locked fluorescent deep-crown with a preorganized cavity captures hydrophobic spherical guest C60 in both solution and solid states specifically, when compared to conformationally-dynamic boats, enabling conformation-specific binding.

12.
Angew Chem Int Ed Engl ; 62(19): e202301301, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36912608

ABSTRACT

Enzymes actuate catalysis through a combination of transition state stabilization and ground state destabilization, inducing enantioselectivity through chiral binding sites. Here, we present a supramolecular model system which employs these basic principles to catalyze the enantiomerization of [5]helicene. Catalysis is hereby mediated not through a network of functional groups but through π-π catalysis exerted from the curved aromatic framework of a chiral perylene bisimide (PBI) cyclophane offering a binding pocket that is intricately complementary with the enantiomerization transition structure. Although transition state stabilization originates simply from dispersion and electrostatic interactions, enantiomerization kinetics are accelerated by a factor of ca. 700 at 295 K. Comparison with the meso-congener of the catalytically active cyclophane shows that upon configurational inversion in only one PBI moiety the catalytic effect is lost, highlighting the importance of precise transition structure recognition in supramolecular enzyme mimics.

13.
Molecules ; 27(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296675

ABSTRACT

This paper reviews the most stable conformation of crystalline three-dimensional cyclophane (CP) achieved by self-assembling based on changing the type of aromatic compound or regulating the type and number of bridging groups. [3n]cyclophanes (CPs) were reported to form supramolecular compounds with bind organic, inorganic anions, or neutral molecules selectively. [3n]cyclophanes ([3n]CPs) have stronger donor capability relative to compound [2n]cyclophanes ([2n]CPs), and it is expected to be a new type of electron donor for the progress of fresh electron conductive materials. The synthesis, conformational behavior, and properties of crystalline multi-bridge rings are summarized and discussed.


Subject(s)
Molecular Conformation , Anions
14.
Molecules ; 27(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807214

ABSTRACT

Superphane, i.e., [2.2.2.2.2.2](1,2,3,4,5,6)cyclophane, is a very convenient molecule in studying the nature of guest⋯host interactions in endohedral complexes. Nevertheless, the presence of as many as six ethylene bridges in the superphane molecule makes it practically impossible for the trapped entity to escape out of the superphane cage. Thus, in this article, I have implemented the idea of using the superphane derivatives with a reduced number of ethylene linkers, which leads to the [2n] cyclophanes where n<6. Seven such cyclophanes are then allowed to form endohedral complexes with noble gas (Ng) atoms (He, Ne, Ar, Kr). It is shown that in the vast majority of cases, the initially trapped Ng atom spontaneously escapes from the cyclophane cage, creating an exohedral complex. This is the best proof that the Ng⋯cyclophane interaction in endohedral complexes is indeed highly repulsive, i.e., destabilizing. Apart from the 'sealed' superphane molecule, endohedral complexes are only formed in the case of the smallest He atom. However, it has been shown that in these cases, the Ng⋯cyclophane interaction inside the cyclophane cage is nonbonding, i.e., repulsive. This highly energetically unfavorable effect causes the cyclophane molecule to 'swell'.


Subject(s)
Ethylenes , Models, Molecular
15.
J Comput Chem ; 43(18): 1206-1220, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35593685

ABSTRACT

The so-called 'iron maiden' molecules belong to one of the most interesting subgroups of cyclophanes due to the presence of the ultrashort interaction between the CX apical bond and the benzene ring. This article presents an in-depth theoretical study of 16 'iron maiden' molecules, in which X = H, F, Cl or Br and the side chains are of various lengths and types: CSC, CSCC, CCC, and CCCC. It is shown that the H → F → Cl → Br substitution leads to a significant expansion of the 'iron maiden' molecule. Shorter chains lead to more pronounced effects, while insertion of sulfur atoms into the side chains lowers them. Structural changes are associated with an increase in energetic destabilization of X. Moreover, unlike for H, in the case of X = halogen, the out → in isomerization is energetically disadvantageous. The 'iron maiden' molecules are characterized by the presence of only three X⋯CAr bond paths. Particularly noteworthy are unusually large (even up to 32) values of the X⋯CAr bond ellipticity, which results from flat electron density distribution. The X⋯π interaction in each of the investigated 'iron maiden' molecule turned out to be multi-center, stabilizing and almost purely covalent in nature as indicated by the definitely dominant percentage (94.8%-101.6%) of the exchange-correlation energy. The spatial hindrance within the 'iron maiden' molecules appears to be not so much due to the X⋯π repulsion, but due to unfavorable steric interactions between X and the CC side bonds. It is also confirmed that some CH⋯HC interactions in aliphatic chains can be very weakly stabilizing.


Subject(s)
Halogens , Iron , Halogens/chemistry , Models, Theoretical , Static Electricity
16.
Adv Mater ; 34(37): e2201761, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35555829

ABSTRACT

Molecular structuring of soft matter with precise arrangements over multiple hierarchical levels, especially on polymer surfaces, and enabling their post-synthetic modulation has tremendous potential for application in molecular engineering and interfacial science. Here, recent research and developments in design strategies for structurally controlled polymer surfaces via cyclophane-based chemical vapor deposition (CVD) polymerization with precise control over chemical functionalities and post-CVD fabrication via orthogonal surface functionalization that facilitates the formation of designable biointerfaces are summarized. Particular discussion about innovative approaches for the templated synthesis of shape-controlled CVD polymers, ranging from 1D to 3D architecture, including inside confined nanochannels, nanofibers/nanowires synthesis into an anisotropic media such as liquid crystals, and CVD polymer nanohelices via hierarchical chirality transfer across multiple length scales is provided. Aiming at multifunctional polymer surfaces via CVD copolymerization of multiple precursors, the structural and functional design of the fundamental [2.2]paracyclophane (PCP) precursor molecules, that is, functional CVD monomer chemistry is also described. Technologically advanced and innovative surface deposition techniques toward topological micro- and nanostructuring, including microcontact printing, photopatterning, photomask, and lithographic techniques such as dip-pen nanolithography, showcasing research from the authors' laboratories as well as other's relevant important findings in this evolving field are highlighted that have introduced new programmable CVD polymerization capabilities. Perspectives, current limitations, and future considerations are provided.

17.
Chemistry ; 28(43): e202200790, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35535864

ABSTRACT

Novel donor-acceptor dyads containing [2.2]- and [3.3]paracyclophane (PCP) as the bridging moiety were synthesized and used to effectively fabricate dye-sensitized hydrogen production systems. All the prepared compounds had a phenothiazine and a cyanoacrylic acid/pyridinyl acrylonitrile moiety acting as an electron donor and acceptor, respectively. Although cyclic voltammetry measurements showed similar electron-donating properties among all the synthesized dyads, the lowest absorption energy of the [2.2]PCP moiety was lower than that of the [3.3]PCP one; this was due to its shorter distance between benzene rings, which could effectively drive the charge transfer between the donor and acceptor chromophores. Under visible light (>395 nm), a dyad-loaded photocatalyst in a 0.5 M aqueous glycerol solution generated detectable hydrogen gases. The optimal turnover number and photocurrent order exhibited the same trend as the hydrogen production rate since the suggested number of excited photons played a critical role in hydrogen production.

18.
J Comput Chem ; 43(16): 1120-1133, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35470905

ABSTRACT

Quite recently it has been shown in a previous study that superphane, that is, [2.2.2.2.2.2](1,2,3,4,5,6)cyclophane, is a very convenient molecule in the study of endohedral complexes and especially in the study of the influence of the caged entity (i.e., guest) on the structure of the host molecule. This advantage results from the presence of two parallel benzene rings joined together by six quite flexible ethylene bridges (spacers). This article examines the energetic and structural properties of endo- and exohedral complexes of superphane with the following cations: H+ , Li+ , Na+ , K+ , Be2+ , Mg2+ , Ca2+ , B3+ , Al3+ , Ga3+ . The stability of endohedral complexes has been shown to be strongly dependent on the charge and radius of the caged cation. The inclusion of the cation inside the superphane molecule causes its 'swelling', which is manifested by an increase in the distance between the benzene rings and elongations of the ring and spacer C-C bonds. In the case of exohedral complexes, three forms are investigated: with the cation above the benzene ring, with the cation interacting with the superphane window in the equatorial position, and with the cation interacting with the center of the C-C spacer bond. The first of these forms has been shown to be preferred. The cation⋯acceptor distance depends on the cation radius. Among the cations investigated, H+ and Be2+ are particularly reactive and predisposed to induce significant structural changes in the superphane molecule, forming C-H bond or C-Be-C bridges, respectively.

19.
Chemistry ; 27(65): 16225-16231, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34549839

ABSTRACT

A stereogenic π-system based on dimer (2) and trimer (3) of [2.2]paracyclophane (PC) and biphenyl was prepared and its structural, photophysical, and chiroptical properties were investigated. X-ray analysis revealed that the quaterphenyl moieties in 2 adopt a double helical structure anchoring [2.2]PC from both sides. Furthermore, 3 forms a isosceles triangle structure with a large chiral cavity. A homodesmotic reaction using DFT calculations revealed that 2 has a larger strain energy than 3 owing to its highly twisted phenylene linkers. Electronic and circular dichroic (CD) spectra were recorded in CH2 Cl2 solution. The spectra of both 2 and 3 are similar, and their longest absorption band accompanying a remarkable Cotton effect is attributed to the transition from HOMO to LUMO, which is delocalized to the quaterphenyl moiety. These compounds exhibit fairly high fluorescence quantum yields (ϕ=0.70-0.83) and moderate dissymmetry factor (|gCPL |=1.6×10-3 ) in circularly polarized luminescence (CPL).

20.
Front Chem ; 9: 728845, 2021.
Article in English | MEDLINE | ID: mdl-34422772

ABSTRACT

[2.2]Paracyclophane scaffolds have seen limited use as building blocks in supramolecular chemistry. Here, we report the synthesis and characterization of a 1D coordination polymer consisting of silver(I) ions bound to a [2.2]paracyclophane scaffold functionalized with two 4-pyridyl units. The structure of the polymer has been determined from single crystal X-ray diffraction analysis and reveals two different silver coordination motifs that alternate along the 1D coordination polymer. The coordination polymer exhibits strong blue and sky-blue fluorescence in solution and in the crystalline solid state, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL