Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Ecotoxicology ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831228

ABSTRACT

λ-cyhalothrin, a synthetic type II pyrethroid, has become increasingly popular for control of aphids, butterfly larvae, and beetles, replacing other agricultural chemicals. As a result of which, residues of this synthetic pesticide are being reported across the globe in natural water, which poses a serious threat to aquatic life. Therefore, the present study was designed to understand the toxicity effects of λ-cyhalothrin on behaviour, oxidative stress and neurotoxicity in a vertebrate aquatic model, zebrafish (Danio rerio). The fish were exposed to 0.129, 0.194 and 0.388 µg/L corresponding to 5%, 10% and 20% of 96hLC50 (1.94 µg/L) for 28 days. Upon exposure to the highest concentration (0.388 µg/L), the test animal exhibited significant alterations in behavioural patterns like number of entries to the top zone (n), decrease in average speed (m/s) and decrease in time spent in top zone (s). Moreover, the shoaling test demonstrated a significant decrease (p < 0.05) in the relative time spent by the tested fish (%) near the stimulus fish. The change in behavioural alterations might be linked to a significant decrease (p < 0.05) in the brain acetylcholine esterase activity. Furthermore, the present study also illustrates oxidative stress exerted by λ-cyhalothrin through an increase in the production of reactive oxygen species, which is again clearly depicted by a significant increase (p < 0.05) in Superoxide dismutase, Catalase and Glutathione peroxidase activities. Overall, the present study systematically demonstrates the chronic effects of λ-cyhalothrin on adult fish behaviour and physiology, which will contribute to assessing the risks of λ-cyhalothrin to organismal health.

2.
EFSA J ; 22(6): e8816, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846678

ABSTRACT

In accordance with Article 43 of Regulation (EC) No 396/2005, EFSA received a mandate from the European Commission to perform a targeted risk assessment for residues of lambda-cyhalothrin in poultry products (meat/muscle, fat, liver, kidney, edible offal) and bird's eggs. EFSA performed the acute (short-term) and chronic (long-term) dietary risk assessment considering the lambda-cyhalothrin exposure via residues in food commodities from poultry and birds' eggs at the levels of the proposed temporary maximum residue level (MRL) of 0.03 mg/kg and 0.02 mg/kg, respectively. These temporary MRLs were derived by the European Commission from monitoring data provided by EU member States and compiled by EFSA in a central database. Based on the risk assessment results, EFSA concluded that the proposed temporary MRL is unlikely to pose a risk to consumer health.

3.
Pestic Biochem Physiol ; 202: 105916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879318

ABSTRACT

Lambda-cyhalothrin, a representative pyrethroid insecticide widely used for Spodoptera frugiperda control in China, poses challenges due to the development of resistance. This study investigates the realized heritability, inheritance pattern, cross-resistance, and resistance mechanisms to lambda-cyhalothrin. After 21 generations of selection, the lambda-cyhalothrin-resistant strain (G21) developed a 171.11-fold resistance compared to a relatively susceptible strain (RS-G9), with a realized heritability (h2) of 0.11. Cross-resistance assays revealed that lambda-cyhalothrin-resistant strains showed no significant cross-resistance to the majority of tested insecticides. Genetic analysis indicated that lambda-cyhalothrin resistance in S. frugiperda was autosomal, incompletely dominant, and polygenic inheritance. The P450 enzyme inhibitor PBO significantly enhanced lambda-cyhalothrin toxicity in the resistant strains. Compared with the RS-G9 strain, the P450 enzyme activity was significantly increased and multiple P450 genes were significantly up-regulated in the lambda-cyhalothrin-resistant strains. RNAi targeting the most overexpressed P450 genes (CYP337B5 and CYP321B1) significantly increased the susceptibility of resistant S. frugiperda larvae to lambda-cyhalothrin. This study provides comprehensive insights into lambda-cyhalothrin resistance in S. frugiperda, and the results are helpful for developing effective resistance management strategies of this pest.


Subject(s)
Cytochrome P-450 Enzyme System , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Spodoptera , Animals , Pyrethrins/pharmacology , Nitriles/pharmacology , Spodoptera/drug effects , Spodoptera/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , RNA Interference , Larva/drug effects , Larva/genetics
4.
EFSA J ; 22(5): e8758, 2024 May.
Article in English | MEDLINE | ID: mdl-38764479

ABSTRACT

According to Article 12 of Regulation (EC) No 396/2005, EFSA has reviewed the maximum residue levels (MRLs) currently established at European level for the pesticide active substance gamma-cyhalothrin. To assess the occurrence of gamma-cyhalothrin residues in plants, processed commodities, rotational crops and livestock, EFSA considered the conclusions derived in the framework of Commission Regulation (EU) No 188/2011, as well as the European authorisations reported by Member States (including the supporting residues data) in the framework of this review. Based on the assessment of the available data, MRL proposals were derived, and a consumer risk assessment was carried out. Although no risk to consumers was identified, some information required by the regulatory framework was missing. The residue definition for monitoring (lambda-cyhalothrin (includes gamma-cyhalothrin) (sum of R, S and S, R isomers)) covers both lambda- and gamma-cyhalothrin. Appropriate enantioselective techniques, which are not commonly used in routine analysis, are required to differentiate gamma-cyhalothrin residues from lambda-cyhalothrin. According to the available data, it is expected that the MRLs currently set in Regulation (EC) No 396/2005 will cover the uses of gamma-cyhalothrin assessed in the present review. Therefore, risk managers can consider maintaining the existing EU MRLs.

5.
Int J Biol Macromol ; 271(Pt 2): 132566, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795883

ABSTRACT

Nowadays, the development of sustainable molecularly imprinted polymers (MIPs) with high selectivity is still challenging due to the limitations of bio-based functional monomers. In this study, the highly selective and porous MIPs (LC-TMIPs) were designed and prepared on short amylose (SAM) as bio-based functional monomers, λ-cyhalothrin (LC) as a template molecule, and tetrafluoroterephthalonitrile as a rigid crosslinking agent. Static, dynamic, and selective adsorption experiments were conducted to investigate the adsorption performance. The results indicated that, compared to MIPs prepared using epichlorohydrin as flexible crosslinking agents, LC-TMIPs exhibited higher imprinting factor (3.93), selectivity (5.78), and adsorption capacity (35.79 mg g-1), as well as faster adsorption/desorption kinetics. The LC-TMIPs were used as sorbents for the selective determination of LC in both apple and cucumber samples by high-performance liquid chromatography. Under the optimal extraction conditions, the recoveries of the method reached 92.1-106.1 %, with a linear range of 1.5-30 ng g-1 and a detection limit of 0.5 ng g-1. The proposed preparation method of LC-TMIPs is expected to open a new way to prepare highly selective and sustainable MIPs for hydrophobic compounds.


Subject(s)
Amylose , Molecularly Imprinted Polymers , Nitriles , Pyrethrins , Nitriles/chemistry , Pyrethrins/chemistry , Pyrethrins/isolation & purification , Amylose/chemistry , Adsorption , Molecularly Imprinted Polymers/chemistry , Solid Phase Extraction/methods , Molecular Imprinting/methods , Malus/chemistry , Kinetics , Chromatography, High Pressure Liquid , Cucumis sativus/chemistry , Limit of Detection
6.
Ecotoxicol Environ Saf ; 276: 116296, 2024 May.
Article in English | MEDLINE | ID: mdl-38593498

ABSTRACT

Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Nitriles , Oxidative Stress , Polyethylene , Pyrethrins , Water Pollutants, Chemical , Zebrafish , Animals , Pyrethrins/toxicity , Nitriles/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Gastrointestinal Microbiome/drug effects , Polyethylene/toxicity , Adsorption
7.
Food Chem Toxicol ; 188: 114680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677402

ABSTRACT

Lambda-cyhalothrin (LCT) is a type II pyrethroid widely used in agriculture for plant protection against pests. However, pyrethroids represents a risk for rural female farmworkers, and few studies addressed LCT-behavioural alterations in mice. The present study evaluates the effect of LCT on behaviour of eight weeks aged female mice. Mice were divided into three groups including treated mice that received through gavage (i) 0.5 mg/kg bw and (ii) 2 mg/kg of LCT dissolved in corn oil, and (iii) the vehicle controls. Behavioural tests assess the locomotor activity using open field test, the anxiety by the dark-light box test, the learning memory with novel object recognition test, the memory retention by the elevated plus maze test, and the spatial working memory using the Y-maze test. Subacute treatment with low doses of LCT decreases total distance travelled, induces anxiogenic effect by reducing the time spent in the enlightened compartment, alters memory retention by increasing the latency time, and also affects learning memory by reducing the recognition index parameter. However, LCT does not significantly alter spatial working memory. In conclusion, LCT-treated female mice show an alteration in locomotor activity, mood state and memory abilities probably related to oxidative stress and altered neurotransmission.


Subject(s)
Locomotion , Memory , Nitriles , Pyrethrins , Animals , Pyrethrins/toxicity , Pyrethrins/pharmacology , Mice , Female , Nitriles/pharmacology , Nitriles/toxicity , Locomotion/drug effects , Memory/drug effects , Maze Learning/drug effects , Affect/drug effects , Insecticides/toxicity , Insecticides/pharmacology , Behavior, Animal/drug effects
8.
J Med Entomol ; 61(4): 965-974, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38635041

ABSTRACT

Based on increases in reported cases of tick-borne illnesses, expanding ranges of native ticks, and repeated documentation of arrivals of nonnative tick species, there is a clear need for their effective management in the United States. Synthetic acaricides have proven efficacious in tick management, but real/perceived negative impacts to the environment and nontarget, beneficial insects must be addressed. We sought to determine whether late fall synthetic acaricide application, when most susceptible beneficial insects are presumably dormant or have migrated, could effectively manage host-seeking spring Ixodes scapularis Say abundances as compared to traditional spring application. We compared results of delivery of Demand CS (lambda-cyhalothrin) via truck-mounted high-pressure spray and powered backpack blower as well as delivery of granular Demand G to experimental control (water) in peridomestic habitats in fall 2021, spring 2022, and combined fall 2021/spring 2022. High-pressure fall delivery of Demand CS and backpack delivery of Demand G significantly reduced host-seeking adult I. scapularis abundances within-season and the following spring combined by 100% and 94%, respectively. No host-seeking nymphal I. scapularis were documented in spring after fall only, spring only, or fall and spring combined delivery of Demand CS via high-pressure or powered backpack blower. No adult I. scapularis were documented at any time posttreatment on locations that received high-pressure delivery of Demand CS. We conclude that high-pressure delivery of Demand CS in late fall successfully eliminated multiple stages of host-seeking I. scapularis through the following spring while likely limiting exposure of beneficial insects to synthetic pyrethroids.


Subject(s)
Acaricides , Ixodes , Nymph , Pyrethrins , Seasons , Tick Control , Animals , Nymph/growth & development , Nitriles , Population Density
9.
J Agric Food Chem ; 72(10): 5165-5175, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437009

ABSTRACT

Uridine diphosphate-glycosyltransferase (UGT) is a key phase II enzyme in the insect detoxification system. Pyrethroids are commonly used to control the destructive wheat aphid Rhopalosiphum padi. In this study, we found a highly expressed UGT gene, RpUGT344D38, in both λ-cyhalothrin (LCR)- and bifenthrin (BTR)-resistant strains of R. padi. After exposure to λ-cyhalothrin and bifenthrin, the expression levels of RpUGT344D38 were significantly increased in the resistant strains. Knockdown of RpUGT344D38 did not affect the resistance of BTR, but it did significantly increase the susceptibility of LCR aphids to λ-cyhalothrin. Molecular docking analysis demonstrated that RpUGT344D38 had a stable binding interaction with both bifenthrin and λ-cyhalothrin. The recombinant RpUGT344D38 was able to metabolize 50% of λ-cyhalothrin. This study provides a comprehensive analysis of the role of RpUGT344D38 in the resistance of R. padi to bifenthrin and λ-cyhalothrin, contributing to a better understanding of aphid resistance to pyrethroids.


Subject(s)
Aphids , Insecticides , Nitriles , Pyrethrins , Animals , Molecular Docking Simulation
10.
Bull Entomol Res ; 114(1): 49-56, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180110

ABSTRACT

Aphis spiraecola Patch is one of the most economically important tree fruit pests worldwide. The pyrethroid insecticide lambda-cyhalothrin is commonly used to control A. spiraecola. In this 2-year study, we quantified the resistance level of A. spiraecola to lambda-cyhalothrin in different regions of the Shaanxi province, China. The results showed that A. spiraecola had reached extremely high resistance levels with a 174-fold resistance ratio (RR) found in the Xunyi region. In addition, we compared the enzymatic activity and expression level of P450 genes among eight A. spiraecola populations. The P450 activity of A. spiraecola was significantly increased in five regions (Xunyi, Liquan, Fengxiang, Luochuan, and Xinping) compared to susceptible strain (SS). The expression levels of CYP6CY7, CYP6CY14, CYP6CY22, P4504C1-like, P4506a13, CYP4CZ1, CYP380C47, and CYP4CJ2 genes were significantly increased under lambda-cyhalothrin treatment and in the resistant field populations. A L1014F mutation in the sodium channel gene was found and the mutation rate was positively correlated with the LC50 of lambda-cyhalothrin. In conclusion, the levels of lambda-cyhalothrin resistance of A. spiraecola field populations were associated with P450s and L1014F mutations. Our combined findings provide evidence on the resistance mechanism of A. spiraecola to lambda-cyhalothrin and give a theoretical basis for rational and effective control of this pest species.


Subject(s)
Aphids , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Aphids/genetics , Pyrethrins/pharmacology , Nitriles/pharmacology , Mutation , Voltage-Gated Sodium Channels/genetics , Gene Expression , Insecticides/pharmacology , Insecticide Resistance/genetics
11.
Chemosphere ; 349: 140871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056714

ABSTRACT

λ-Cyhalothrin (λ-cyh), a widely utilized pyrethroid insecticide, poses serious threats to non-target organisms due to its persistence nature in the environment. Exposure to low concentrations of λ-cyh has been observed to result in prolonged larval development in Bombyx mori, leading to substantial financial losses in sericulture. The present study was undertaken to elucidate the underlying mechanisms for prolonged development caused by λ-cyh (LC10) exposure. The results showed that the JH Ⅲ titer was significantly increased at 24 h of λ-cyh exposure, and the JH interacting genes Methoprene-tolerant 2, Steroid Receptor Co-activator, Krüppel-homolog 1, and JH binding proteins were also up-regulated. Although the target of rapamycin (Tor) genes were induced by λ-cyh, the biosynthesis of JH in the corpora allata was not promoted. Notably, 13 JH degradation genes were found to be significantly down-regulated in the midgut of B. mori. The mRNA levels and enzyme activity assays indicated that λ-cyh had inhibitory effects on JH esterase, JH epoxide hydrolase, and JH diol kinase (JHDK). Furthermore, the suppression of JHDK (KWMTBOMO01580) was further confirmed by both western blot and immunohistochemistry. This study has offered a comprehensive perspective on the mechanisms underlying the prolonged development caused by insecticides, and our results also hold significant implications for the safe production of sericulture.


Subject(s)
Bombyx , Pyrethrins , Animals , Bombyx/genetics , Bombyx/metabolism , Nitriles/toxicity , Nitriles/metabolism , RNA, Messenger/metabolism , Pyrethrins/toxicity , Pyrethrins/metabolism , Juvenile Hormones/metabolism , Larva/metabolism , Insect Proteins/genetics
12.
Pest Manag Sci ; 80(2): 857-865, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37867443

ABSTRACT

BACKGROUND: In spite of their importance as arthropod predators, spiders have received little attention in the risk assessment of pesticides. In addition, research has mainly focused on a few species commonly found in agricultural habitats. Spiders living in more natural ecosystems may also be exposed to and affected by pesticides, including insecticides. However, their sensitivity and factors driving possible variations in sensitivity between spider taxa are largely unknown. To fill this gap, we quantified the sensitivity of 28 spider species from a wide range of European ecosystems to lambda-cyhalothrin in an acute exposure scenario. RESULTS: Sensitivity varied among the tested populations by a factor of 30. Strong differences in sensitivity were observed between families, but also between genera within the Lycosidae. Apart from the variation explained by the phylogeny, spiders from boreal and polar climates were more sensitive than spiders from warmer areas. Overall, the median lethal concentration (LC50 ) of 85% of species was below the recommended application rate of lambda-cyhalothrin (75 ng a.i. cm-2 ). CONCLUSION: Our study underlines the high sensitivity of spiders to lambda-cyhalothrin, which can lead to unintended negative effects on pest suppression in areas treated with this insecticide. The strong differences observed between families and genera indicate that the functional composition of spider communities would change in affected areas. Overall, the variation in spider sensitivity suggests that multispecies investigations should be more widely considered in pesticide risk assessment. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Animals, Poisonous , Insecticides , Moths , Pesticides , Pyrethrins , Spiders , Humans , Animals , Ecosystem , Phylogeny , Pyrethrins/pharmacology , Insecticides/pharmacology , Nitriles/pharmacology , Pesticides/pharmacology
13.
EFSA J ; 21(12): e8464, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38111918

ABSTRACT

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant Syngenta Crop Protection AG submitted a request to the competent national authority in Greece to set an import tolerance for the active substance lambda-cyhalothrin in avocados. The data submitted in support of the request were found to be sufficient to derive maximum residue level (MRL) proposals for avocados. Since the general data gap related to toxicity of degradation products formed under sterilisation conditions and identified in the framework of the MRL review has not yet been addressed, a risk management decision is required as to whether it is appropriate to take over the proposed MRLs in the MRL legislation. Adequate analytical methods for enforcement are available to control the residues of lambda-cyhalothrin in the commodity under consideration at the validated limit of quantification (LOQ) of 0.01 mg/kg. Based on the risk assessment results, EFSA concluded that the short-term and long-term intake of residues resulting from the use of lambda-cyhalothrin according to the reported agricultural practice is unlikely to present a risk to consumer health. However, the consumer exposure calculation shall be considered provisional, pending the toxicological assessment of the compounds formed under sterilisation conditions.

14.
J Fluoresc ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38109031

ABSTRACT

Fluorescent copper nanoclusters (Cu NCs) were synthesized by using Withania somnifera (W. somnifera) plant extract as a biotemplate. Aqueous dispersion of W. somnifera-Cu NCs displays intense emission peak at 458 nm upon excitation at 350 nm. This fluorescence emission was utilized for the detection of two pyrethroid pesticides (cypermethrin and lambda-cyhalothrin) via "turn-off" mechanism. Upon the addition of two pyrethiod pesticides independently, the fluorescence emission of W. somnifera-Cu NCs was gradually decreased with increasing concentrations of both pesticides. It was noticed that the decrease in emission intensity at 458 nm was linearly dependent on the logarithm of both pesticides concentrations in the ranges of 0.01-100 µM and of 0.05-100 µM for cypermethrin and lambda-cyhalothrin, respectively. Consequently, the limits of detection were found to be 27.06 and 23.28 nM for cypermethrin and lambda-cyhalothrin, respectively. The as-fabricated W. somnifera-Cu NCs acted as a facile sensor for the analyses of cypermethrin and lambda-cyhalothrin in vegetables (tomato and bottle gourd), which demonstrates that it could be used as portable sensing platform for assaying of two pyrethroid pesticides in food samples.

15.
Toxics ; 11(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38133400

ABSTRACT

This experiment was conducted to study the effects of Cyfluthrin (Cy) exposure on neurobehaviour, hippocampal tissue and synaptic plasticity in Wistar rats. First, it was found that high-dose Cy exposure could cause nerve injury, resulting in symptoms such as deficits in learning and memory ability, spatial exploration and autonomic motor function. Moreover, it was found that medium- and high-dose Cy exposure could cause an abnormal release of the neurotransmitter Glu. Second, brain tissue pathology showed that the middle and high doses of Cy caused tissue deformation, reduced the number of hippocampal puramidal cells, caused a disorder of these cells, decreased the number of Nissl bodies, and caused pyknosis of the hippocampal cell nuclear membrane and serious damage to organelles, indicating that exposure to these doses of Cy may cause hippocampal tissue damage in rats. Third, as the exposure dose increased, morphological changes in hippocampal synapses, including blurred synaptic spaces, a decreased number of synaptic vesicles and a decreased number of synapses, became more obvious. Moreover, the expression levels of the key synaptic proteins PSD-95 and SYP also decreased in a dose-dependent manner, indicating obvious synaptic damage. Finally, the study found that medium and high doses of Cy could upregulate the expression of A2AR in the hippocampus and that the expression levels of inflammatory factors and apoptosis-related proteins increased in a dose-dependent manner. Moreover, the expression of A2AR mRNA was correlated with neurobehavioural indicators and the levels of inflammatory factors, synaptic plasticity-related factors and apoptosis-related factors, suggesting that Cy may cause nerve damage in rats and that this effect is closely related to A2AR.

16.
Cureus ; 15(10): e47016, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37965403

ABSTRACT

Insecticide poisoning is still one of the major means of suicide in rural India. We report a case of a 38-year-old male who had come to us with ingestion of thiamethoxam and lambda-cyhalothrin in an alcohol-intoxicated state. The prompt response and intensive care given by our center gave him a second chance to make better decisions ahead.

17.
J Agric Food Chem ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922215

ABSTRACT

Lambda-cyhalothrin is one of the most important pyrethroids used for controlling wheat aphids. Extensive spraying of lambda-cyhalothrin has led to the development of high resistance to this pyrethroid inRhopalosiphum padi. The mechanisms of resistance are complex and not fully understood. In this study, we found that a laboratory-selected strain of R. padi showed extremely high resistance to lambda-cyhalothrin and cross-resistance to bifenthrin and deltamethrin. The expression level of RpCSP7 was significantly elevated in the resistant strain compared to that in the susceptible strain. Knockdown of RpCSP7 increased the susceptibility of R. padi to lambda-cyhalothrin, whereas the susceptibility to bifenthrin and deltamethrin was not significantly changed. The recombinant RpCSP7 displayed a high affinity for lambda-cyhalothrin but no affinities to bifenthrin and deltamethrin. These findings suggest that the overexpression of RpCSP7 contributes to the resistance of R. padi to lambda-cyhalothrin. This study provides valuable insights into CSP-mediated insecticide resistance in insects.

18.
Environ Pollut ; 338: 122694, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37802283

ABSTRACT

Lambda-cyhalothrin, also known as cyhalothrin, is an efficient, broad-spectrum, quick-acting pyrethroid insecticide and acaricide and the most powerful pyrethroid insecticide in the world. However, there is increasing evidence that lambda-cyhalothrin is closely related to a variety of toxicity drawbacks (hepatotoxicity, nephrotoxicity, neurotoxicity and reproductive toxicity, among others) in non-target organisms, and oxidative stress seems to be the main mechanism of toxicity. This manuscript reviews the oxidative and mitochondrial damage induced by lambda-cyhalothrin and the signalling pathways involved in this process, indicating that oxidative stress occupies an important position in lambda-cyhalothrin toxicity. The mechanism of antioxidants to alleviate the toxicity of lambda-cyhalothrin is also discussed. In addition, the metabolites of lambda-cyhalothrin and the major metabolic enzymes involved in metabolic reactions are summarized. This review article reveals a key mechanism of lambda-cyhalothrin toxicity-oxidative damage and suggests that the use of antioxidants seems to be an effective method for preventing toxicity.


Subject(s)
Insecticides , Pyrethrins , Antioxidants/pharmacology , Insecticides/toxicity , Pyrethrins/toxicity , Nitriles/toxicity , Oxidative Stress
19.
Ann Med Surg (Lond) ; 85(10): 5250-5254, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37811048

ABSTRACT

Introduction and importance: Lambda-cyhalothrin is a type II pyrethroid compound commonly used as a pesticide, with the potential to cause life-threatening toxicity in humans. Furthermore, among cases of pesticide poisoning in Nepal, organophosphates are most frequently implicated. Case presentation: A 40-year-old female presented to our hospital after ingesting a pesticide compound with suicidal intent. She also admitted to alcohol intoxication and exhibited symptoms of confusion, abdominal pain, nausea, and vomiting. An atropine challenge test yielded negative results. Therefore, conservative management was continued. It was discovered later that the ingested pesticide was lambda-cyhalothrin. The patient's condition eventually improved with supportive treatment. Clinical discussion: Several reports have highlighted the overlapping clinical features between organophosphorus and pyrethroid poisoning. In some cases of pyrethroid poisoning, misdiagnosis as organophosphorus poisoning has occurred, leading to the inappropriate administration of atropine. In our case, initial management was challenging owing to the lack of accurate information about the ingested compound. On further evaluation, cholinergic clinical features were absent and the atropine challenge test was negative. This was suggestive of nonorganophosphorus compound poisoning. Conclusion: This case illustrates that managing pesticide poisoning becomes challenging when the nature of the pesticide is unknown. Patients suffering from poisoning caused by pyrethroid compounds like lambda-cyhalothrin can present with features resembling organophosphorus poisoning. In such circumstances, a comprehensive clinical evaluation should guide the management. Clinical features and an atropine challenge test can aid in differentiating organophosphorus from nonorganophosphorus compound poisoning. This distinction facilitates therapeutic decision-making, including the consideration of atropine administration.

20.
Fish Shellfish Immunol ; 141: 109046, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37661035

ABSTRACT

Lambda-cyhalothrin (LC), a pyrethroid insecticide widely used in agriculture, causes immunotoxicity to aquatic organisms in the aquatic environment. Microalgal astaxanthin (MA) is a natural carotenoid that enhances viability of a variety of fish. To investigate the immunotoxicity of LC and the improvement effect of MA in lymphocytes (Cyprinus carpio), lymphocytes were treated with LC (80 M) and/or MA (50 M) for 24 h. Firstly, CCK8 combined with PI staining results showed that MA significantly attenuated the LC-induced lymphocyte death rate. Secondly, LC exposure resulted in excessively damaged mitochondrial and mtROS, diminished mitochondrial membrane potential and ATP content, which could be improved by MA. Thirdly, MA upregulated the levels of mitophagy-related regulatory factors (Beclin1, LC3, ATG5, Tom20 and Lamp2) induced by LC. Importantly, MA decreased the levels of pyroptosis-related genes treated with LC, including NLRP3, Cas-4, GSDMD and active Cas-1. Further study indicated that LC treatment caused excessive miRNA-194-5p and reduced levels of FoxO1, PINK1 and Parkin, which was inhibited by MA treatment. Overall, we concluded that MA could enhance damaged mitochondrial elimination by promoting the miRNA-194-5p-FoxO1-PINK1/Parkin-mitophagy in lymphocytes, which reduced mtROS accumulation and alleviated pyroptosis. It offers insights into the importance of MA application in aquaculture as well as the defense of farmed fish against agrobiological hazards in fish under LC.

SELECTION OF CITATIONS
SEARCH DETAIL
...