Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
1.
Front Immunol ; 15: 1407237, 2024.
Article in English | MEDLINE | ID: mdl-38947329

ABSTRACT

Introduction: Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods: We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results: qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion: Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.


Subject(s)
Aeromonas hydrophila , Carps , Cytokines , Erythrocytes , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Carps/immunology , Carps/microbiology , Erythrocytes/immunology , Erythrocytes/metabolism , Cytokines/metabolism , Cytokines/immunology , Aeromonas hydrophila/immunology , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Phagocytosis/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Immunity, Innate
2.
Fish Shellfish Immunol ; 151: 109744, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960107

ABSTRACT

MicroRNAs (miRNAs) have been demonstrated to act as crucial modulators with considerable impacts on the immune system. Cottonseed meal is often used as a protein source in aqua feed, cottonseed meal contains gossypol, which is harmful to animals. However, there is a lack of research on the role of miRNAs in fish exposed to gossypol stress. To determine the regulatory effects of miRNAs on gossypol toxicity, Cyprinus carpio were given to oral administration of 20 mg/kg gossypol for 7 days, and the gossypol concentration in the tissues was tested. Then, we detected spleen index, histology, immune enzyme activities of fish induced by gossypol. The results of miRNA sequencing revealed 8 differentially expressed miRNAs in gossypol group, and miR-214_L-1R+4 was found involved in immune response induced by gossypol. The potential targets of miR-214_L-1R+4 were predicted, and found a putative miR-214_L-1R+4 binding site in the 3'UTR of MyD88a. Furthermore, dual-luciferase reporter assays displayed miR-214_L-1R+4 decreased MyD88a expression through binding to the 3'UTR of MyD88a. Moreover, miR-214_L-1R+4 antagomir were intraperitoneally administered to C. carpio, down-regulated miR-214_L-1R+4 could increase MyD88a expression, as well as inflammatory cytokines and anti-inflammatory cytokines expression. These findings revealed that miR-214_L-1R+4 via the MyD88-dependent signaling pathway modulate the immune response to gossypol in C. carpio spleen.

3.
Anat Histol Embryol ; 53(4): e13086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965883

ABSTRACT

Medical imaging techniques such as digital radiography and ultrasonography are non-invasive and provide precise results for examining internal organs and structures within fish. Their effectiveness can be further enhanced by using body parts like scales as markers for the organs beneath them. This study utilized the number of scales as landmarks in digital radiography and ultrasonography to non-invasively evaluate the muscles, bones, and images of internal and reproductive organs of common carp (Cyprinus carpio). Digital radiography was performed in the dorsoventral and lateral views of the fish, whereas ultrasonography was conducted in longitudinal and transverse views on sequence scale numbers with brightness and colour Doppler-modes. Digital radiography of the common carp revealed the whole-body morphology, including the bony parts from the head, pectoral fins, dorsal fins, pelvic fins, anal fins, and vertebrae to the tail that appeared radiopaque. Internal organs were also observed, with the swim bladder and heart appeared radiolucent, while the intestines, liver, testes, and ovaries appeared radiopaque. Ultrasonography in brightness mode displayed the digestive organs, reproductive organs, and muscle thickness. Additionally, colour Doppler mode demonstrated blood flow within the heart's ventricle.


Subject(s)
Carps , Animals , Carps/anatomy & histology , Female , Male , Ultrasonography/veterinary , Ultrasonography/methods , Radiographic Image Enhancement/methods , Animal Scales/anatomy & histology , Animal Scales/diagnostic imaging , Ultrasonography, Doppler, Color/veterinary , Ultrasonography, Doppler, Color/methods , Anatomic Landmarks/diagnostic imaging , Anatomic Landmarks/anatomy & histology , Liver/diagnostic imaging , Liver/anatomy & histology , Bone and Bones/diagnostic imaging , Bone and Bones/anatomy & histology
4.
Genes (Basel) ; 15(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38927661

ABSTRACT

Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.


Subject(s)
Aquaculture , Gene Editing , Phenotype , Animals , Gene Editing/methods , Aquaculture/methods , Cyprinidae/genetics
5.
Environ Sci Pollut Res Int ; 31(27): 39782-39793, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833047

ABSTRACT

The purpose of this study is to assess the seasonal variation of heavy metal concentration in water and fish tissues of common carp (Cyprinus carpio L.) from the Umiam Lake reservoir located in the Ri bhoi district of Meghalaya, India, and to elucidate the possible human health risk of ingesting fish captured from the contaminated lake. Results show significant (p < 0.05) seasonal differences of heavy metal concentrations in the water and different tissues of fish Cyprinus carpio L.. The total concentration of heavy metals in the water exceeds the WHO and BIS standards and thus poses a significant threat to the aquatic flora and fauna of the reservoir. The heavy metal concentrations in fish tissues were tissue-dependent, where the average concentration of heavy metals in all the tissues of Cyprinus carpio L. was in the order of Cr > Pb > Cu > Cd. In addition, the health risk assessment suggests that the heavy metals in the fish muscle from the Umiam Lake reservoir might have adverse effects on human. Therefore, the overall results of the study provide an understanding on the seasonal distribution of heavy metals in water, provide insight on their bioaccumulation in the fish tissues, and highlights the potential health risk for the local population of long-term fish consumption from Umiam Lake reservoir.


Subject(s)
Carps , Environmental Monitoring , Lakes , Metals, Heavy , Seasons , Water Pollutants, Chemical , Metals, Heavy/analysis , Animals , India , Lakes/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Humans
6.
Environ Res ; 258: 119282, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823611

ABSTRACT

The Villa Victoria dam is one of the most important storage reservoirs in Mexico since it distributes water to more than 20 million inhabitants in the Metropolitan Zone of Mexico City. In this dam, the common carp (Cyprinus carpio) is an important food resource for the inhabitants, so the aim of this work was to evaluate the oxidative damage (lipoperoxidation, oxidized proteins, antioxidant enzymes activity and gene expression), AChE, embryotoxicity and behavioral changes in C. carpio embryos and larvae exposed to water from Villa Victoria dam for 24, 48, 72 and 96 h. The embryotoxicity was evaluated trough the General Morphology Score (GMS) and the teratogenic index. Behavioral changes in basal locomotor activity and thigmotaxis were evaluated in a DanioVision, Noldus ™. An increase in lipid and protein oxidation as well as modification of CAT, SOD and GPx enzymatic activity was observed during the exposure times. The GMS indicated a low development in the embryos, the teratogenic index was less than 1, however teratogenic effects as yolk edema, fin malformation, head malformation and scoliosis were observed. In parallel, an increase in AChE activity and gene expression was observed reflecting changes in distance traveled of the basal locomotor activity and thigmotaxis at the sampling points. In conclusion, pollutants in water from Villa Victoria dam caused oxidative damage, changes in SOD, CAT, GPx and AChE activity as well as embryotoxicity and modifications in the behavior of C. carpio larvae. This study demonstrates the need to implement restoration programs for this reservoir since, contamination in the Villa Victoria dam could eventually endanger aquatic life and human health.

7.
Microsc Res Tech ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747100

ABSTRACT

The bio-reductive fabrication of nanomaterials is a developing arena of study that seeks to fabricate nanoparticles (NPs) using microorganisms, plants, and animal blood. However, the chemical approach of AgNPs fulfills the need of abundant need of NPs. In contrast, chemically fabricated AgNPs are more toxic than biological AgNPs. Therefore, the current study aimed to assess and evaluate the chemically fabricated silver nanoparticles (AgNPs) for their possible toxicity in Common carp fish (Cyprinus carpio). The chemically synthesized silver nanoparticles were purchased from the market and applied for their possible toxicity. The chemically fabricated AgNPs were used against the Cyprinus carpio for bioaccumulation in different organs and histological alterations in the intestine and muscles. The results revealed that the AgNPs were mostly accumulated in the intestines followed by the gills, liver, and muscles (p < .05). The accumulated AgNPs caused histological alterations in gills and intestines at the highest concentration (0.08 mg/L). However, no alterations were observed by the middle and lowest concentration of AgNPs, particularly, in the intestine. In conclusion, more extensive research is required to establish the hazards related to the use of nanoparticles to disclose their negative effects on fish and the aquatic environment. REASEARCH HIGHLIGHTS: The chemical method fabricates a large amount of AgNPs Additionally, considered more toxic than the bio-reductive method AgNPs have excellent and diverse applications AgNPs deposited in various organs and cause histological changes.

8.
Vet Parasitol Reg Stud Reports ; 51: 101034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772644

ABSTRACT

Koi carp are globally known for their colors and cultural significance. The introduction of these fish to new environments poses a threat to local biodiversity, in addition to releasing parasites, such as argulid ectoparasites. This study presents a record of Argulus japonicus infecting carp in an artificial lake in Southern Brazil using morphological and molecular methods, with a 100% prevalence (n = 3) and a mean intensity of 21.6 parasites per host, distributed over the body surface. The invasion history of hosts in the study locality indicates that the introduction of A. japonicus occurred decades before its first formal record in Brazil.


Subject(s)
Arguloida , Carps , Fish Diseases , Animals , Carps/parasitology , Fish Diseases/parasitology , Brazil/epidemiology , Prevalence , Lakes/parasitology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Lice Infestations/veterinary , Lice Infestations/parasitology
9.
Antioxidants (Basel) ; 13(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38790645

ABSTRACT

To investigate the ameliorative effects and mechanism of Lycium barbarum polysaccharide (LBP) on growth performance, oxidative stress, and lipid deposition in common carp (Cyprinus carpio) fed with high-fat diets, fish with an initial weight of 5.29 ± 0.12 g were divided into five experimental groups-including normal-fat diets, high-fat diets, and high-fat diets-supplemented with LBP (0.5, 1.0, and 2.0 g/kg) for 8 weeks. The results showed that high-fat diets resulted in significant decreases in final body weight, weight gain rate, and specific growth rate of fish, as well as causing a significant decrease in hepatic total antioxidant capacity, catalase, and glutathione peroxidase activities. These changes were accompanied by a significant decrease in lipase activity and ATP level and a significant increase in malondialdehyde content. The expression levels of lipid metabolism-related genes (acetyl coenzyme A carboxylase 1, stearoyl coenzyme A desaturase 1, fat synthase, peroxisome proliferator-activated receptor-γ, fructofuranose bisphosphatase, and glucose-6-phosphatase) were also markedly elevated by high-fat diets. Supplementation with 0.5-2.0 g/kg LBP in high-fat diets improved the reduced growth performance, increased hepatic total antioxidant enzymes, catalase, and glutathione peroxidase activities, and lowered malondialdehyde level in fish fed with high-fat diets. Additionally, dietary supplementation with LBP significantly downregulated hepatic gene expression levels of acetyl coenzyme A carboxylase 1, stearoyl coenzyme A desaturase 1, fat synthase, sterol regulatory element-binding protein 1, peroxisome proliferator-activated receptor-γ, fructofuranose bisphosphatase, and glucose-6-phosphatase. In conclusion, fish fed with high-fat diets demonstrated impaired growth performance, antioxidant capacity, and lipid metabolism, and dietary supplementation with 0.5-2.0 g/kg LBP ameliorated the impairments induced by high-fat diets.

10.
Animals (Basel) ; 14(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731315

ABSTRACT

The aim of the study was to compare the content of major components, selected elements and heavy metals in the fillet, spine and bones of a carp (Cyprinus carpio). Moreover, the extent to which a prepared portion of carp tissue (100 g of fillet and 10 g of carp spine or bones) met the requirements for analyzed elements in adults (women and men) and children was calculated. The proximate composition (total protein, total lipid, ash, moisture) and mineral content of the fish samples were determined. The nutrient composition presented fluctuations among the different tissues. Moisture was the main constituent in the fillet and in the spine with 77.8% and 56.0%, respectively, whereas in bones, the main ingredient was ash (36.2%). All carp tissues were good sources of protein, with 16.5%, 21.0% and 17.0% in spine, bones and fillet, respectively. The most abundant main elements were the potassium in the fillet (4005 mg kg-1) and calcium in the bones (116,463 mg kg-1). The most abundant trace elements were iron in fillet and zinc in bones and spine. Carp meat can be considered a safe foodstuff in terms of concentrations of Hg, Pb and Cd, as the levels of these contaminants were less than FAO and European Commission maximum guidelines.

11.
Aquat Toxicol ; 272: 106961, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781688

ABSTRACT

In recent years, the intensive production of nanoparticles with a wide application has led to their transfer to the environment, including the water ecosystem. The accumulation of nanoparticles in fish, causing various pathological changes in the host, raises certain concerns. In the current study, we investigated the penetration and bioaccumulation of Fe3O4 nanoparticles, in the liver of common carp (Cyprinus carpio Linnaeus, 1758). Common carp juveniles were exposed to Fe3O4 nanoparticles at concentrations of 10 and 100 mg. After 7 days, their livers were examined by light and transmission electron microscopes. Compared to normal fish's liver, after using a small concentration (10 mg) of nanoparticles, changes were observed in erythrocytes, hepatocytes, intracellular canaliculi, and bile ducts of the liver. At a high concentration (100 mg), the intensity of changes increased significantly. The liver's capsule was damaged, and a considerable number of hepatocytes were completely destroyed. Additionally, the walls of blood vessels and biliary ductule walls was notably disturbed. It was found that the intensity of pathologies occurring in the liver, increases proportionally with higher concentrations of nanoparticles. Confirmation via electron microscopic methods revealed that Fe3O4 nanoparticles, when administered with food to common carp, enter the fish's liver through erythrocytes localized in the lumen of blood vessels. From there, they traverse through the endothelium of vessels, proceed to hepatocytes, including cytoplasmic organelles, intracellular canaliculi, biliary ductules, and eventually reach the bile ducts. Fe3O4 nanoparticles in all structural elements of fish liver was up to 20 nm. Therefore, high concentrations of nanoparticles in the environment harms the bodies of aquatic organisms, including fish. The changes identified in the liver of common carp in the present study are valuable information in assessing possible risks to other components of the aquatic ecosystem and organisms.


Subject(s)
Carps , Liver , Water Pollutants, Chemical , Animals , Carps/metabolism , Liver/metabolism , Liver/drug effects , Liver/ultrastructure , Water Pollutants, Chemical/toxicity , Microscopy, Electron, Transmission , Magnetic Iron Oxide Nanoparticles/toxicity
12.
Int J Biol Macromol ; 269(Pt 2): 132104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719016

ABSTRACT

Stimulator of interferon genes (STING), as an imperative adaptor protein in innate immune, responds to nucleic acid from invading pathogens to build antiviral responses in host cells. Aberrant activation of STING may trigger tissue damage and autoimmune diseases. Given the decisive role in initiating innate immune response, the activity of STING is intricately governed by several posttranslational modifications, including phosphorylation and ubiquitination. Here, we cloned and characterized a novel RNF122 homolog from common carp (named CcRNF122L). Expression analysis disclosed that the expression of CcRNF122L is up-regulated under spring viremia of carp virus (SVCV) stimulation in vivo and in vitro. Overexpression of CcRNF122L hampers SVCV- or poly(I:C)-mediated the expression of IFN-1 and ISGs in a dose-dependent way. Mechanistically, CcRNF122L interacts with STING and promotes the polyubiquitylation of STING. This polyubiquitylation event inhibits the aggregation of STING and the subsequent recruitment of TBK1 and IRF3 to the signaling complex. Additionally, the deletion of the TM domain abolishes the negative regulatory function of CcRNF122L. Collectively, our discoveries unveil a mechanism that governs the STING function and the precise adjustment of the innate immune response in teleost.


Subject(s)
Carps , Fish Proteins , Immunity, Innate , Membrane Proteins , Rhabdoviridae , Animals , Carps/immunology , Carps/genetics , Carps/virology , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Rhabdoviridae/physiology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Rhabdoviridae Infections/immunology , Signal Transduction
13.
Antioxidants (Basel) ; 13(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38671885

ABSTRACT

The application of cottonseed protein concentrate (CPC) is an effective strategy to moderate the shortage of fish meal (FM) for the aquafeed industry. However, little attention has been paid to the effects of replacing fishmeal with CPC on cyprinid fish. This study used common carp (Cyprinus carpio) as the biological model and assessed the potential of applying CPC as a substitute for fishmeal in the diet of common carp. The proportion of fish meal substituted with CPC in the six diets was 0% (CPC0), 25% (CPC25), 50% (CPC50), 75% (CPC75), and 100% (CPC100). Each diet was fed to three replicate groups of common carp (4.17 ± 0.02 g) for 56 days. Results revealed that the CPC50 group significantly increased the growth indexes via up-regulating the genes of the GH/IGF axis and the TOR pathway. The intestinal digestive ability was also elevated in the CPC50 group via markedly increasing intestinal villus height, protease and lipase activities in the whole intestine, and the amylase activity of the foregut and midgut. The CPC50 group captured significantly higher activities and gene expressions of antioxidant enzymes and lower malonaldehyde contents via evoking the Nrf2/Keap1 signal pathway. The CPC50 group enhance the intestinal mechanical barrier via up-regulating the gene expressions of tight junction proteins and heighten the intestinal biological barrier by increasing the probiotics (Lactococcus) and decreasing the harmful bacteria (Enterococcus). But excessive substitution levels (75% and 100%) would compromise growth performance, intestinal antioxidant capacity, and immune function. The optimum substitution level was estimated to be 46.47%, 47.72%, and 46.43% using broken-line regression analyses based on mass gain rate, protein efficiency ratio, and feed conversion rate. Overall, the fishmeal in common carp feed could be substituted up to 50% by CPC without negative influence on growth, feed utilization, and or intestinal health.

14.
Environ Res ; 252(Pt 3): 118967, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38642643

ABSTRACT

Sulfadimidine (SM2) is an N-substituted derivative of p-aminobenzenesulfonyl structure. This study aimed to analyze the metabolism of SM2 in carp (Cyprinus carpio). The carps were fed with SM2 at a dose of 200 mg/(kg · bw) and then killed. The blood, muscle, liver, kidney, gill, other guts, and carp aquaculture water samples were collected. The UHPLC-Q-Exactive Plus Orbitrap-MS was adopted for determining the metabolites of SM2 in the aforementioned samples. Twelve metabolites, which were divided into metabolites in vivo and metabolites in vitro, were identified using Compound Discoverer software. The metabolic pathways in vivo of SM2 in carp included acetylation, hydroxylation, glucoside conjugation, glycine conjugation, carboxylation, glucuronide conjugation, reduction, and methylation. The metabolic pathways in vitro included oxidation and acetylation. This study clarified the metabolites and metabolic pathways of SM2 in carp and provided a reference for further pharmacodynamic evaluation and use in aquaculture.


Subject(s)
Carps , Carps/metabolism , Animals , Chromatography, High Pressure Liquid , Metabolic Networks and Pathways , Sulfonamides/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Mass Spectrometry/methods
15.
Heliyon ; 10(7): e28419, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590886

ABSTRACT

The study examined the potential of Silymarin, a blend of bioactive flavonolignans extracted from the milk thistle Silybum marianum, to mitigate Deltamethrin-induced toxicity in the blood of Cyprinus carpio. Fish were exposed to Deltamethrin (0.66 µg/L), the plant extract, or a combination of both for a duration of thirty days. Various parameters, including serum biochemical markers, erythrocytic abnormalities, and genotoxicity endpoints, were assessed. Results indicated a significant (p < 0.05) increase in the levels of AST, ALT, ALP, blood urea nitrogen, creatinine, glucose, cholesterol, and TLC in the fish exposed to the pesticide. Conversely, total protein, TEC, and Hb showed a notable decrease. There was also a notable rise in micronuclei and erythrocytic abnormalities such as acanthocytes, microcytes, and notched cells. Under ultrastructural examination, phenotypic deformities like spherocytosis, discocytes, and clumped erythrocytes were observed. However, dietary supplementation of silymarin (1 g/kg) significantly restored the biochemical, genetic, and cellular parameters, resembling those of the control group. This suggests the potential of this plant extract in protecting the common carp, Cyprinus carpio, from Deltamethrin-induced damage by scavenging free radicals and reducing DNA oxidative stress.

16.
Environ Pollut ; 347: 123680, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38467363

ABSTRACT

Freshwater ecosystems are affected by various stressors, such as contamination and exotic species, making them amongst the most imperilled biological systems on the planet. In Australia and elsewhere, copper is one of the most common metal contaminants in freshwater systems and the European carp (Cyprinus carpio L.) is one of the most pervasive and widespread invasive fish species. Copper (Cu) and carp can both directly affect primary production and decomposition, which are critical and interrelated nutrient cycling processes and ecosystem services. The aim of this study was to explore the direct and indirect effects of Cu and carp individually, and together on periphyton cover, chlorophyll a concentration, growth of the macrophyte Vallisneria spiralis L., and the decomposition of leaf litter and cotton strips in a controlled, factorial experiment in outdoor experimental ponds. In isolation, Cu reduced macrophyte growth and organic matter decomposition, while chlorophyll a concentrations and periphyton cover remained unchanged, possibly due to the Low-Cu concentrations in the overlying water. Carp addition alone had a direct negative effect on the biomass of aquatic plants outside protective cages, but also increased plant biomass inside the cages, periphyton cover and chlorophyll a concentrations. Leaf litter was more decomposed in the carp only ponds compared to controls, while there was no significant effect on cotton strip decomposition. Aquatic plants were absent in the Cu + carp ponds caused by the combined effects of Cu toxicity, carp disturbance and the increase in turbidity due to carp bioturbation. Increases in periphyton cover in Low-Cu + carp, while absence in the High-Cu + carp ponds, and differences in the decomposition of surface and buried cotton strips were not as predicted, which highlights the need for such studies to understand the complex interactions among stressors for environmental risk assessment.


Subject(s)
Carps , Ecosystem , Animals , Chlorophyll A , Copper/toxicity , Fresh Water , Introduced Species
17.
Fish Shellfish Immunol ; 148: 109519, 2024 May.
Article in English | MEDLINE | ID: mdl-38508540

ABSTRACT

Viperin, also known as radical S-Adenosyl methionine domain containing 2 (RSAD2), is an IFN stimulated protein that plays crucial roles in innate immunity. Here, we identified a viperin gene from the koi carp (Cyprinus carpio) (kVip). The ORF of kVip is 1047 bp in length, encoding a polypeptide of 348 amino acids with neither signal peptide nor transmembrane protein. The predicted molecular weight is 40.37 kDa and the isoelectric point is 7.7. Multiple sequence alignment indicated that putative kVip contains a radical SAM superfamily domain and a conserved C-terminal region. kVip was highly expressed in the skin and spleen of healthy koi carps, and significantly stimulated in both natural and artificial CEV-infected koi carps. In vitro immune stimulation analysis showed that both extracellular and intracellular poly (I: C) or poly (dA: dT) caused a significant increase in kVip expression of spleen cells. Furthermore, intraperitoneal injection of recombinant kVip (rkVip) not only reduced the CEV load in the gills, but also improved the survival of koi carps following CEV challenge. Additionally, rkVip administration effectively regulated inflammatory and anti-inflammatory cytokines (IL-6, IL-1ß, TNF-α, IL-10) and interferon-related molecules (cGAS, STING, MyD88, IFN-γ, IFN-α, IRF3 and IRF9). Collectively, kVip effectively responded to CEV infection and exerted antiviral function against CEV partially by regulation of inflammatory and interferon responses.


Subject(s)
Carps , Fish Diseases , Poxviridae Infections , Poxviridae , Animals , Carps/genetics , Edema , Interferons , Antiviral Agents/pharmacology
18.
Pak J Biol Sci ; 27(2): 108-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38516752

ABSTRACT

<b>Background and Objective:</b> Understanding the biology of fish is crucial for ensuring the sustainable management and conservation of their biodiversity. The objective of this study was to observe the condition factors and length-weight relationships of <i>Cyprinus carpio</i>, which can provide valuable insights into the ecological and nutritional conditions of aquatic animals. <b>Materials and Methods:</b> Condition factor (CF) and length-weight relationship (LWR) for 100 specimens of <i>C. carpio</i> collected from the Anzali Lagoon 2016 (April to August) were studied. To determine the size of each fish, the total length using a caliper with a precision of 0.1 mm and the weight using a balance with an accuracy of 0.1 g was measured. Differences were analyzed using ANOVA with the Tukey's <i>post hoc</i> test. In order to evaluate the differences in sexes each month, a non-parametric Chi-square test was employed. <b>Results:</b> The total length and body weight of <i>C. carpio</i> ranged from 9.1-53.8 cm and 110.3-5565.2 g, respectively. It was observed that there is a strong positive correlation between length and weight (r = 0.96). The results revealed they had a negative allometry growing rate. In the condition factors, there were no significant differences between male and female specimens (p>0.05). The observed sex ratio suggests no significant difference between males and females (p>0.05). <b>Conclusion:</b> The Anzali Lagoon population of <i>C. carpio</i> exhibited allometric growth, as evidenced by a strong correlation between length and weight represented by a high "r" value.


Subject(s)
Carps , Female , Male , Animals , Iran , Biodiversity
19.
Ecotoxicol Environ Saf ; 274: 116192, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38461574

ABSTRACT

To investigate the mechanisms of BDE-47 on hepatotoxicity in fish, this study examined the effects of dietary exposure to BDE-47 (40 and 4000 ng/g) on carp for 42 days. The results showed that BDE-47 significantly increased carp's condition factor and hepatosomatic index. Pathological results revealed unclear hepatic cord structure, hepatocytes swelling, cellular vacuolization, and inflammatory cell infiltration in the hepatopancreas of carp. Further investigation showed that ROS levels significantly increased on days 7, 14, and 42. Moreover, the activities of antioxidant enzymes SOD, GSH, CAT, and GST increased significantly from 1 to 7 days, and the transcription levels of antioxidant enzymes CAT, Cu-Zn SOD, Mn-SOD, GST, and GPX, and antioxidant pathway genes Keap1, Nrf2, and HO-1 changed significantly at multiple time-points during the 42 days. The results of apoptosis pathway genes showed that the mitochondrial pathway genes Bax, Casp3, and Casp9 were significantly upregulated and Bcl2 was significantly downregulated, while the transcription levels of FADD and PERK were significantly enhanced. These results indicate that BDE-47 induced oxidative damage in hepatopancreas, then it promoted cell apoptosis mainly through the mitochondrial pathway. This study provides a foundation for analyzing the mechanism of hepatotoxicity induced by BDE-47 on fish.


Subject(s)
Carps , Chemical and Drug Induced Liver Injury , Halogenated Diphenyl Ethers , Animals , Antioxidants/metabolism , Carps/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Ether/metabolism , Ether/pharmacology , Hepatopancreas/metabolism , Dietary Exposure , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Apoptosis , Chemical and Drug Induced Liver Injury/metabolism
20.
Article in English | MEDLINE | ID: mdl-38367166

ABSTRACT

The complex niche of fish gut is often characterized by the associated microorganisms that have implications in fish gut-health nexus. Although efforts to distinguish the microbial communities have highlighted their disparate structure along the gut length, remarkably little information is available about their distinct structural and functional profiles in different gut compartments in different fish species. Here, we performed comparative taxonomic and predictive functional analyses of the foregut and hindgut microbiota in an omnivorous freshwater fish species, Cyprinus carpio var. specularis, commonly known as mirror carp. Our analyses showed that the hindgut microbiota could be distinguished from foregut based on the abundance of ammonia-oxidizing, denitrifying, and nitrogen-fixing commensals of families such as Rhodospirillaceae, Oxalobacteraceae, Nitrosomonadaceae, and Nitrospiraceae. Functionally, unique metabolic pathways such as degradation of lignin, 2-nitrobenzoate, vanillin, vanillate, and toluene predicted within hindgut also hinted at the ability of hindgut microbiota for assimilation of nitrogen and detoxification of ammonia. The study highlights a major role of hindgut microbiota in assimilating nitrogen, which remains to be one of the limiting nutrients within the gut of mirror carp.

SELECTION OF CITATIONS
SEARCH DETAIL
...