ABSTRACT
Sciadonus alphacrucis Melo, Gomes, Møller & Nielsen, 2022 is a rare deep-sea species, previously known from only two specimens collected off São Paulo State, southeastern Brazil, in the western South Atlantic. Herein, we report a new specimen of S. alphacrucis collected on the continental slope off Santa Catarina State, southern Brazil, thereby extending its known distribution by 420 km. Additionally, we provide the new meristic and morphometric data, the molecular identification using sequences of the cytochrome c oxidase subunit I (COI), an updated distribution map, and a discussion of troglomorphic traits.
Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Animals , Brazil , Electron Transport Complex IV/genetics , Atlantic Ocean , Phylogeny , Animal Distribution , Female , Male , Fishes/genetics , Fishes/classificationABSTRACT
Pimelodus is the most speciose genus of the family Pimelodidae, and is amply distributed in the Neotropical region. The species-level taxonomy and phylogenetic relationships within this genus are still poorly resolved, however. These taxonomic problems and the general lack of data have generated major uncertainties with regard to the identification of specimens from different localities. In the present study, we applied a single-locus species delimitation approach to identify the MOTUs found within the genus Pimelodus and provide sound evidence for the evaluation of the species richness of this genus in the different river basins of the Neotropical region. The study was based on the analysis of sequences of the mitochondrial COI gene of 13 nominal species, which resulted in the identification of 24 consensus MOTUs. Only six nominal species were recovered as well-defined molecular entities by both the traditional barcoding analysis and the molecular delimitation methods, while the other seven presented cryptic diversity or persistent taxonomic uncertainties. The lineages identified from the Parnaíba ecoregions, Amazonas Estuary and Coastal Drainages may represent a much greater diversity of Pimelodus species than that recognized currently, although a more detailed study of this diversity will be necessary to provide a more definitive classification of the genus.
ABSTRACT
We redescribe a species of fiddler crab, Minuca panema (Coelho, 1972), from the Atlantic coast of South America. It is closely related to M. mordax (Smith, 1870), and until now, the taxon has been considered to be synonymous with another closely related species Minuca burgersi (Holthuis, 1967). However, we found that two clades of M. burgersi sensu lato were restricted to the Caribbean Basin. This distribution differs from than that of M. panema, which occurs primarily along the eastern coast of South America, ranging from the island of Trinidad to Praia da Armação, Santa Catarina, Brazil. Based on our field studies, the geographical boundary between M. burgersi sensu stricto and M. panema is the Tobago Basin, north of Trinidad. Since the two species diverged only 3 to 4 million years ago, as dated from the phylogeny of the genus Minuca Bott 1954, there are few reliable morphological features that can be used to distinguish them clearly. In live crabs, there is a striking difference in coloration between the cherryred South American M. panema and the rusty-red Caribbean M. burgersi sensu lato. In males, the pattern of tubercles on the inner surface of the major cheliped varies between the two species. In females, the vulva is slightly larger in M. burgersi sensu stricto. Ocean tides and currents together with siltation owing to freshwater outflow from the Amazon and Orinoco rivers most likely have driven the divergence of these species. In the Caribbean, small tidal amplitudes have minimized long-distance gene flow in M. burgersi sensu stricto from isolated insular lagoons. In contrast, large tidal amplitudes and exposed habitats on riverbanks along the eastern Atlantic coast of South America have enabled long-distance dispersal in M. panema. DNA analysis reveals that haplotypes of cytochrome c oxidase subunit 1 are not shared between the species. Since natural selection and/or genetic drift have yet to produce extensive morphological divergences between M. panema and M. burgersi sensu stricto, we speculate that changes in the genes regulating mitochondrial DNA functions have led to speciation at the molecular level. According to the mitonuclear compatibility concept, we propose that mitochondrial DNA may be at the forefront of speciation events and that co-evolved mitonuclear interactions are responsible for some of the earliest genetic incompatibilities arising among isolated populations.
ABSTRACT
The nematode Angiostrongylus cantonensis has been reported worldwide. However, some basic questions remain unanswered about A. cantonensis in Ecuador: (1) Was the invasion of A. cantonensis in Ecuador unique, or did it occur in different waves? (2) Was this invasion as recent as historical records suggest? (3) Did this invasion come from other regions of South America or elsewhere? To address these issues, we assessed the genetic diversity of MT-CO1 gene sequences from isolates obtained in 11 of Ecuador's 24 provinces. Our Bayesian inference phylogenetic tree recovered A. cantonensis as a well-supported monophyletic group. All 11 sequences from Ecuador were identical and identified as AC17a. The haplotype AC17a, found in Ecuador and the USA, formed a cluster with AC17b (USA), AC13 (Thailand), and AC12a-b (Cambodia). Notably, all the samples obtained in Ecuadorian provinces' different geographic and climatic regions had no genetic difference. Despite the lack of genetic information on A. cantonensis in Latin America, except in Brazil, our finding differs from previous studies by its absence of gene diversity in Ecuador. We concluded that the invasion of A. cantonensis in Ecuador may have occurred: (1) as a one-time event, (2) recently, and (3) from Asia via the USA. Further research should include samples from countries neighboring Ecuador to delve deeper into this.
ABSTRACT
Females of the genus Mansonia feed on the blood of humans, livestock, and other vertebrates to develop their eggs. The females' biting behavior may cause severe disturbance to blood hosts, with a negative impact on public health and economics. Certain species have been identified as potential or effective disease vectors. The accurate species identification of field-collected specimens is of paramount importance for the success of monitoring and control strategies. Mansonia (Mansonia) morphological species boundaries are blurred by patterns of intraspecific heteromorphism and interspecific isomorphism. DNA barcodes can help to solve taxonomic controversies, especially if combined with other molecular tools. We used cytochrome c oxidase subunit I (COI) gene 5' end (DNA barcode) sequences to identify 327 field-collected specimens of Mansonia (Mansonia) spp. The sampling encompassed males and females collected from three Brazilian regions and previously assigned to species based on their morphological characteristics. Eleven GenBank and BOLD sequences were added to the DNA barcode analyses. Initial morphospecies assignments were mostly corroborated by the results of five clustering methods based on Kimura two-parameter distance and maximum likelihood phylogeny. Five to eight molecular operational taxonomic units may represent taxonomically unknown species. The first DNA barcode records for Mansonia fonsecai, Mansonia iguassuensis, and Mansonia pseudotitillans are presented.
Subject(s)
Malvaceae , DNA Barcoding, Taxonomic , Malvaceae/genetics , Animals , Phylogeny , Brazil , Databases, Genetic , Cluster AnalysisABSTRACT
Dibothriocephalus latus and Dibothriocephalus dendriticus are found throughout the temperate and sub-arctic zones of the northern hemisphere, but they are also found in the southern core countries of South America, Chile and Argentina. Genetic characteristics of D. latus and D. dendriticus from South America have yet to be fully defined. The present study aimed to understand the genetic characteristics of D. latus and D. dendriticus from Chile by haplotype network analysis of mitochondrial cytochrome c oxidase subunit I gene (cox1) and cytochrome b gene (cob), as well as their origins. Dibothriocephalus latus and D. dendriticus plerocercoid larvae were obtained from feral and/or wild salmonids captured in Lake Llanquihue in Región de Los Lagos, and Lake Panguipulli in Región de Los Ríos, located south of central Chile. Haplotype analysis of D. latus revealed that H1 in cox1 and H2 in cob are the key haplotypes common to D. latus across the world, including Chile, and both genes exhibited limited genetic diversity in D. latus. It was assumed that D. latus was brought into South America by European and Russian immigrants in the 19th century as previously reported. In contrast, both the cox1 and cob of D. dendriticus display considerable genetic diversity, with no common haplotypes between D. dendriticus populations from Chile and the northern hemisphere. More intriguingly, two cob haplotypes (H24, H25) detected in Chilean D. dendriticus were closely linked to haplotypes (H30, H31) detected in North American D. dendriticus, strongly implying that D. dendriticus in Chile was brought by piscivorous migrating birds from North America. It has also been estimated that the D. dendriticus from Chile genetically diverged from the D. dendriticus from the northern hemisphere approximately 1.11 million years ago, long before humans migrated to the southern parts of South America.
Subject(s)
Cestoda , Diphyllobothrium , Animals , Humans , Chile/epidemiology , Haplotypes , Cestoda/genetics , Diphyllobothrium/genetics , DNA, Mitochondrial/genetics , Genetic Variation , PhylogenyABSTRACT
The parasite biodiversity of mouse opossums in Brazil remains incompletely explored. We describe a new species of Subulura (Ascaridida: Subuluroidea) from the large intestine of the white-bellied woolly mouse opossum, Marmosa constantiae, based on the results of light and scanning electron microscopy (SEM). We also partially sequenced the mitochondrial cytochrome c oxidase I (MT-CO1) gene of the new species, using molecular phylogenetic analyses to determine its relationships within the Subuluroidea superfamily. As molecular data on subuluroid species are extremely limited, few inferences could be drawn from our phylogenies. Our SEM observations showed the detailed morphology of the cephalic extremity, precloacal pseudo-sucker, caudal papillae, phasmids and vulva. Subulura eliseae sp. n. differs from the other four Subulura parasites species of marsupials by the number of caudal papillae and the structure dimensions, and size of the spicule. Moreover, S. eliseae sp. n. has ten pairs of caudal papillae, which is unique compared to other species. We present morphometric and molecular data on this new species, contributing to future studies on subuluroids.
Subject(s)
Ascaridida , Parasites , Animals , Brazil , Female , Mice , Opossums , Phylogeny , RainforestABSTRACT
BACKGROUND: The Barcode of Life initiative was originally motivated by the large number of species, taxonomic difficulties and the limited number of expert taxonomists. Colombia has 1,610 freshwater fish species and comprises the second largest diversity of this group in the world. As genetic information continues to be limited, we constructed a reference collection of DNA sequences of Colombian freshwater fishes deposited in the Ichthyology Collection of the University of Antioquia (CIUA), thus joining the multiple efforts that have been made in the country to contribute to the knowledge of genetic diversity in order to strengthen the inventories of biological collections and facilitate the solution of taxonomic issues in the future. NEW INFORMATION: This study contributes to the knowledge on the DNA barcodes and occurrence records of 96 species of Colombian freshwater fishes. Fifty-seven of the species represented in this dataset were already available in the Barcode Of Life Data System (BOLD System), while 39 correspond to new species to the BOLD System. Forty-nine specimens were collected in the Atrato River Basin and 708 in the Magdalena-Cauca asin during the period 2010-2020. Two species (Loricariichthysbrunneus (Hancock, 1828) and Poeciliasphenops Valenciennes, 1846) are considered exotic to the Atrato, Cauca and Magdalena Basins and four species (Oncorhynchusmykiss (Walbaum, 1792), Oreochromisniloticus (Linnaeus, 1758), Parachromisfriedrichsthalii (Heckel, 1840) and Xiphophorushelleri Heckel, 1848) are exotic to the Colombian hydrogeographic regions. All specimens are deposited in CIUA and have their DNA barcodes made publicly available in the BOLD online database. The geographical distribution dataset can be freely accessed through the Global Biodiversity Information Facility (GBIF).
ABSTRACT
The systematics of tapeworms in the genus Spirometra has been progressing with the accumulation of molecular genetics data, but the taxonomic status of many nominal species remains under debate. We report morphological and molecular-phylogenetic data for a Spirometra species collected from a domestic cat (Felis silvestris catus) in Chiloé Island, Chile. The Spirometra species was shown to be genetically conspecific with Spirometra decipiens complex 1 found in a Pampas fox (Lycalopex gymnocercus) from Argentina, and was closely related to a Hoary fox (Lycalopex vetulus) and rattlesnake (Crotalus durissus) from Brazil. Therefore, the presence of S. decipiens complex 1 was molecularly confirmed for the first time in Chile. The findings of the present study add useful information for the systematics of poorly known Spirometra species in South America.
Subject(s)
Cat Diseases/parasitology , Cestode Infections/veterinary , Spirometra/classification , Animals , Animals, Domestic , Cat Diseases/epidemiology , Cats , Cestode Infections/epidemiology , Cestode Infections/parasitology , Chile/epidemiology , Female , Microscopy, Electron, Scanning/veterinary , Phylogeny , RNA, Transfer/genetics , Spirometra/genetics , Spirometra/ultrastructureABSTRACT
Accurate identification of mosquito species is essential to support programs that involve the study of distribution and mosquito control. Numerous mosquito species are difficult to identify based only on morphological characteristics, due to the morphological similarities in different life stages and large numbers of some species that are members of morphologically similar species complexes. In the present study, the mosquitoes collected in the Pantanos de Centla Biosphere Reserve, southeastern Mexico, were evaluated using a combination of morphological and molecular approaches (mitochondrial cytochrome c oxidase subunit I [COI] DNA barcode). A total of 1,576 specimens of 10 genera and 35 species, mostly adult stages, were collected. A total of 225 COI DNA barcode sequences were analyzed; most species formed well-supported groups in the neighbor joining, maximum likelihood, and Bayesian inference trees. The intraspecific Kimura 2-parameter (K2P) genetic distance averaged 1.52%. An intraspecific K2P distance of 6.20% was observed in Anopheles crucians s.l., while a deep split was identified in Culex erraticus and Cx. conspirator. This study showed that COI DNA barcodes offer a reliable approach to support mosquito species identification in Mexico.
Subject(s)
Culex , DNA Barcoding, Taxonomic , Animals , Bayes Theorem , Culex/genetics , Electron Transport Complex IV/genetics , Mexico , PhylogenyABSTRACT
Echinococcus oligarthrus is a tapeworm endemic to South America and widely distributed in the Amazon region. Its lifecycle is maintained by relationships between felids and their prey, mainly small sylvatic rodents, but humans can be infected occasionally. We report two female jaguarundis (Herpailurus yagouaroundi) harboring E. oligarthrus in southern Brazil. The felines were found road killed in periurban areas, and, during necropsy, the small intestine was examined. Visual inspection revealed helminths, which were submitted to microscopy and molecular examination. Morphologically, they were around 2.5 mm long, with four suckers and an armed scolex with two rows of hooks. Phylogenetic reconstruction using cytochrome c oxidase subunit I gene sequences placed samples from south Brazil in the same clade as all other E. oligarthrus samples, but as a sister group. Genetic distance gave similar results, resulting in a divergence of 0.087% between the samples described in this study and other samples. The geographic pattern of genetic diversity, as assessed by analysis of molecular variance, suggests that the divergency results from isolation by distance. This finding expands the geographic range of E. oligarthrus and brings new insights to help understand and prevent the zoonosis it causes.
Subject(s)
Cat Diseases , Echinococcosis , Echinococcus , Puma , Animals , Brazil/epidemiology , Cats , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcus/genetics , Female , PhylogenyABSTRACT
A case of abdominal dioctophymosis in a domestic cat was found in San Juan Bautista district, the Peruvian rainforest, in the Loreto department of Peru. The pet went to a veterinary clinic for a routine ovariohysterectomy during which a large nematode was found in the abdominal cavity. The nematode was morphologically identified as an adult female of Dioctophyme sp. A few morphological parameters, such as the vagina distance from the anterior part and the egg size, were different than D. renale. Partial sequences of the cytochrome c oxidase subunit I (cox1) and the small subunit 18S ribosomal RNA genes were compared with the references from public sequence database and showed a genetic identifies of 89.25% and 99.65% with D. renale, respectively. This is the first mitochondrial molecular analysis of a Dioctophyme specimen from South America and the results showed up to 12.5% nucleotide sequence variation in cox 1 gene of D. renale.
Subject(s)
Cat Diseases/parasitology , Dioctophymatoidea/isolation & purification , Enoplida Infections/veterinary , Intraabdominal Infections/veterinary , Animals , Cat Diseases/diagnosis , Cats , Cyclooxygenase 1/analysis , Dioctophymatoidea/classification , Enoplida Infections/diagnosis , Enoplida Infections/parasitology , Female , Helminth Proteins/analysis , Intraabdominal Infections/diagnosis , Intraabdominal Infections/parasitology , Peru , RNA, Helminth/analysis , RNA, Ribosomal, 18S/analysis , Rainforest , Sequence Analysis, DNA/veterinary , Sequence Analysis, RNA/veterinaryABSTRACT
The Maroni is one of the most speciose basins of the Guianas and hosts a megadiverse freshwater fish community. Although taxonomic references based on morphological identification exist for both the Surinamese and Guianese parts of the basin, there are still taxonomic uncertainties concerning the status of several species. We used COI sequences of 1284 fish in conjunction with morphological and biogeographical evidence to assist with species delineation and discovery in order to validate and standardize the current taxonomy. This resulted in a final DNA barcode data set of 199 fish species (125 genera, 36 families and eight orders; 68.86% of strictly freshwater fishes from the basin), among which 25 are new putative candidate species flagged as requiring taxonomic update. DNA barcoding delineation through Barcode Index Numbers (BINs) revealed further cryptic diversity (230 BINs in total). To explore global genetic patterns across the basin, genetic divergence landscapes were computed for 128 species, showing a global trend of high genetic divergence between the Surinamese southwest (Tapanahony and Paloemeu), the Guianese southeast (Marouini, Litany, Tampok, etc.), and the river outlet in the north. This could be explained by lower levels of connectivity between these three main areas and/or the exchange of individuals between these areas and the neighbouring basins. A new method of ordination of genetic landscapes successfully assigned species into cluster groups based on their respective pattern of genetic divergence across the Maroni Basin: genetically homogeneous species were effectively discriminated from species showing high spatial genetic fragmentation and possible lower capacity for dispersal.
Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Fishes/classification , Animals , Cluster Analysis , Electron Transport Complex IV/genetics , Fishes/genetics , French Guiana , Fresh Water , Genetic Variation , Phylogeny , SurinameABSTRACT
BACKGROUND Panstrongylus rufotuberculatus (Hemiptera-Reduviidae) is a triatomine species with a wide geographic distribution and a broad phenotypic variability. In some countries, this species is found infesting and colonising domiciliary ecotopes representing an epidemiological risk factor as a vector of Trypanosoma cruzi, etiological agent of Chagas disease. In spite of this, little is known about P. rufotuberculatus genetic diversity. METHODS Cytogenetic studies and DNA sequence analyses of one nuclear (ITS-2) and two mitochondrial DNA sequences (cyt b and coI) were carried out in P. rufotuberculatus individuals collected in Bolivia, Colombia, Ecuador and Mexico. Moreover, a geometric morphometrics study was applied to Bolivian, Colombian, Ecuadorian and French Guiana samples. OBJECTIVES To explore the genetic and phenetic diversity of P. rufotuberculatus from different countries, combining chromosomal studies, DNA sequence analyses and geometric morphometric comparisons. FINDINGS We found two chromosomal groups differentiated by the number of X chromosomes and the chromosomal position of the ribosomal DNA clusters. In concordance, two main morphometric profiles were detected, clearly separating the Bolivian sample from the other ones. Phylogenetic DNA analyses showed that both chromosomal groups were closely related to each other and clearly separated from the remaining Panstrongylus species. High nucleotide divergence of cyt b and coI fragments were observed among P. rufotuberculatus samples from Bolivia, Colombia, Ecuador and Mexico (Kimura 2-parameter distances higher than 9%). MAIN CONCLUSIONS Chromosomal and molecular analyses supported that the two chromosomal groups could represent different closely related species. We propose that Bolivian individuals constitute a new Panstrongylus species, being necessary a detailed morphological study for its formal description. The clear morphometric discrimination based on the wing venation pattern suggests such morphological description might be conclusive.
ABSTRACT
Genetic and phylogenetic relationships among seven piranha species of the genera Serrasalmus and Pygocentrus from the Paraná-Paraguay, São Francisco and Tocantins River basins were evaluated in the present study by partial sequences of two mitochondrial genes, Cytochrome b and Cytochrome c Oxidase I. Phylogenetic analysis of Maximum-Likelihood and Bayesian inference were performed. Results indicated, in general, greater genetic similarity between the two species of Pygocentrus (P. nattereri and P. piraya), between Serrasalmus rhombeus and S. marginatus and between S. maculatus, S. brandtii and S. eigenmanni. Pygocentrus nattereri, S. rhombeus and S. maculatus showed high intraspecific genetic variability. These species have each one, at least two different mitochondrial lineages that, currently, occur in sympatry (S. rhombeus) or in allopatry (P. nattereri and S. maculatus). Species delimitation analysis and the high values of genetic distances observed between populations of S. rhombeus and of S. maculatus indicated that each species may corresponds to a complex of cryptic species. The non-monophyletic condition of S. rhombeus and S. maculatus reinforces the hypothesis. The geographic distribution and the genetic differentiation pattern observed for the piranha species analyzed herein are discussed regarding the geological and hydrological events that occurred in the hydrographic basins.(AU)
Relações genéticas e filogenéticas de sete espécies de piranhas dos gêneros Serrasalmus e Pygocentrus das bacias hidrográficas Paraná-Paraguai, São Francisco e Tocantins foram avaliadas com base em sequências parciais dos genes mitocondriais Citocromo b e Citocromo c Oxidase I. Foram realizadas análises filogenéticas de Máxima Verossimilhança e de inferência Bayesiana. Os resultados indicaram, em geral, maior similaridade genética entre as duas espécies de Pygocentrus (P. nattereri e P. piraya), entre Serrasalmus rhombeus e S. marginatus e entre S. maculatus, S. brandtii e S. eigenmanni. Pygocentrus nattereri, S. rhombeus e S. maculatus revelaram ter alta variabilidade genética intraespecífica. Essas espécies têm, cada uma, pelo menos duas linhagens mitocondriais que, atualmente, ocorrem em simpatria (S. rhombeus) ou alopatria (P. nattereri e S. maculatus). Análises de delimitação de espécies e os altos valores de distância genética observados entre as populações de S. rhombeus e de S. maculatus indicam que cada espécie pode, na verdade, corresponder a um complexo de espécies crípticas. A condição não-monofilética de S. rhombeus e S. maculatus reforça essa hipótese. A distribuição geográfica e o padrão de diferenciação genética observados para as espécies de piranhas analisadas são discutidos com relação aos eventos geológicos e hidrológicos que ocorreram nas bacias hidrográficas.(AU)
Subject(s)
Animals , Characiformes/genetics , Characiformes/classification , Genetic Variation , Biodiversity , Brazil , Hydrographic BasinsABSTRACT
Abstract Genetic and phylogenetic relationships among seven piranha species of the genera Serrasalmus and Pygocentrus from the Paraná-Paraguay, São Francisco and Tocantins River basins were evaluated in the present study by partial sequences of two mitochondrial genes, Cytochrome b and Cytochrome c Oxidase I. Phylogenetic analysis of Maximum-Likelihood and Bayesian inference were performed. Results indicated, in general, greater genetic similarity between the two species of Pygocentrus (P. nattereri and P. piraya), between Serrasalmus rhombeus and S. marginatus and between S. maculatus, S. brandtii and S. eigenmanni. Pygocentrus nattereri, S. rhombeus and S. maculatus showed high intraspecific genetic variability. These species have each one, at least two different mitochondrial lineages that, currently, occur in sympatry (S. rhombeus) or in allopatry (P. nattereri and S. maculatus). Species delimitation analysis and the high values of genetic distances observed between populations of S. rhombeus and of S. maculatus indicated that each species may corresponds to a complex of cryptic species. The non-monophyletic condition of S. rhombeus and S. maculatus reinforces the hypothesis. The geographic distribution and the genetic differentiation pattern observed for the piranha species analyzed herein are discussed regarding the geological and hydrological events that occurred in the hydrographic basins.
Resumo Relações genéticas e filogenéticas de sete espécies de piranhas dos gêneros Serrasalmus e Pygocentrus das bacias hidrográficas Paraná-Paraguai, São Francisco e Tocantins foram avaliadas com base em sequências parciais dos genes mitocondriais Citocromo b e Citocromo c Oxidase I. Foram realizadas análises filogenéticas de Máxima Verossimilhança e de inferência Bayesiana. Os resultados indicaram, em geral, maior similaridade genética entre as duas espécies de Pygocentrus (P. nattereri e P. piraya), entre Serrasalmus rhombeus e S. marginatus e entre S. maculatus, S. brandtii e S. eigenmanni. Pygocentrus nattereri, S. rhombeus e S. maculatus revelaram ter alta variabilidade genética intraespecífica. Essas espécies têm, cada uma, pelo menos duas linhagens mitocondriais que, atualmente, ocorrem em simpatria (S. rhombeus) ou alopatria (P. nattereri e S. maculatus). Análises de delimitação de espécies e os altos valores de distância genética observados entre as populações de S. rhombeus e de S. maculatus indicam que cada espécie pode, na verdade, corresponder a um complexo de espécies crípticas. A condição não-monofilética de S. rhombeus e S. maculatus reforça essa hipótese. A distribuição geográfica e o padrão de diferenciação genética observados para as espécies de piranhas analisadas são discutidos com relação aos eventos geológicos e hidrológicos que ocorreram nas bacias hidrográficas.
Subject(s)
Animals , Characiformes , Paraguay , Phylogeny , Brazil , Bayes Theorem , RiversABSTRACT
Brachionus quadridentatus es una especie morfológicamente variable, distribuida por todo el mundo. Su taxonomía es confusa debido a las numerosas variantes infrasubespecíficas descritas en este taxón. Con la taxonomía basada en la morfología, B. quadridentatus tiene tres variantes reconocidas: B. quadridentatus quadridentatus, B. quadridentatus f. brevispinus and B. quadridentatus f. cluniorbicularis. En este estudio, exploramos la diversidad genética entre algunas poblaciones de B. quadridentatus, usando secuencias de los genes COI ADNmt y 18S ARNr. El análisis de delimitación de especies coalescente usando el gen 18S apoya la presencia de al menos tres especies putativas dentro del complejo B. quadridentatus. Estos resultados estuvieron en concordancia con los análisis filogenético y GMYC usando el gen 18S. Sin embargo, se encontró variación en morfología y secuencias del gen COI dentro de cada una de las tres especies putativas. Se encontraron siete linajes delimitados por las secuencias del gen COI usando el método de delimitación ABGD, que además están morfologicamente diferenciadas. Se encontró discordancia mitonuclear entre la filogenia del gen COI y la del gen 18S. La incongruencia entre el marcador mitocondrial y el nuclear puede ser explicada por sorteo incompleto de linaje.
Brachionus quadridentatus is a morphologically variable species of rotifer distributed worldwide. The taxonomy of this species is confused, with numerous infrasubspecific variants described in the taxon: B. quadridentatus quadridentatus, B. quadridentatus f. brevispinus and B. quadridentatus f. cluniorbicularis. In this study, we explored genetic diversity among some populations of B. quadridentatus, using sequences of mitochondrial COI and nuclear 18S genes. The coalescent species delimitation analysis with the 18S gene highly supports the presence of at least three putative species within the B. quadridentatus complex. These results were in agreement with the phylogenetic and GMYC analysis using the 18S gene. However, we also found variation within each of these three putative species in morphology and COI gene sequences. There were seven morphologically differentiated lineages that were recovered as distinct based on COI gene sequences using the ABGD delimitation method. As such, mitonuclear discordance between COI and 18S phylogenies was found. The incongruence between mitochondrial and nuclear markers could be explained by incomplete lineage sorting.
ABSTRACT
The nematode genus Bidigiticauda has 2 species (Bidigiticauda vivipara and Bidigiticauda embryophilum), which are parasites of bats from the Neotropical region. The present paper describes a new species of Bidigiticauda from a male Artibeus planirostris specimen collected in the Pratigi Environmental Protection Area in Bahia state, Brazil. The new species, Bidigiticauda serrafreirei n. sp., differs from B. embryophilum by having longer spicules, rays 5 and 6 arising from a common trunk and bifurcating in its first third, rays 3 and 4 emerging slightly separated from each other, and dorsal rays reaching the margin of the caudal bursa. The new species also differs from B. vivipara by the dorsal ray bifurcating at the extremity of the trunk. A molecular phylogenetic analysis was conducted to determine the evolutionary affinities of Bidigiticauda serrafreirei n. sp. within the Strongylida, which identified a clade that grouped Bidigiticauda with the other members of the Anoplostrongylinae. However, the molineid subfamilies did not group together, indicating that the family Molineidae is polyphyletic. Further analyses, which include additional taxa and genetic markers, should elucidate the complex relationships within the Molineidae, in particular its subfamilies and the evolution of the traits that define these groups.
Subject(s)
Chiroptera/parasitology , Phylogeny , Trichostrongyloidea/classification , Trichostrongyloidiasis/veterinary , Animals , Bayes Theorem , Brazil , DNA Barcoding, Taxonomic/veterinary , DNA, Helminth/chemistry , DNA, Helminth/isolation & purification , Electron Transport Complex IV/genetics , Female , Forests , Male , Mitochondria/enzymology , RNA, Ribosomal, 28S/genetics , Trichostrongyloidea/anatomy & histology , Trichostrongyloidea/genetics , Trichostrongyloidea/isolation & purification , Trichostrongyloidiasis/parasitologyABSTRACT
The genus Neophyllaphis (Takahashi) (Aphididae: Neophyllaphidinae) is composed of 18 species; however, in the Americas only nine species have been reported previously. A new species, Neophyllaphisvaricolor Miller & Halbert, was described in 2014 in USA. Colonies resembling those of this new species have been observed in Costa Rica on Podocarpus spp. In order to determine if N.varicolor is also present in Costa Rica, we sampled Neophyllaphis colonies from Podocarpusfalcatus and P.chinensis. Additionally, we sampled individuals from Podocarpus sp. in Spain and Vietnam. DNA of each sample was extracted and used to amplify and sequence the cytochrome c oxidase subunit I (COI) and elongation factor I (EF-1α) partial regions. According to morphological characteristics, sequences comparisons done in GenBank and BOLD, and phylogenetic analyses, the colonies collected from Podocarpus spp. in Costa Rica and the colony from Vietnam corresponded to the species N.varicolor. To the best of our knowledge this is the first report of the presence of N.varicolor in Central America and Vietnam.
ABSTRACT
The octopus fauna from the southern Caribbean is an understudied field. However, recent taxonomic work in the Colombian Caribbean has led to the discovery of several new species in the family Octopodidae. To provide molecular evidence for recent descriptions in the area (i.e., Octopus taganga, O. tayrona and Macrotritopus beatrixi) and contribute to the systematics of the family, we reconstructed the first molecular phylogenies of the family including Colombian Caribbean octopus species. Using cytochrome c oxidase subunit I and rhodopsin sequences from specimens collected in three sites (Santa Marta, Old Providence and San Andrés Islands) we inferred maximum-likelihood trees and delimited species with PTP. Our mitochondrial analysis supported the monophyly of species found in the area (i.e., O. taganga, O. hummelincki and O. briareus). The genetic distinction of the species O. tayrona and O. insularis was not resolved, as these were found in one clade together with Caribbean O. vulgaris and O. aff. tayrona species (O. spB) and delimited as a single species. Additionally, our results suggest a distant relationship of the Type I O. vulgaris group (Caribbean region) from the other forms of the species complex (Old World and Brazil). Lastly, the third newly described species M. beatrixi emerged as an independent lineage and was delimited as a single species. However, its relationship to other species of its genus remains unknown due to the lack of sequences in databases. Altogether, our molecular approach to the octopus fauna from the southern Caribbean adds on information to the relationship of Octopodidae species world-wide by providing sequences from recently described species from an understudied region. Further studies employing higher taxon sampling and more molecular information are needed to fill taxonomic gaps in the area and account for single-locus resolution on the systematics of this group.