Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.230
Filter
1.
Mol Biol Rep ; 51(1): 712, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824221

ABSTRACT

INTRODUCTION: Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS: The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION: This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.


Subject(s)
Coronary Artery Disease , Myeloid Ecotropic Viral Integration Site 1 Protein , Nuclear Proteins , Trans-Activators , Adult , Female , Humans , Male , Middle Aged , Case-Control Studies , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Coronary Artery Disease/genetics , Gene Expression/genetics , Gene Expression Regulation/genetics , Interleukin-10/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
2.
Reprod Biol ; 24(3): 100896, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833837

ABSTRACT

Activation of the maternal immune system leads to a downstream cascade of proinflammatory events that culminate in the activation of spontaneous uterine contractions, which is associated with preterm birth. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a crucial protein related to cell contraction and inflammation. The main purpose of this study was to explore the role and function of Rac1's regulation of inflammation through in- vivo and in-vitro experiments. Rac1 inhibitor was used in animal model of preterm birth and cells isolated from the uterine tissues of pregnant mice on gestational day 16 were transfected with adenovirus to knockdown or overexpress Rac1 and treated with the Calcium-calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. The expression of Rac1, uterine contraction-associated proteins (CAPs) (COX-2 and Connexin43), and inflammatory cytokines, were assessed by Western blotting and RTPCR. LPS upregulated Rac1, COX-2 and Connexin43 expression in uterine smooth muscle cells (USMCs). The expression of inflammatory cytokines, COX-2, and Connexin43 was significantly decreased in shRac1-transfected cells compared with cells stimulated with LPS only. Rac1 overexpression led to an increase in the expression of inflammatory cytokines, COX-2, and Connexin43. Furthermore, after Rac1 overexpression, KN93 reduced the expression of uterine contraction-associated proteins and inflammatory cytokines. It is thought that the effect of Rac1 on inflammatory cytokine and contraction-associated protein expression in USMCs is mediated by CaMKII. Rac1 can modulate the expression of contraction-associated proteins and inflammatory cytokines through the CaMKII pathway. Rac1 could be an effective therapeutic target for improving the outcome of preterm birth.

3.
J Pharmacol Exp Ther ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834355

ABSTRACT

Patients with arthritis report using cannabis for pain management, and the major cannabinoid Δ9-THC has anti-inflammatory properties, yet the effects of minor cannabinoids on arthritis are largely unknown. The goal of the present study was to determine the antiarthritic potential of the minor cannabinoid Δ8-THC using the collagen-induced arthritis (CIA) mouse model. Adult male DBA/1J mice were immunized and boosted 21 days later with an emulsion of collagen and complete Freund's adjuvant. Beginning on the day of the booster, mice were administered twice-daily injections of Δ8-THC (3 or 30 mg/kg), the steroid dexamethasone (2 mg/kg), or vehicle for two weeks. Dorsal-ventral paw thickness and qualitative measures of arthritis were recorded daily, and latency to fall from an inverted grid was measured on alternating days, to determine arthritis severity and functional impairment. On the final day of testing, spontaneous wire-climbing behavior and temperature preference in a thermal gradient ring were measured to assess CIA-depressed and -conditioned behavior, respectively. The Δ8-THC treatment (30 mg/kg) reduced paw swelling and qualitative signs of arthritis. Δ8-THC also blocked CIA-depressed climbing and CIA-induced preference for a heated floor without producing locomotor effects but did not affect latency to fall from a wire grid. In alignment with the morphological and behavioral assessments in vivo, histology revealed that Δ8-THC reduced synovial inflammation, proteoglycan loss and cartilage and bone erosion in the foot joints in a dose-dependent manner. Together, these findings suggest that Δ8-THC not only blocked morphological changes but also prevented functional loss caused by collagen-induced arthritis. Significance Statement Despite increasing use of cannabis products, the potential effects of minor cannabinoids are largely unknown. Here, the minor cannabinoid Δ8-THC blocked the development of experimentally induced arthritis by preventing both pathophysiological as well as functional effects of the disease model. These data support the development of novel cannabinoid treatments for inflammatory arthritis.

4.
Semin Oncol Nurs ; : 151652, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834449

ABSTRACT

OBJECTIVES: Decrements in energy were found in 67% of women who underwent breast cancer surgery. However, no information is available on chronic decrements in energy and associations with inflammation. Purposes were to identify latent classes of patients with distinct average energy profiles from prior to through 12 months after breast cancer surgery; evaluate for differences in demographic and clinical characteristics between the two extreme average energy classes; and evaluate for polymorphisms for cytokine genes associated with membership in the Low energy class. METHODS: Women (n = 397) completed assessments of energy prior to and for 12 months following breast cancer surgery. Growth mixture modeling was used to identify classes of patients with distinct average energy profiles. Eighty-two single nucleotide polymorphisms (SNPs) among 15 cytokine genes were evaluated. RESULTS: Three distinct energy profiles were identified (ie, Low [27.0%], Moderate [54.4%], Changing [18.6%]). Data from patients in the Low and Moderate energy classes were used in the candidate gene analyses. Five SNPs and one haplotype in six different genes remained significant in logistic regression analyses (ie, interleukin [IL]-1ß rs1143623, IL1 receptor 1 rs3917332 IL4 rs2243263, IL6 HapA1 [that consisted of rs1800795, rs2069830, rs2069840, rs1554606, rs2069845, rs2069849, and rs2069861], nuclear factor kappa beta subunit 1 rs170731, tumor necrosis factor rs1799964). For several SNPs for IL6, expression quantitative trait locis were identified in subcutaneous and visceral adipose tissue and thyroid tissue. In addition, skeletal muscle was identified as an expression quantitative trait loci for nuclear factor kappa beta subunit 1. CONCLUSIONS: Findings suggest that cytokine genes are involved in the mechanisms that underlie chronic decrements in energy in women following breast cancer surgery. Given the roles of subcutaneous and visceral adipose and thyroid tissues in metabolism and energy balance, the findings related to IL6 suggest that these polymorphisms may have a functional role in the development and maintenance of chronic decrements in energy.

5.
J Int Soc Prev Community Dent ; 14(2): 98-104, 2024.
Article in English | MEDLINE | ID: mdl-38827355

ABSTRACT

Aim: Temporomandibular joint disorder (TMD), which affects the masticatory muscles, temporomandibular joint, and surrounding tissues, can manifest as inflammation. This study aims to explore the expression levels of the inflammatory biomarkers, interleukin (IL)-1ß and C-reactive protein (CRP), in TMD patients who have undergone orthodontic treatment. Materials and Methods: Buccal swabs from 105 postorthodontic treatment patients were analyzed using real-time polymerase chain reaction to assess the expression levels of IL-1ß and CRP in each group after messenger ribonucleic acid extraction. Patients were also examined using the Diagnostic Criteria for TMD (DC/TMD) to determine if they met the criteria for a TMD diagnosis. The TMD group was subdivided into three categories based on the DC/TMD. Results: The study included 37 patients who did not develop TMD (group 0) and 68 participants who developed TMD after orthodontic treatment, including 17 with pain-related TMDs (group 1), 29 with intra-articular TMDs (Group 2), and 22 with combined pain-related and intra-articular TMDs (group 3). CRP expression was higher than IL-1ß in groups 1 and 2, and IL-1ß expression was higher than CRP in group 3. The Kruskal-Wallis test showed that IL-1ß and CRP expression levels in groups 1, 2, and 3 were not statistically different. Sex and adult age had considerable effects on the occurrence of TMD in patients after orthodontic treatment. Conclusions: Higher IL-1ß expression was found in postorthodontic treatment patients with more complex TMD. This study strengthens the evidence of inflammation through IL-1ß and CRP expression in individuals with TMD, especially after orthodontic treatment.

6.
Bioorg Chem ; 149: 107470, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38838619

ABSTRACT

Targeting protein kinases that regulate signalling pathways in inflammation is an effective pharmacological approach to alleviate uncontrolled inflammatory diseases. In this context, the natural product indirubin and its 6-bromo-substituted analogue 6-bromoindirubin-3 -glycerol-oxime ether (6BIGOE; 1) were identified as potent inhibitors of glycogen synthase kinase-3ß (GSK-3ß). These inhibitors suppress the release of pro-inflammatory cytokines and prostaglandins (PG) from human monocytes. However, indirubin derivatives target several protein kinases such as cyclin-dependent kinases (CDKs) which has been a major concern for their application in inflammation therapy. Here, we report on a library of 13 5-bromo-substituted indirubin derivatives that have been designed to improve potency and target selectivity. Side-by-side comparison of reference compound 1 (6BIGOE) with 5-bromo derivatives revealed its isomer 2 (5BIGOE), as the most potent derivative able to supress pro-inflammatory cytokine and PG release in lipopolysaccharide-stimulated human monocytes. Analysis of protein kinase inhibition in intact monocytes, supported by our in silico findings, proposed higher selectivity of 1 for GSK-3ß inhibition with lesser potency against CDKs 8 and 9. In contrast, 2 supressed the activity of these CDKs with higher effectiveness than GSK-3ß, representing additional targets of indirubins within the inflammatory response. Encapsulation of 1 and 2 into polymer-based nanoparticles (NP) improved their pharmacological potential. In conclusion, the 5- and 6-brominated indirubins 1 and 2 as dual GSK-3ß and CDK8/9 inhibitors represent a novel concept for intervention with inflammatory disorders.

7.
Hypertension ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38841853

ABSTRACT

BACKGROUND: Clinical trials of renal denervation for the treatment of hypertension have shown a variety of off-target improvements in conditions associated with sympathetic overactivity. This may be due to the ablation of sympathoexcitatory afferent renal nerves, which are overactive under conditions of renal inflammation. Renal IL (interleukin)-1ß is elevated in the deoxycorticosterone acetate-salt model of hypertension, and its activity may be responsible for the elevation in afferent renal nerve activity and arterial pressure. METHODS: Continuous blood pressure recording of deoxycorticosterone acetate-salt mice with IL-1R (IL-1 receptor) knockout or antagonism was used individually and combined with afferent renal denervation (ARDN) to assess mechanistic overlap. Protein quantification and histological analysis of kidneys were performed to characterize renal inflammation. RESULTS: ARDN attenuated deoxycorticosterone acetate-salt hypertension (-20±2-Δmm Hg mean arterial pressure [MAP] relative to control at study end) to a similar degree as total renal denervation (-21±2-Δmm Hg MAP), IL-1R knockout (-16±4-Δmm Hg MAP), or IL-1R antagonism (-20±3-Δmm Hg MAP). The combination of ARDN with knockout (-18±2-Δmm Hg MAP) or antagonism (-19±4-Δmm Hg MAP) did not attenuate hypertension any further than ARDN alone. IL-1R antagonism was found to have an acute depressor effect (-15±3-Δmm Hg MAP, day 10) in animals with intact renal nerves but not those with ARDN. CONCLUSIONS: These findings suggest that IL-1R signaling is partially responsible for the elevated afferent renal nerve activity, which stimulates central sympathetic outflow to drive deoxycorticosterone acetate-salt hypertension.

8.
J Am Heart Assoc ; : e034990, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842292

ABSTRACT

BACKGROUND: Previous studies using animal models and cultured cells suggest that vascular smooth muscle cells (SMCs) and inflammatory cytokines are important players in atherogenesis. Validating these findings in human disease is critical to designing therapeutics that target these components. Multiplex imaging is a powerful tool for characterizing cell phenotypes and microenvironments using biobanked human tissue sections. However, this technology has not been applied to human atherosclerotic lesions and needs to first be customized and validated. METHODS AND RESULTS: For validation, we created an 8-plex imaging panel to distinguish foam cells from SMC and leukocyte origins on tissue sections of early human atherosclerotic lesions (n=9). The spatial distribution and characteristics of these foam cells were further analyzed to test the association between SMC phenotypes and inflammation. Consistent with previous reports using human lesions, multiplex imaging showed that foam cells of SMC origin outnumbered those of leukocyte origin and were enriched in the deep intima, where the lipids accumulate in early atherogenesis. This new technology also found that apoptosis or the expression of pro-inflammatory cytokines were not more associated with foam cells than with nonfoam cells in early human lesions. More CD68+ SMCs were present among SMCs that highly expressed interleukin-1ß. Highly inflamed SMCs showed a trend of increased apoptosis, whereas leukocytes expressing similar levels of cytokines were enriched in regions of extracellular matrix remodeling. CONCLUSIONS: The multiplex imaging method can be applied to biobanked human tissue sections to enable proof-of-concept studies and validate theories based on animal models and cultured cells.

9.
Front Allergy ; 5: 1427762, 2024.
Article in English | MEDLINE | ID: mdl-38859875

ABSTRACT

Rhinovirus is a widespread virus associated with several respiratory diseases, especially asthma exacerbation. Currently, there are no accurate therapies for rhinovirus. Encouragingly, it is found that during rhinovirus-induced immunoreactions the levels of certain cytokines in patients' serum will alter. These cytokines may have pivotal pro-inflammatory or anti-inflammatory effects via their specific mechanisms. Thus far, studies have shown that inhibitions of cytokines such as IL-1, IL-4, IL-5, IL-6, IL-13, IL-18, IL-25, and IL-33 may attenuate rhinovirus-induced immunoreactions, thereby relieving rhinovirus infection. Furthermore, such therapeutics for rhinovirus infection can be applied to viruses of other species, with certain practicability.

10.
Hum Immunol ; 85(4): 110830, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38861759

ABSTRACT

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is an autoimmune disease characterized by the production of galactose­deficient IgA1 (Gd­IgA1) and the deposition of immune complexes in the kidney. Exploring the landscape of immune dysregulation in IgAN is valuable for pathogenesis and disease treatment. We conducted Mendelian randomization (MR) to assess the causal correlations between inflammation and IgAN. METHODS: Based on available genetic datasets, we investigated potential causal links between inflammation and the risk of IgAN using two-sample MR. We used genome-wide association study (GWAS) summary statistics of 5 typical inflammation markers, 41 inflammatory cytokines, and 731 immune cell signatures, accessed from the public GWAS Catalog. The primary method employed for MR analysis was Inverse Variance Weighted (IVW). To confirm consistency across results, four supplementary MR methods were also conducted: MR-Egger, Weighted Median, Weighted Mode, and Simple Mode. To assess pleiotropy, we used the MR-Egger regression intercept test and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test. Cochrane's Q statistic was applied to evaluate heterogeneity. Additionally, the stability of the MR findings was verified through the leave-one-out sensitivity analysis. RESULTS: This study revealed that interleukin-7 (IL-7) and stem cell growth factor beta (SCGF-ß) were possibly associated with the risk of IgAN according to the IVW approach, with estimated odds ratios (OR) of 1.059 (95 % confidence interval [CI] 1.015 to 1.104, P = 0.008) and 1.043 (95 % CI 1.002 to 1.085, P = 0.037). Five immune traits were identified that might be linked to IgAN risk, each with P-values below 0.01, including natural killer T %T cell (OR = 1.058, 95 % CI: 1.020 to 1.097, P = 0.002), natural killer T %lymphocyte (OR = 1.055, 95 % CI: 1.016 to 1.096, P = 0.006), CD25++ CD8+ T cell %T cell (OR = 1.057, 95 % CI: 1.016 to 1.099, P = 0.006), CD3 on effector memory CD4+ T cell (OR = 1.045, 95 % CI: 1.019 to 1.071, P = 0.001), and CD3 on CD28+ CD45RA+ CD8+ T cell (OR = 1.042, 95 % CI: 1.016 to 1.068, P = 0.001). CD4 on central memory CD4+ T cell might be a protective factor for IgAN (OR = 0.922, 95 % CI: 0.875 to 0.971, P = 0.002). Moreover, IgAN may be implicated in a high risk of elevated granulocyte colony-stimulating factor (G-CSF) (OR = 1.114, 95 % CI 1.002 to 1.239, P = 0.046). CONCLUSION: Our study revealed exposures among typical inflammation markers, inflammatory cytokines, and immune cell signatures that may potentially linked to IgAN risk by MR analysis. This insight may advance our understanding of the etiology of IgAN and support the development of targeted therapeutic strategies.

11.
Reprod Biol ; 24(3): 100911, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38861846

ABSTRACT

This study aimed to investigate the pro-inflammatory and anti-inflammatory cytokines status in the peripheral blood of uRM patients. The plasma pro-inflammatory (IFN-γ, IL-6, IL-1ß, and TNF-α) and anti-inflammatory (TGF-ß1, IL-10, and IL-4) cytokines of 25 patients with uRM were compared to 33 women with a successful pregnancy. It was concluded that patients with uRM have an excess pro-inflammatory cytokines status.

12.
Endocrinology ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862394

ABSTRACT

Alloxan-induced diabetic rats present hypothyroidism. When treated with triiodothyronine (T3), glycaemia and pro-inflammatory cytokine expression are downregulated, improving insulin sensitivity. The effectiveness of associating T3 with insulin [replacement dose (6U) and (3U)] in controlling glycaemia was investigated in this experimental model. Male Wistar rats were made diabetic by alloxan injection and sorted into groups treated or not with insulin (3 or 6U) associated or not with T3 (1.5 µg 100 g-1 BW) for 28 days. Non-diabetic rats constituted the control group. Fasting glycaemia, glucose decay rate and TSH were measured in the blood/sera of all animals. Immunoblotting was utilised to assess total GLUT4 expression in skeletal muscles and epididymal white adipose tissue. Cytokine and NF-kB expression were measured in these tissues and liver. Diabetic rats presented increased fasting glycaemia, inflammatory cytokines and NF-kB expression, TSH levels and insulin resistance. In diabetic rats treated with T3 and/or insulin, these parameters were decreased, whereas GLUT4 and anti-inflammatory cytokine expression were increased. T3 combined with 3U insulin restored the parameters to values of the control group and was more effective at controlling glycaemia than 6U insulin. Thus, a combination of T3 and insulin might represent a promising strategy for diabetes management since it reduces the insulin requirement by half and improves glycaemic control of diabetic rats, which could postpone insulin resistance that develops with chronic insulin administration. These findings open a perspective for using thyroid analogues that provide tissue-specific effects, which might result in a potentially more effective treatment of diabetes.

13.
Expert Rev Mol Diagn ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864429

ABSTRACT

BACKGROUND: A distinct phenotype in Coronavirus disease 2019 (Covid-19) was observed in severe patients, consisting of a highly impaired interferon (IFN) type I response, an exacerbated inflammatory response. OBJECTIVE: The aim of the present study was to investigate a possible association of single nucleotide polymorphisms (SNPs), in five genes relation to the immune response, rs3775291 in TLR3; rs2292151 in TICAM1; rs1758566 in IFNA1; rs1800629 in TNF, and rs1800795 in IL6 with the severity of Covid-19. METHODS: A cross-sectional study was performed, with non-severe and severe/critical patients diagnosed with Covid-19, by two public hospitals in Brazil. In total, 300 patients were genotyped for the SNPs, 150 with the non-severe form of the disease and 150 with severe/critical form. RESULTS: The T/T genotype of TLR3 in recessive model show 58% of protection against severe/critical Covid-19; as well as the genotypes G/A+A/A of TICAM1 in dominant model with 60% of protection, and in a codominant model G/A with 57% and A/A with 71% of protection against severe/critical Covid-19. Comparing severe and critical cases, The T/C genotype of IFNA1 in the codominant model and TC+C/C in the dominant model, showed twice the risk of critical Covid-19. CONCLUSION: We can conclude that rs3775291, rs2292151 and rs1758566 can influence the Covid-19 severity.

14.
Inflamm Bowel Dis ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864707

ABSTRACT

BACKGROUND: No biomarkers are currently available to predict therapeutic response to ustekinumab (UST) in Crohn's disease (CD). The aim of this prospective study was to identify 1 or more cytokines able to predict mucosal healing in patients with CD treated with UST. METHODS: We prospectively enrolled consecutive CD patients treated with UST. At weeks 0 (baseline), 24, and 48, a panel of serum cytokines was measured by a fluorescence assay. At the same time points, fecal calprotectin (FC) was assessed. A colonoscopy was performed at baseline and at week 48, where therapeutic outcome was evaluated in terms of mucosal healing. RESULTS: Out of 44 patients enrolled, 22 (50%) achieved mucosal healing at the end of follow-up. Response was associated with higher interleukin (IL)-23 levels (P < .01). Fecal calprotectin levels decreased over time in responders but did not change in nonresponders (test for the interaction between time and mucosal healing, P < .001). CONCLUSIONS: This pilot study showed that IL-23 and FC could be reliable biomarkers in predicting therapeutic outcome to UST therapy in CD. In particular, the correlation between baseline serum levels of IL-23 and mucosal healing at 48 weeks is particularly strong, paving the way for its use to drive therapeutic decisions.


This prospective pilot study showed that the assessment of IL-23 levels at baseline could predict clinical and endoscopic outcomes to ustekinumab therapy in Crohn's disease. Testing this biomarker before starting a biological therapy could be useful for a personalized choice.

15.
Front Neurosci ; 18: 1397430, 2024.
Article in English | MEDLINE | ID: mdl-38855442

ABSTRACT

Objective: Recent research suggests a potential link between the gut microbiome (GM) and epilepsy. We undertook a Mendelian randomization (MR) study to determine the possible causal influence of GM on epilepsy and its various subtypes, and explore whether cytokines act as mediators. Methods: We utilized Genome-Wide Association Study (GWAS) summary statistics to examine the causal relationships between GM, cytokines, and four epilepsy subtypes. Furthermore, we assessed whether cytokines mediate the relationship between GM and epilepsy. Significant GMs were further investigated using transcriptomic MR analysis with genes mapped from the FUMA GWAS. Sensitivity analyses and reverse MR were conducted for validation, and false discovery rate (FDR) correction was applied for multiple comparisons. Results: We pinpointed causal relationships between 30 GMs and various epilepsy subtypes. Notably, the Family Veillonellaceae (OR:1.03, 95%CI:1.02-1.05, p = 0.0003) consistently showed a strong positive association with child absence epilepsy, and this causal association endured even after FDR correction (p-FDR < 0.05). Seven cytokines were significantly associated with epilepsy and its subtypes. A mediating role for cytokines has not been demonstrated. Sensitivity tests validated the primary MR analysis outcomes. Additionally, no reverse causality was detected between significant GMs and epilepsy. Of the mapped genes of notable GMs, genes like BLK, FDFT1, DOK2, FAM167A, ZSCAN9, RNGTT, RBM47, DNAJC21, SUMF1, TCF20, GLO1, TMTC1, VAV2, and RNF14 exhibited a profound correlation with the risk factors of epilepsy subtypes. Conclusion: Our research validates the causal role of GMs and cytokines in various epilepsy subtypes, and there has been no evidence that cytokines play a mediating role between GM and epilepsy. This could provide fresh perspectives for the prevention and treatment of epilepsy.

16.
J Ethnopharmacol ; : 118446, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857679

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The increasing incidence of osteoarthritis (OA), especially among the elderly population, highlights the need for more efficacious treatments that go beyond mere symptomatic relief. Tinospora crispa (L.) Hook. f. & Thomson (TC) boasts a rich traditional heritage, widespread use in Ayurveda, traditional Chinese medicine (TCM), and diverse indigenous healing practices throughout Southeast Asia for treating arthritis, rheumatism, fever, and inflammation. AIM OF THE STUDY: This study investigates the anti-inflammatory and chondroprotective potential of TC stem extracts, including ethanolic TC extract (ETCE) and aqueous TC extract (ATCE), in modulating OA pathogenesis through in vitro and in vivo approaches. MATERIALS AND METHODS: The study utilized LC-MS/MS to identify key compounds in TC stem extracts. In vitro experiments assessed the antioxidative and anti-inflammatory properties of ETCE and ATCE in activated macrophages, while an in vivo monoiodoacetate (MIA)-induced OA rat model evaluated the efficacy of ETCE treatment. Key markers of oxidative stress, such as superoxide dismutase (SOD) and catalase (CAT), were assessed alongside pro-inflammatory cytokines TNF-α and IL-1ß, and matrix-degrading enzymes, matrix metalloproteinase (MMP 13 and MMP 3), to evaluate the therapeutic effects of TC stem extracts on OA. RESULTS: Chemical profiling of the extracts was conducted using LC-MS/MS in positive ionization, identifying seven compounds, including pseudolaric acid B, stylopine, and reticuline, which were reported for the first time in this species. The study utilized varying concentrations of TC stem extracts, specifically 6.25 to 25 µg/mL for in vitro assays and 500 mg/kg for in vivo studies. Our findings also revealed that both ETCE and ATCE exhibit dose-dependent reduction in reactive oxygen species (41% to 52%) and nitric oxide (NO) levels (50% and 72%), with ETCE displaying superior antioxidative efficacy and marked anti-inflammatory properties, significantly reducing TNF-α and IL-6 at concentrations above 12.5 µg/mL. In the MIA-induced OA rat model, ETCE treatment notably outperformed ATCE, markedly lowering TNF-α (1.9 pg/mL) and IL-1ß (37.5 pg/mL) levels and effectively inhibiting MMP 13 and MMP 3 enzymes. Furthermore, macroscopic and histopathological assessments, including ICRS scoring and OARSI grading, indicate that TC stem extracts reduce articular damage and proteoglycan loss in rat knee cartilage. These results suggest that TC stem extracts may play a role in preventing cartilage degradation and potentially alleviating inflammation and pain associated with OA, though further studies are needed to confirm these effects. CONCLUSION: This study highlights the potential of TC stem extracts as a novel, chondroprotective therapeutic avenue for OA management. By targeting oxidative stress, pro-inflammatory cytokines, and cartilage-degrading enzymes, TC stem extracts promise to prevent cartilage degradation and alleviate inflammation and pain associated with OA.

17.
J Pharmacol Exp Ther ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858092

ABSTRACT

Interleukin (IL)-33 has been shown to centrally regulate, among other processes, inflammation and fibrosis. Both intracellular full-length (FLIL33) precursor and extracellular mature cytokine (MIL33) forms exert such regulation, albeit differentially. Drug development efforts to target the IL-33 pathway have focused mostly on MIL33 and its specific cell-surface receptor, ST2, with limited attempts to negotiate the pathophysiological contributions from FLIL33. Furthermore, even a successful strategy for targeting MIL33 effects would arguably benefit from a simultaneous attenuation of the levels of FLIL33, which remains the continuous source of MIL33 supply. We therefore sought to develop an approach to depleting FLIL33 protein levels. We previously reported that the steady-state levels of FLIL33 are controlled in part through its proteasomal degradation and that such regulation can be mapped to a segment in the N-terminal portion of FLIL33. We hypothesized that disruption of this regulation would lead to a decrease in FLIL33 levels, thus inducing a beneficial therapeutic effect in an IL-33-dependent pathology. To test this hypothesis, we designed and tested cell-permeable decoy peptides (CPDPs) which mimic the target N-terminal FLIL33 region. We argued that such mimic peptides would compete with FLIL33 for the components of the native FLIL33 production and maintenance molecular machinery. Administered in the therapeutic regimen to bleomycin-challenged mice, the tested CPDPs alleviated the overall severity of the disease by restoring body weight loss and attenuating accumulation of collagen in the lungs. This proof-of-principle study lays the foundation for future work towards the development of this prospective therapeutic approach. Significance Statement An antifibrotic therapeutic approach is proposed and preclinically tested in mice in vivo based on targeting the full-length IL-33 precursor protein. Peptide fusion constructs consisted of a cell-permeable sequence fused with a sequence mimicking an N-terminal segment of IL-33 precursor that is responsible for this protein's stability. Systemic administration of such peptides to mice in either the acute intratracheal or chronic systemic bleomycin challenge models leads to a decrease in the bleomycin-induced elevations of pulmonary IL-33 and collagen.

18.
Vet Res ; 55(1): 73, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849962

ABSTRACT

African swine fever virus (ASFV) causes a devastating disease affecting domestic and wild pigs. ASF was first introduced in Sardinia in 1978 and until 2019 only genotype I isolates were identified. A remarkable genetic stability of Sardinian ASFV isolates was described, nevertheless in 2019 two wild boar isolates with a sustained genomic deletion (4342 base pairs) were identified (7303WB/19, 7212WB/19). In this study, we therefore performed in vitro experiments with monocyte-derived macrophages (moMФ) to unravel the phenotypic characteristics of these deleted viruses. Both 7303WB/19 and 7212WB/19 presented a lower growth kinetic in moMФ compared to virulent Sardinian 26544/OG10, using either a high (1) or a low (0.01) multiplicity of infection (MOI). In addition, flow cytometric analysis showed that both 7303WB/19 and 7212WB/19 presented lower intracellular levels of both early and late ASFV proteins. We subsequently investigated whether deleted virus variants were previously circulating in wild boars in Sardinia. In the four years preceding the last genotype I isolation (February 2015-January 2019), other eight wild boar isolates were collected, all belonging to p72 genotype I, B602L subgroup X, but none of them presented a sustained genomic deletion. Overall, we observed the deleted virus isolates in Sardinia only in 2019, at the end of a strong eradication campaign, and our data suggest that it might possess an attenuated phenotype in vivo. A better understanding of ASFV evolution in endemic territories might contribute to development of effective control measures against ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Genotype , Sus scrofa , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/physiology , Swine , Italy , African Swine Fever/virology , Genome, Viral , Phenotype , Sequence Deletion , Macrophages/virology
19.
Gene ; : 148649, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852697

ABSTRACT

During the birch pollen season an enhanced incidence of virus infections is noticed, raising the question whether pollen can affect anti-viral responses independent of allergic reactions. Indeed, we previously showed that birch pollen-treatment of monocyte-derived dendritic cells (moDC) enhances human cytomegalovirus (HCMV) infection. Here we addressed how in moDC the relatively weak pollen response can affect the comparably strong response to HCMV. To this end, moDC were stimulated with aqueous birch pollen extract (APE), HCMV, and APE + HCMV, and transcriptomic signatures were determined after 6 and 24 h of incubation. Infection was monitored upon exposure of moDC to GFP expressing HCMV by flow cytometric analysis of GFP expressing cells. Principle component analysis of RNA sequencing data revealed close clustering of mock and APE treated moDC, whereas HCMV as well as APE + HCMV treated moDC clustered separately after 6 and 24 h of incubation, respectively. Communally induced genes were detected in APE, HCMV and APE + HCMV treated moDC. In APE + HCMV treated moDC, the comparably weak APE induced signatures were maintained after HCMV exposure. In particular, NF-κB/RELA and PI3K/AKT/MAPK signaling were altered upon APE + HCMV exposure. Earlier, we discovered that NF-κB inhibition alleviated APE induced enhancement of HCMV infection. Here we additionally found that impairment of PI3K signaling reduced HCMV infection in HCMV and APE + HCMV treated moDC. APE treated moDC that were exposed to HCMV show a unique host gene signature, which to a large extent is regulated by NF-κB activation and PI3K/AKT/MAPK signaling.

20.
Exp Neurol ; : 114847, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852834

ABSTRACT

Impaired sensorimotor functions are prominent complications of spinal cord injury (SCI). A clinically important but less obvious consequence is development of metabolic syndrome (MetS), including increased adiposity, hyperglycemia/insulin resistance, and hyperlipidemia. MetS predisposes SCI individuals to earlier and more severe diabetes and cardiovascular disease compared to the general population, which trigger life-threatening complications (e.g., stroke, myocardial infarcts). Although each comorbidity is known to be a risk factor for diabetes and other health problems in obese individuals, their relative contribution or perceived importance in propagating systemic pathology after SCI has received less attention. This could be explained by an incomplete understanding of MetS promoted by SCI compared with that from the canonical trigger diet-induced obesity (DIO). Thus, here we compared metabolic-related outcomes after SCI in lean rats to those of uninjured rats with DIO. Surprisingly, SCI-induced MetS features were equal to or greater than those in obese uninjured rats, including insulin resistance, endotoxemia, hyperlipidemia, liver inflammation and steatosis. Considering the endemic nature of obesity, we also evaluated the effect of premorbid obesity in rats receiving SCI; the combination of DIO + SCI exacerbated MetS and liver pathology compared to either alone, suggesting that obese individuals that sustain a SCI are especially vulnerable to metabolic dysfunction. Notably, premorbid obesity also exacerbated intraspinal lesion pathology and worsened locomotor recovery after SCI. Overall, these results highlight that normal metabolic function requires intact spinal circuitry and that SCI is not just a sensory-motor disorder, but also has significant metabolic consequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...