Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 570
Filter
1.
Adv Sci (Weinh) ; : e2403158, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953329

ABSTRACT

In situ cancer vaccination is an attractive strategy that stimulates protective antitumor immunity. Cytotoxic T lymphocytes (CTLs) are major mediators of the adaptive immune defenses, with critical roles in antitumor immune response and establishing immune memory, and are consequently extremely important for in situ vaccines to generate systemic and lasting antitumor efficacy. However, the dense extracellular matrix and hypoxia in solid tumors severely impede the infiltration and function of CTLs, ultimately compromising the efficacy of in situ cancer vaccines. To address this issue, a robust in situ cancer vaccine, Au@MnO2 nanoparticles (AMOPs), based on a gold nanoparticle core coated with a manganese dioxide shell is developed. The AMOPs modulated the unfavorable tumor microenvironment (TME) to restore CTLs infiltration and function and efficiently induced immunogenic cell death. The Mn2+-mediated stimulator of the interferon genes pathway can be activated to further augment the therapeutic efficacy of the AMOPs. Thus, the AMOPs vaccine successfully elicited long-lasting antitumor immunity to considerably inhibit primary, recurrent, and metastatic tumors. This study not only highlights the importance of revitalizing CTLs efficacy against solid tumors but also makes progress toward overcoming TME barriers for sustained antitumor immunity.

2.
Immune Netw ; 24(3): e19, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974213

ABSTRACT

The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

3.
Esophagus ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990441

ABSTRACT

BACKGROUND: S-588410, a cancer peptide vaccine (CPV), comprises five HLA-A*24:02-restricted peptides from five cancer-testis antigens. In a phase 2 study, S-588410 was well-tolerated and exhibited antitumor efficacy in patients with urothelial cancer. Therefore, we aimed to evaluate the efficacy, immune response, and safety of S-588410 in patients with completely resected esophageal squamous cell carcinoma (ESCC). METHODS: This phase 3 study involved patients with HLA-A*24:02-positive and lymph node metastasis-positive ESCC who received neoadjuvant therapy followed by curative resection. After randomization, patients were administered S-588410 and placebo (both emulsified with Montanide™ ISA 51VG) subcutaneously. The primary endpoint was relapse-free survival (RFS). The secondary endpoints were overall survival (OS), cytotoxic T-lymphocyte (CTL) induction, and safety. Statistical significance was tested using the one-sided weighted log-rank test with the Fleming-Harrington class of weights. RESULTS: A total of 276 patients were randomized (N = 138/group). The median RFS was 84.3 and 84.1 weeks in the S-588410 and placebo groups, respectively (P = 0.8156), whereas the median OS was 236.3 weeks and not reached, respectively (P = 0.6533). CTL induction was observed in 132/134 (98.5%) patients who received S-588410 within 12 weeks. Injection site reactions (137/140 patients [97.9%]) were the most frequent treatment-emergent adverse events in the S-588410 group. Prolonged survival was observed in S-588410-treated patients with upper thoracic ESCC, grade 3 injection-site reactions, or high CTL intensity. CONCLUSIONS: S-588410 induced immune response and had acceptable safety but failed to reach the primary endpoint. A high CTL induction rate and intensity may be critical for prolonging survival during future CPV development.

4.
Cancer Genomics Proteomics ; 21(4): 414-420, 2024.
Article in English | MEDLINE | ID: mdl-38944423

ABSTRACT

BACKGROUND/AIM: Clear cell carcinoma is a prevalent histological type of ovarian cancer in East Asia, particularly in Japan, known for its resistance to chemotherapeutic agents and poor prognosis. ARID1A gene mutations, commonly found in ovarian clear cell carcinoma (OCCC), contribute to its pathogenesis. Recent data revealed that the ARID1A mutation is related to better outcomes of cancer immunotherapy. Thus, this study aimed to investigate the immunotherapy treatment susceptibility of OCCC bearing ARID1A mutations. MATERIALS AND METHODS: Expression of ARID1A was analyzed using western blotting in ovarian cancer cell lines. OCCC cell lines JHOC-9 and RMG-V were engineered to overexpress NY-ESO-1, HLA-A*02:01, and ARID1A. Sensitivity to chemotherapy and T cell receptor-transduced T (TCR-T) cells specific for NY-ESO-1 was assessed in ARID1A-restored cells compared to ARID1A-deficient wild-type cells. RESULTS: JHOC-9 cells and RMG-V cells showed no expression of ARID1A protein. Overexpression of ARID1A in JHOC-9 and RMG-V cells did not impact sensitivity to gemcitabine. While ARID1A overexpression decreased sensitivity to cisplatin in RMG-V cells, it had no such effect in JHOC-9 cells. ARID1A overexpression reduced the reactivity of NY-ESO-1-specific TCR-T cells, as observed by the IFNγ ESLIPOT assay. CONCLUSION: Cancer immunotherapy is an effective approach to target ARID1A-deficient clear cell carcinoma of the ovary.


Subject(s)
Adenocarcinoma, Clear Cell , DNA-Binding Proteins , Ovarian Neoplasms , T-Lymphocytes, Cytotoxic , Transcription Factors , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adenocarcinoma, Clear Cell/pathology , Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Clear Cell/immunology , Adenocarcinoma, Clear Cell/metabolism , T-Lymphocytes, Cytotoxic/immunology , Cell Line, Tumor , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Membrane Proteins
5.
Ann Clin Microbiol Antimicrob ; 23(1): 56, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902832

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the characteristics of immunocyte associated with bloodstream infection (BSI) caused by Klebsiella pneumoniae (Kpn). METHODS: Patients with BSI-Kpn were included from 2015 to 2022 in our hospital. Immunocyte subpopulations of enrolled BSI-Kpn patients were tested on the same day of blood culture using multicolor flow cytometry analysis. Antibiotic susceptibility test was determined by agar dilution or broth dilution method. All included isolates were subjected to whole genome sequencing and comparative genomics analysis. Clinical and genetic data were integrated to investigate the risk factors associated with clinical outcome. RESULTS: There were 173 patients with non-duplicate BSI-Kpn, including 81 carbapenem-resistant Kpn (CRKP), 30 extended-spectrum ß-lactamases producing Kpn (ESBL-Kpn), 62 none CRKP or ESBL-Kpn (S-Kpn). Among 68 ST11-CRKP isolates, ST11-O2v1:KL64 was the most common serotypes cluster (77.9%, 53/68), followed by ST11-OL101: KL47 (13.2%, 9/68). Compared with CSKP group, subpopulations of immunocyte in patients with CRKP were significantly lower (P < 0.01). In patients with ST11-O2v1:KL64 BSI-Kpn, the level of cytotoxic T lymphocytes (CD3 + CD8 +) is the highest, while the B lymphocytes (CD3-CD19 +) was the least. In addition, the level of immunocyte in patients with Kpn co-harbored clpV-ybtQ-qacE were lower than that in patients with Kpn harbored one of clpV, ybtQ or qacE and without these three genes. Furthermore, co-existence of clpV-ybtQ-qacE was independently associated with a higher risk for 30-day mortality. CONCLUSIONS: The results demonstrate that patients with BSI-CRKP, especially for ST11-O2v1:KL64, exhibit lower leukomonocyte counts. In addition, BSI-Kpn co-harbored clpV-ybtQ-qacE is correlated to higher 30-day mortality.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/microbiology , Male , Female , Bacteremia/microbiology , Middle Aged , Aged , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Whole Genome Sequencing , Serogroup , Genomics , Adult , Aged, 80 and over , Carbapenems/pharmacology
6.
Cell Rep ; 43(6): 114289, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38833371

ABSTRACT

Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.


Subject(s)
Interferon Regulatory Factor-1 , Animals , Humans , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Immunity , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , STAT1 Transcription Factor/metabolism , Male , Female
7.
Cytotherapy ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38703155

ABSTRACT

BACKGROUND AIMS: Somatic cell therapy based on the infusion of donor-derived cytotoxic T lymphocytes (CTL) able to recognize patients' leukemia blasts (LB) is a promising approach to control leukemia relapse after allogeneic HSCT. The success of this approach strongly depends on the ex vivo generation of high-quality donor-derived anti-leukemia CTL in compliance with Good Manufacturing Practices (GMP). We previously described a procedure for generating large numbers of donor-derived anti-leukemia CTL through stimulation of CD8-enriched lymphocytes with dendritic cells (DCs) pulsed with apoptotic LB in the presence of interleukin (IL)-12, IL-7 and IL-15. Here we report that the use of IFN-DC and the addition of IFNα2b during the priming phase significantly improve the generation of an efficient anti-leukemia T cells response in vitro. METHODS: Using this approach, 20 high-risk pediatric patients given haploidentical HSCT for high-risk acute leukemia were enrolled and 51 batches of advanced therapy medical products (ATMP), anti-leukemia CTL, were produced. RESULTS: Quality controls demonstrated that all batches were sterile, free of mycoplasma and conformed to acceptable endotoxin levels. Genotype analysis confirmed the molecular identity of the ATMP based on the starting biological material used for their production. The majority of ATMP were CD3+/CD8+ cells, with a memory/terminal activated phenotype, including T-central memory populations. ATMP were viable after thawing, and most ATMP batches displayed efficient capacity to lyse patients' LB and to secrete interferon-γ and tumor necrosis factor-α. CONCLUSIONS: These results demonstrated that our protocol is highly reproducible and allows the generation of large numbers of immunologically safe and functional anti-leukemia CTL with a high level of standardization.

8.
Open Med (Wars) ; 19(1): 20240955, 2024.
Article in English | MEDLINE | ID: mdl-38799252

ABSTRACT

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by a low platelet (PLT) count and a high risk of bleeding, the clinical treatment for which still needs to be upgraded. Based on the critical role of human leukocyte antigen class II heterodimer ß5 (HLA-DRB5) in immune system, we herein investigated its effect on ITP. ITP murine models were established by the injection of guinea pig anti-mouse platelet serum (GP-APS), and the PLT of mouse peripheral blood was counted during the modeling. Quantitative real-time reverse transcription polymerase chain reaction, western blot and immunofluorescence assay was performed to quantify expressions of HLA-DRB5, major histocompatibility complex II (MHC-II) and co-stimulatory molecules (CD80, CD86). Flow cytometry was conducted to analyze the percentage of CD8+ T cells. As a result, the PLT count was decreased in mouse peripheral blood. Expressions of HLA-DRB5, MHC-II and co-stimulatory molecules, as well as the percentage of CD8+ T cells were elevated in peripheral blood of ITP mice. HLA-DRB5 knockdown mitigated ITP by increasing peripheral PLT level, downregulating expressions of MHC-II and co-stimulatory molecules and inactivating CD8+ T cells. Collectively, the downregulation of HLA-DRB5 restores the peripheral PLT count in ITP mice by reducing MHC-II-mediated antigen presentation of macrophages to inhibit the activation of CD8+ T cells.

9.
ACS Nano ; 18(20): 13226-13240, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712706

ABSTRACT

Oncogene activation and epigenome dysregulation drive tumor initiation and progression, contributing to tumor immune evasion and compromising the clinical response to immunotherapy. Epigenetic immunotherapy represents a promising paradigm in conquering cancer immunosuppression, whereas few relevant drug combination and delivery strategies emerge in the clinic. This study presents a well-designed triune nanomodulator, termed ROCA, which demonstrates robust capabilities in tumor epigenetic modulation and immune microenvironment reprogramming for cancer epigenetic immunotherapy. The nanomodulator is engineered from a nanoscale framework with epigenetic modulation and cascaded catalytic activity, which self-assembles into a nanoaggregate with tumor targeting polypeptide decoration that enables loading of the immunogenic cell death (ICD)-inducing agent. The nanomodulator releases active factors specifically triggered in the tumor microenvironment, represses oncogene expression, and initiates the type 1 T helper (TH1) cell chemokine axis by reversing DNA hypermethylation. This process, together with ICD induction, fundamentally reprograms the tumor microenvironment and significantly enhances the rejuvenation of exhausted cytotoxic T lymphocytes (CTLs, CD8+ T cells), which synergizes with the anti-PD-L1 immune checkpoint blockade and results in a boosted antitumor immune response. Furthermore, this strategy establishes long-term immune memory and effectively prevents orthotopic colon cancer relapse. Therefore, the nanomodulator holds promise as a standalone epigenetic immunotherapy agent or as part of a combination therapy with immune checkpoint inhibitors in preclinical cancer models, broadening the array of combinatorial strategies in cancer immunotherapy.


Subject(s)
Epigenesis, Genetic , Immunotherapy , T-Lymphocytes, Cytotoxic , Tumor Microenvironment , Animals , Epigenesis, Genetic/drug effects , Mice , T-Lymphocytes, Cytotoxic/immunology , Humans , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Nanoparticles/chemistry , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology
11.
Front Immunol ; 15: 1338218, 2024.
Article in English | MEDLINE | ID: mdl-38742109

ABSTRACT

Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL responses and is impaired when CTLs become exhausted, e.g. during chronic retroviral infections. A prominent T cell exhaustion marker is programmed cell death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be attributed selectively to CTLs. To overcome this problem, we performed CRISPR/Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus (FV)-specific CTLs. We transferred 1,000 of these cells into mice where they proliferated upon FV-infection. Using intravital two-photon microscopy we visualized CTL motility in the bone marrow and evaluated cytotoxic molecule expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at 14 days post infection and enhanced the expression of cytotoxicity markers. Our data show the potential of genetic tuning of naive antiviral CTLs and might be relevant for future designs of improved T cell-mediated therapies.


Subject(s)
Cell Movement , Programmed Cell Death 1 Receptor , Retroviridae Infections , T-Lymphocytes, Cytotoxic , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Cell Movement/genetics , CRISPR-Cas Systems , Cytotoxicity, Immunologic , Friend murine leukemia virus/immunology , Gene Knockout Techniques , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Retroviridae Infections/immunology , T-Lymphocytes, Cytotoxic/immunology
12.
Med Oncol ; 41(5): 107, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580762

ABSTRACT

Diospyros peregrina is a dioecious plant which is native to India. It belongs to the family of Ebenaceae and is extensively used to treat various ailments, such as leucorrhoea and other uterine-related problems. Though few studies have been on D. peregrina for their anti-tumour response, little is known. Therefore, this intrigued us to understand its immunomodulator capabilities on various types of cancer extensively. Our primary focus is on NSCLC (Non-Small Cell Lung Cancer), which is ranked as the second largest form of cancer in the world, and the treatments demand non-invasive agents to target NSCLC effectively. In an objective to generate an efficient Lung Cancer Associated Antigen (LCA) specific anti-tumour immune response, LCA was presented using dendritic cells (DCs) in the presence of D. peregrina fruit preparation (DFP). Moreover, we also investigated DFP's role in the differentiation of T-helper (TH) cells. Therefore, this study aimed at better LCA presentation mediated by DFP by activating the LCA pulsed DCs and T helper cell differentiation for better immune response. DCs were pulsed with LCA for tumour antigen presentation in vitro, with and without DFP. Differentially pulsed DCs were irradiated to co-culture with autologous and allogeneic lymphocytes. Extracellular supernatants were collected for the estimation of cytokine levels by ELISA. LDH release assay was performed to test Cytotoxic T lymphocytes (CTLs) mediated lung tumour cell cytotoxicity. Thus, DFP may be a potential vaccine to generate anti-LCA immune responses to restrict NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Diospyros , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Antigen Presentation , Fruit , Dendritic Cells , T-Lymphocytes, Cytotoxic , Cell Differentiation
13.
J Leukoc Biol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626292

ABSTRACT

Conventional treatments have shown a limited efficacy for pancreatic cancer, and immunotherapy is an emerging option for treatment of this highly fatal malignancy. Neoantigen is critical to improving the efficacy of tumor-specific immunotherapy. The cancer and peripheral blood specimens from human leukocyte antigen (HLA)-A0201 positive pancreatic cancer patient were subjected to next-generation sequencing and bioinformatics analyses were performed to screen high-affinity and highly stable neoepitopes. The activation of cytotoxic T lymphocytes (CTLs) by the mutBCL2A111-20 neoepitope targeting B-cell lymphoma 2-related protein A1 (BCL2A1) mutant epitope was investigated, and the cytotoxicity of mutBCL2A111-20 neoepitope-specific CTLs to pancreatic cancer cells was evaluated. The mutBCL2A111-20 neoepitope was found to present a high immunogenicity and induce CTLs activation and proliferation, and was cytotoxic to mutBCL2A111-20 neoepitope-loaded T2 cells and pancreatic cancer PANC-1-Neo and A2-BxPC-3-Neo cells that overexpressed mutBCL2A111-20 neoepitopes, appearing a targeting neoepitope specificity. In addition, high BCL2A1 expression correlated with a low 5-year progress free interval (PFI) among pancreatic cancer patients. Our findings provide experimental supports to individualized T-cell therapy targeting mutBCL2A111-20 neoepitopes, and provide an option of immunotherapy for pancreatic cancer.

14.
Anticancer Res ; 44(5): 1877-1883, 2024 May.
Article in English | MEDLINE | ID: mdl-38677758

ABSTRACT

BACKGROUND/AIM: Human gastric cancer stem-like cells (CSCs)/cancer-initiating cells can be identified as aldehyde dehydrogenase-high (ALDHhigh) cells. Cancer immunotherapy employing immune checkpoint blockade has been approved for advanced gastric cancer cases. However, the effectiveness of cancer immunotherapy against gastric CSCs/CICs remains unclear. This study aimed to investigate the susceptibility of gastric CSCs/CICs to immunotherapy. MATERIALS AND METHODS: Gastric CSCs/CICs were isolated as ALDHhigh cells using the human gastric cancer cell line, MKN-45. ALDHhigh clone cells and ALDHlow clone cells were isolated using the ALDEFLUOR assay. ALDH1A1 expression was assessed via qRT-PCR. Sphere-forming ability was evaluated to confirm the presence of CSCs/CICs. A model neoantigen, AP2S1, was over-expressed in ALDHhigh clone cells and ALDHlow clone cells, and susceptibility to AP2S1-specific TCR-T cells was assessed using IFNγ ELISPOT assay. RESULTS: Three ALDHhigh clone cells were isolated from MKN-45 cells. ALDHhigh clone cells exhibited a stable phenotype in in vitro culture for more than 2 months. The High-36 clone cells demonstrated the highest sphere-forming ability, whereas the Low-8 cells showed the lowest sphere-forming ability. High-36 cells exhibited lower expression of HLA-A24 compared to Low-8 cells. TCR-T cells specific for AP2S1 showed lower reactivity to High-36 cells compared to Low-8 cells. CONCLUSION: High-36 cells and Low-8 cells represent novel gastric CSCs/CICs and non-CSCs/CICs, respectively. ALDHhigh CSCs/CICs evade T cells due to lower expression of HLA class 1.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Neoplastic Stem Cells , Stomach Neoplasms , T-Lymphocytes, Cytotoxic , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Cell Line, Tumor , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Retinal Dehydrogenase/metabolism , Tumor Escape/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology
15.
FEBS Lett ; 598(11): 1354-1365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594179

ABSTRACT

Chronic infection with the hepatitis B virus (HBV) induces progressive hepatic impairment. Achieving complete eradication of the virus remains a formidable challenge. Cytotoxic T lymphocytes, specific to viral antigens, either exhibit a numerical deficiency or succumb to an exhausted state in individuals chronically afflicted with HBV. The comprehension of the genesis and dissemination of stem cell memory T cells (TSCMs) targeting HBV remains inadequately elucidated. We identified TSCMs in subjects with chronic HBV infection and scrutinized their efficacy in a murine model with human hepatocyte transplants, specifically the TK-NOG mice. TSCMs were discerned in all subjects under examination. Introduction of TSCMs into the HBV mouse model precipitated a severe necro-inflammatory response, resulting in the elimination of human hepatocytes. TSCMs may constitute a valuable tool in the pursuit of a remedial therapy for HBV infection.


Subject(s)
Cell Differentiation , Hepatitis B virus , Hepatocytes , Memory T Cells , T-Lymphocytes, Cytotoxic , Animals , Humans , Hepatocytes/virology , Hepatocytes/immunology , Hepatocytes/transplantation , Hepatitis B virus/immunology , Hepatitis B virus/physiology , T-Lymphocytes, Cytotoxic/immunology , Mice , Cell Differentiation/immunology , Memory T Cells/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Male , Female , Disease Models, Animal , Stem Cells/virology , Stem Cells/immunology , Stem Cells/cytology , Adult
16.
Adv Exp Med Biol ; 1444: 207-217, 2024.
Article in English | MEDLINE | ID: mdl-38467982

ABSTRACT

In the field of cancer immunotherapy, the effectiveness of a method in which patient-derived T cells are genetically modified ex vivo and administered to patients has been demonstrated. However, problems remain with this method, such as (1) time-consuming, (2) costly, and (3) difficult to guarantee the quality. To overcome these barriers, strategies to regenerate T cells using iPSC technology are being pursued by several groups in the last decade. The authors have been developing a method by which specific TCR genes are introduced into iPSCs and T cells are generated from those iPSCs (TCR-iPSC method). At present, our group is preparing this approach for clinical trial, where iPSCs provided from the iPSC project are transduced with WT1 antigen-specific TCR that had been already clinically tested, and killer T cells are generated from such TCR-iPSCs, to be administered to acute myeloid leukemia patients. While the adoptive T cell therapies have been mainly directed to be used in cancer immunotherapy, it is possible to apply these approaches to viral infections. Strategies by other groups to regenerate various types of T cells from iPSCs will also be introduced.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Humans , T-Lymphocytes, Cytotoxic , Leukemia, Myeloid, Acute/metabolism , Receptors, Antigen, T-Cell , Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive
17.
Vet Immunol Immunopathol ; 271: 110741, 2024 May.
Article in English | MEDLINE | ID: mdl-38520894

ABSTRACT

Tumor-infiltrating lymphocyte (TIL) density plays an important role in anti-tumor immunity and is associated with patient outcome in various human and canine malignancies. As a first assessment of the immune landscape of the tumor microenvironment in canine renal cell carcinoma (RCC), we retrospectively analyzed clinical data and quantified CD3, FoxP3, and granzyme B immunostaining in formalin-fixed paraffin-embedded tumor samples from 16 dogs diagnosed with renal cell carcinoma treated with ureteronephrectomy. Cell density was low for all markers evaluated. Increased numbers of intratumoral FoxP3 labelled (+) cells, as well as decreased granzyme B+: FoxP3+ TIL ratio, were associated with poor patient outcomes. Our initial study of canine RCC reveals that these tumors are immunologically cold and Tregs may play an important role in immune evasion.


Subject(s)
CD3 Complex , Carcinoma, Renal Cell , Dog Diseases , Forkhead Transcription Factors , Granzymes , Kidney Neoplasms , Lymphocytes, Tumor-Infiltrating , Animals , Dogs , Carcinoma, Renal Cell/veterinary , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/enzymology , CD3 Complex/analysis , CD3 Complex/metabolism , Dog Diseases/immunology , Dog Diseases/enzymology , Forkhead Transcription Factors/analysis , Forkhead Transcription Factors/metabolism , Granzymes/metabolism , Granzymes/analysis , Immunohistochemistry/veterinary , Kidney Neoplasms/veterinary , Kidney Neoplasms/immunology , Kidney Neoplasms/enzymology , Lymphocytes, Tumor-Infiltrating/immunology , Retrospective Studies
18.
Mol Cancer ; 23(1): 58, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38515134

ABSTRACT

Cytotoxic T lymphocytes (CTLs) play critical antitumor roles, encompassing diverse subsets including CD4+, NK, and γδ T cells beyond conventional CD8+ CTLs. However, definitive CTLs biomarkers remain elusive, as cytotoxicity-molecule expression does not necessarily confer cytotoxic capacity. CTLs differentiation involves transcriptional regulation by factors such as T-bet and Blimp-1, although epigenetic regulation of CTLs is less clear. CTLs promote tumor killing through cytotoxic granules and death receptor pathways, but may also stimulate tumorigenesis in some contexts. Given that CTLs cytotoxicity varies across tumors, enhancing this function is critical. This review summarizes current knowledge on CTLs subsets, biomarkers, differentiation mechanisms, cancer-related functions, and strategies for improving cytotoxicity. Key outstanding questions include refining the CTLs definition, characterizing subtype diversity, elucidating differentiation and senescence pathways, delineating CTL-microbe relationships, and enabling multi-omics profiling. A more comprehensive understanding of CTLs biology will facilitate optimization of their immunotherapy applications. Overall, this review synthesizes the heterogeneity, regulation, functional roles, and enhancement strategies of CTLs in antitumor immunity, highlighting gaps in our knowledge of subtype diversity, definitive biomarkers, epigenetic control, microbial interactions, and multi-omics characterization. Addressing these questions will refine our understanding of CTLs immunology to better leverage cytotoxic functions against cancer.


Subject(s)
Neoplasms , T-Lymphocytes, Cytotoxic , Humans , Epigenesis, Genetic , Neoplasms/metabolism , Immunotherapy , Biomarkers/metabolism
19.
Cell Rep ; 43(2): 113767, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38354085

ABSTRACT

CD4+ cytotoxic T lymphocytes (CD4+ CTLs) are suggested to play a crucial role in inflammatory diseases, including cancer, but their characteristics in human non-small cell lung cancer (NSCLC) remain unknown. Here, using the cell surface marker CD11b, we identify CD11b+CD4+ CTLs as a cytotoxic subset of CD4+ T cells in multiple tissues of NSCLC patients. In addition, tumor-infiltrating CD11b+CD4+ CTLs show a dysfunctional phenotype with elevated expression of CD200 receptor (CD200R), a negatively immunomodulatory receptor. CD4+ regulatory T (Treg) cells restrain the anti-tumor role of CD11b+CD4+ CTLs via CD200. Mechanistically, inflammatory dendritic cells promote the CD200R expression of CD11b+CD4+ CTLs by secreting interleukin-1ß (IL-1ß). Finally, we demonstrate that CD200 blockade can revive the tumor-killing role of CD11b+CD4+ CTLs and prolong the survival of tumor-bearing mice. Taken together, our study identifies CD11b+CD4+ CTLs in NSCLC with decreased cytotoxicity that can be reinvigorated by CD200 blockade, suggesting that targeting CD200 is a promising immunotherapy strategy in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Dendritic Cells , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Regulatory
20.
Trends Cancer ; 10(5): 407-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38368244

ABSTRACT

Ferroptosis is a variant of regulated cell death (RCD) elicited by an imbalance of cellular redox homeostasis that culminates with extensive lipid peroxidation and rapid plasma membrane breakdown. Since other necrotic forms of RCD, such as necroptosis, are highly immunogenic, ferroptosis inducers have attracted considerable attention as potential tools to selectively kill malignant cells while eliciting therapeutically relevant tumor-targeting immune responses. However, rather than being consistently immunogenic, ferroptosis mediates context-dependent effects on anticancer immunity. The inability of ferroptotic cancer cells to elicit adaptive immune responses may arise from contextual deficiencies in intrinsic aspects of the process, such as adjuvanticity and antigenicity, or from microenvironmental defects imposed by ferroptotic cancer cells themselves or elicited by the induction of ferroptosis in immune cells.


Subject(s)
Ferroptosis , Lipid Peroxidation , Neoplasms , Tumor Microenvironment , Ferroptosis/immunology , Humans , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/immunology , Lipid Peroxidation/immunology , Animals , Adaptive Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...