Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
J Immunother Cancer ; 12(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658031

ABSTRACT

BACKGROUND: Tigilanol tiglate (TT) is a protein kinase C (PKC)/C1 domain activator currently being developed as an intralesional agent for the treatment of various (sub)cutaneous malignancies. Previous work has shown that intratumoral (I.T.) injection of TT causes vascular disruption with concomitant tumor ablation in several preclinical models of cancer, in addition to various (sub)cutaneous tumors presenting in the veterinary clinic. TT has completed Phase I dose escalation trials, with some patients showing signs of abscopal effects. However, the exact molecular details underpinning its mechanism of action (MoA), together with its immunotherapeutic potential in oncology remain unclear. METHODS: A combination of microscopy, luciferase assays, immunofluorescence, immunoblotting, subcellular fractionation, intracellular ATP assays, phagocytosis assays and mixed lymphocyte reactions were used to probe the MoA of TT in vitro. In vivo studies with TT used MM649 xenograft, CT-26 and immune checkpoint inhibitor refractory B16-F10-OVA tumor bearing mice, the latter with or without anti-programmed cell death 1 (PD-1)/anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAb treatment. The effect of TT at injected and non-injected tumors was also assessed. RESULTS: Here, we show that TT induces the death of endothelial and cancer cells at therapeutically relevant concentrations via a caspase/gasdermin E-dependent pyroptopic pathway. At therapeutic doses, our data demonstrate that TT acts as a lipotoxin, binding to and promoting mitochondrial/endoplasmic reticulum (ER) dysfunction (leading to unfolded protein responsemt/ER upregulation) with subsequent ATP depletion, organelle swelling, caspase activation, gasdermin E cleavage and induction of terminal necrosis. Consistent with binding to ER membranes, we found that TT treatment promoted activation of the integrated stress response together with the release/externalization of damage-associated molecular patterns (HMGB1, ATP, calreticulin) from cancer cells in vitro and in vivo, characteristics indicative of immunogenic cell death (ICD). Confirmation of ICD in vivo was obtained through vaccination and rechallenge experiments using CT-26 colon carcinoma tumor bearing mice. Furthermore, TT also reduced tumor volume, induced immune cell infiltration, as well as improved survival in B16-F10-OVA tumor bearing mice when combined with immune checkpoint blockade. CONCLUSIONS: These data demonstrate that TT is an oncolytic small molecule with multiple targets and confirms that cell death induced by this compound has the potential to augment antitumor responses to immunotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Immunogenic Cell Death , Animals , Mice , Immunogenic Cell Death/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Female , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/therapy
2.
J Immunother Cancer ; 12(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490714

ABSTRACT

BACKGROUND: In a prior report, we detailed the isolation and engineering of a bispecific killer cell engager, referred to as BiKE:E5C1. The BiKE:E5C1 exhibits high affinity/specificity for the CD16a activating receptor on natural killer (NK) cells and human epidermal growth factor receptor 2 (HER2) on cancer cells. In vitro studies have demonstrated that BiKE:E5C1 can activate the NK cells and induce the killing of HER2+ ovarian and breast cancer cells, surpassing the performance of the best-in-class monoclonal antibody, Trazimera (trastuzumab). To advance this BiKE technology toward clinical application, the objective of this research was to demonstrate the ability of BiKE:E5C1 to activate CD16+ immune cells such as NK cells and macrophages to kill cancer cells, and eradicate metastatic HER2+ tumors in NK humanized NOG mice. METHODS: We assessed BiKE:E5C1's potential to activate CD16-expressing peripheral blood (PB)-NK cells, laNK92 cells, and THP-1-CD16A monocyte-macrophages through flowcytometry and antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC) assays. Subsequently, laNK92 cells were selected as effector cells and genetically modified to express the nanoluciferase gene, enabling the monitoring of their viability in NK humanized NOG mice using quantitative bioluminescent imaging (qBLI). To evaluate the functionality of BiKE:E5C1 in vivo, we introduced firefly luciferase-expressing ovarian cancer cells via intraperitoneal injection into hIL-15 and hIL-2 NOG mice, creating a model of ovarian cancer metastasis. Once tumor establishment was confirmed, we treated the mice with laNK92 cells plus BiKE:E5C1 and the response to therapy was assessed using qBLI. RESULTS: Our data demonstrate that BiKE:E5C1 activates not only laNK92 cells but also PB-NK cells and macrophages, significantly enhancing their anticancer activities. ADCC assay demonstrated that IgG1 Fc region had no impact on BiKE:E5C1's anticancer activity. In vivo results reveal that both hIL-15 and hIL-2 NOG mouse models support the viability and proliferation of laNK92 cells. Furthermore, it was observed that BiKE:E5C1 activates laNK92 cells in mice, leading to eradication of cancer metastasis in both NK humanized hIL-15 and hIL-2 NOG mouse models. CONCLUSIONS: Collectively, our in vivo findings underscore BiKE:E5C1's potential as an immune cell engager capable of activating immune cells for cancer cell elimination, thereby expanding the arsenal of available BiKEs for cancer immunotherapy.


Subject(s)
Killer Cells, Natural , Ovarian Neoplasms , Female , Mice , Humans , Animals , Antibody-Dependent Cell Cytotoxicity , Trastuzumab , Macrophages , Ovarian Neoplasms/metabolism
3.
J Immunother Cancer ; 12(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38485187

ABSTRACT

BACKGROUND: Sperm acrosomal SLLP1 binding (SAS1B) protein is found in oocytes, which is necessary for sperm-oocyte interaction, and also in uterine and pancreatic cancers. Anti-SAS1B antibody-drug conjugates (ADCs) arrested growth in these cancers. However, SAS1B expression in cancers and normal tissues has not been characterized. We hypothesized that SAS1B is expressed on the surface of other common solid cancer cells, but not on normal tissue cells, and might be selectively targeted therapeutically. METHODS: SAS1B expression in human normal and cancer tissues was determined by immunohistochemistry, and complementary DNA (cDNA) libraries were employed to PCR amplify human SAS1B and its transcripts. Monoclonal antibodies (mAbs) to human SAS1B were generated using mouse hybridomas. SAS1B deletion constructs were developed to map SAS1B's epitope, enabling the creation of a blocking peptide. Indirect immunofluorescence (IIF) of human transfected normal and cancer cells was performed to assess SAS1B expression. SAS1B intracellular versus surface expression in normal and tumor tissues was evaluated by flow cytometry after staining with anti-SAS1B mAb, with specificity confirmed with the blocking peptide. Human cancer lines were treated with increasing mAb and ADC concentrations. ATP was quantitated as a measure of cell viability. RESULTS: SAS1B expression was identified in a subset of human cancers and the cytoplasm of pancreatic islet cells. Two new SAS1B splice variants were deduced. Monoclonal antibodies were generated to SAS1B splice variant A. The epitope for mAbs SB2 and SB5 is between SAS1B amino acids 32-39. IIF demonstrated intracellular SAS1B expression in transfected kidney cells and on the cell surface of squamous cell lung carcinoma. Flow cytometry demonstrated intracellular SAS1B expression in all tumors and some normal cells. However, surface expression of SAS1B was identified only on cancer cells. SB2 ADC mediated dose-dependent cytotoxic killing of multiple human cancer lines. CONCLUSION: SAS1B is a novel cancer-oocyte antigen with cell surface expression restricted to cancer cells. In vitro, it is an effective target for antibody-mediated cancer cell lysis. These findings support further exploration of SAS1B as a potential therapeutic cancer target in multiple human cancers, either with ADC or as a chimeric antigen receptor-T (CAR-T) cell target.


Subject(s)
Immunoconjugates , Neoplasms , Male , Humans , Mice , Animals , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Semen , Oocytes/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Epitopes , Peptides/metabolism
4.
J Immunother Cancer ; 12(2)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38388168

ABSTRACT

BACKGROUND: Bispecific T-cell engagers (BTEs) are novel agents used to treat hematological malignancies. Early trials were underpowered to define cardiovascular adverse events (CVAE) and no large-scale studies systematically examined the CVAEs associated with BTEs. METHODS: Leveraging the US Food and Drug Administration's Adverse Event Reporting System-(FAERS), we identified the relative frequency of CVAEs after initiation of five BTE products approved by the Food and Drug Administration between 2014 and 2023 for the treatment of hematological malignancies. Adjusted reporting ORs (aROR) were used to identify disproportionate reporting of CVAEs with BTEs compared with background rates in the database. Fatality rates and risk ratios (RRs) for each adverse event (AE) were calculated. RESULTS: From 3668 BTE-related cases reported to FAERS, 747 (20.4%) involved CVAEs. BTEs as a class were associated with fatal CVAEs (aROR 1.29 (95% CI 1.12 to 1.50)), an association mainly driven by teclistamab (aROR 2.44 (95% CI 1.65 to 3.60)). Teclistamab was also associated with a disproportionate risk of myocarditis (aROR 25.70 (95% CI 9.54 to 69.23)) and shock (aROR 3.63 (95% CI 2.30 to 5.74)), whereas blinatumomab was associated with a disproportionate risk of disseminated intravascular coagulation (aROR 3.02 (95% CI 1.98 to 4.60)) and hypotension (aROR 1.59 (95% CI 1.25 to 2.03)). CVAEs were more fatal compared with non-CVAEs (31.1% vs 17.4%; RR 1.76 (95% CI 1.54 to 2.03)). Most CVAEs (83.3%) did not overlap with cytokine release syndrome. CONCLUSION: In the first postmarketing surveillance study of BTEs, CVAEs were involved in approximately one in five AE reports and carried a significant mortality risk.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Humans
5.
J Immunother Cancer ; 11(12)2023 12 06.
Article in English | MEDLINE | ID: mdl-38056892

ABSTRACT

BACKGROUND: Adoptive cell therapy (ACT) is a promising strategy for treating cancer, yet it faces several challenges such as lack of long-term protection due to T cell exhaustion induced by chronic TCR stimulation in the tumor microenvironment. One benefit of ACT, however, is that it allows for cellular manipulations, such as deletion of the phosphotyrosine phosphatase non-receptor type 22 (PTPN22), which improves CD8+ T cell antitumor efficacy in ACT. We tested whether Ptpn22KO cytolytic T cells (CTLs) were also more effective than Ptpn22WT CTL in controlling tumors in scenarios that favor T cell exhaustion. METHODS: Tumor control by Ptpn22WT and Ptpn22KO CTL was assessed following adoptive transfer of low numbers of CTL to mice with subcutaneously implanted MC38 tumors. Tumor infiltrating lymphocytes were isolated for analysis of effector functions. An in vitro assay was established to compare CTL function in response to acute and chronic restimulation with antigen-pulsed tumor cells. The expression of effector and exhaustion-associated proteins by Ptpn22WT and Ptpn22KO T cells was followed over time in vitro and in vivo using the ID8 tumor model. Finally, the effect of PD-1 and TIM-3 blockade on Ptpn22KO CTL tumor control was assessed using monoclonal antibodies and CRISPR/Cas9-mediated knockout. RESULTS: Despite having improved effector function at the time of transfer, Ptpn22KO CTL became more exhausted than Ptpn22WT CTL, characterized by more rapid loss of effector functions, and earlier and higher expression of inhibitory receptors (IRs), particularly the terminal exhaustion marker TIM-3. TIM-3 expression, under the control of the transcription factor NFIL3, was induced by IL-2 signaling which was enhanced in Ptpn22KO cells. Antitumor responses of Ptpn22KO CTL were improved following PD-1 blockade in vivo, yet knockout or antibody-mediated blockade of TIM-3 did not improve but further impaired tumor control, indicating TIM-3 signaling itself did not drive the diminished function seen in Ptpn22KO CTL. CONCLUSIONS: This study questions whether TIM-3 plays a role as an IR and highlights that genetic manipulation of T cells for ACT needs to balance short-term augmented effector function against the risk of T cell exhaustion in order to achieve longer-term protection.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Neoplasms , Mice , Animals , Programmed Cell Death 1 Receptor , T-Cell Exhaustion , Protein Tyrosine Phosphatases , Cell- and Tissue-Based Therapy , Tumor Microenvironment
6.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37848261

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a type of leukemia in adults with a high mortality rate and poor prognosis. Although targeted therapeutics, chemotherapy, and hematopoietic stem cell transplantation can improve the prognosis, the recurrence rate is still high, with a 5-year survival rate of approximately 40%. This study aimed to develop an IgG-based asymmetric bispecific antibody that targets CLL-1 and CD3 for treating AML. METHODS: ABL602 candidates were compared in terms of binding activity, T-cell activation, and tumor-killing activities. ABL602-mediated T-cell activation and tumor-killing activities were determined by measuring the expression of activation markers, cytokines, cytolytic proteins, and the proportion of dead cells. We evaluated in vivo tumor growth inhibitory activity in two mouse models bearing subcutaneously and orthotopically engrafted human AML. Direct tumor-killing activity and T-cell activation in patient-derived AML blasts were also evaluated. RESULTS: ABL602 2+1 showed a limited CD3 binding in the absence of CLL-1, suggesting that steric hindrance on the CD3 binding arm could reduce CLL-1 expression-independent CD3 binding. Although the CD3 binding activity was attenuated compared with that of 1+1, ABL602 2+1 exhibited much stronger T-cell activation and potent tumor-killing activities in AML cell lines. ABL602 2+1 efficiently inhibited tumor progression in subcutaneously and orthotopically engrafted AML mouse models. In the orthotopic mouse model, tumor growth inhibition was observed by gross measurement of luciferase activity, as well as a reduced proportion of AML blasts in the bone marrow, as determined by flow cytometry and immunohistochemistry (IHC) staining. ABL602 2+1 efficiently activated T cells and induced the lysis of AML blasts, even at very low effector:target (E:T) ratios (eg, 1:50). Compared with the reference 1+1 antibody, ABL602 did not induce the release of cytokines including interleukin-6 and tumor necrosis factor-α in the healthy donor-derived peripheral blood mononuclear cell. CONCLUSIONS: With its potent tumor-killing activity and reduced cytokine release, ABL602 2+1 is a promising candidate for treating patients with AML and warrants further study.


Subject(s)
Antibodies, Bispecific , Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Myeloid, Acute , Mice , Adult , Animals , Humans , Cytokines/metabolism , Leukocytes, Mononuclear , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use
7.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37648261

ABSTRACT

BACKGROUND: Brexucabtagene autoleucel (brexu-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved in the USA for adults with relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL) and in the European Union for patients ≥26 years with R/R B-ALL. After 2 years of follow-up in ZUMA-3, the overall complete remission (CR) rate (CR+CR with incomplete hematological recovery (CRi)) was 73%, and the median overall survival (OS) was 25.4 months in 78 Phase 1 and 2 patients with R/R B-ALL who received the pivotal dose of brexu-cel. Outcomes by prior therapies and subsequent allogeneic stem cell transplantation (alloSCT) are reported. METHODS: Eligible adults had R/R B-ALL and received one infusion of brexu-cel (1×106 CAR T cells/kg) following conditioning chemotherapy. The primary endpoint was the CR/CRi rate per central review. Post hoc subgroup analyses were exploratory with descriptive statistics provided. RESULTS: Phase 1 and 2 patients (N=78) were included with median follow-up of 29.7 months (range, 20.7-58.3). High CR/CRi rates were observed across all prior therapy subgroups examined: 1 prior line of therapy (87%, n=15) and ≥2 prior lines (70%, n=63); prior blinatumomab (63%, n=38) and no prior blinatumomab (83%, n=40); prior inotuzumab (59%, n=17) and no prior inotuzumab (77%, n=61); and prior alloSCT (76%, n=29) and no prior alloSCT (71%, n=49). The frequency of Grade ≥3 cytokine release syndrome, neurological events, and treatment-related Grade 5 adverse events were largely similar among prior therapy subgroups.Median duration of remission (DOR) in responders with (n=14) and without (n=43) subsequent alloSCT was 44.2 (95% CI, 8.1 to not estimable (NE)) and 18.6 months (95% CI, 9.4 to NE); median OS was 47.0 months (95% CI, 10.2 to NE) and not reached (95% CI, 23.2 to NE), respectively. Median DOR and OS were not reached in responders without prior or subsequent alloSCT (n=22). CONCLUSIONS: In ZUMA-3, adults with R/R B-ALL benefited from brexu-cel, regardless of prior therapies and subsequent alloSCT status, though survival appeared better in patients without certain prior therapies and in earlier lines of therapy. Additional studies are needed to determine the impact prior therapies and subsequent alloSCT have on outcomes of patients who receive brexu-cel.


Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Adult , Immunotherapy, Adoptive , Adaptor Proteins, Signal Transducing , Antigens, CD19 , Cytokine Release Syndrome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
8.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37586770

ABSTRACT

BACKGROUND: Despite significant progress in the development of T cell-engaging therapies for various B-cell malignancies, a high medical need remains for the refractory disease setting, often characterized by suboptimal target levels. METHODS: To address this issue, we have developed a 65-kDa multispecific antibody construct, CLN-978, with affinities tuned to optimize the killing of low-CD19 expressing tumor cells. CLN-978 bound to CD19 on B cells with picomolar affinity, and to CD3ε on T cells with nanomolar affinity. A serum albumin binding domain was incorporated to extend serum half-life. In this setting, we biophysically characterize and report the activities of CLN-978 in cell co-culture assays, multiple mouse models and non-human primates. RESULTS: Human T cells redirected by CLN-978 could eliminate target cells expressing less than 300 copies of CD19 on their surface. The half-life extension and high affinity for CD19 led to significant antitumor activity in murine lymphoma models at very low doses of CLN-978. In primates, we observed a long serum half-life, deep and sustained depletion of normal B cells, and remarkable tolerability, in particular, reduced cytokine release when CLN-978 was administered subcutaneously. CONCLUSIONS: CLN-978 warrants further exploration. An ongoing clinical phase 1 trial is investigating safety, pharmacokinetics, pharmacodynamics, and the initial therapeutic potential of subcutaneously administered CLN-978 in patients with non-Hodgkin's lymphoma.


Subject(s)
Lymphoma, Non-Hodgkin , Neoplasms , Humans , Animals , Mice , Half-Life , Adaptor Proteins, Signal Transducing , Antibodies , Antigens, CD19
9.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37607769

ABSTRACT

BACKGROUND: Multiple myeloma (MM) cancers originate from plasma cells that have passed through the germinal center reaction where somatic hypermutation of Ig V regions takes place. Myeloma protein V regions often express many mutations and are thus a rich source of neoantigens (traditionally called idiotopes (Id)). Therefore, these are highly tumor-specific and excellent targets for immunotherapy. METHODS: We have developed a DNA Id vaccine which as translated protein targets conventional dendritic cells (cDC) for CCL3-mediated delivery of myeloma protein V regions in a single-chain fragment variable (scFv) format. Vaccine efficacy was studied in the mouse MM model, mineral oil-induced plasmacytoma 315.BM. RESULTS: The Id vaccine protected mice against a challenge with MM cells. Moreover, the vaccine had a therapeutic effect. However, in some of the vaccinated mice, MM cells not producing H chains escaped rejection, resulting in free light chain (FLC) MM. Depletion of CD8+ T cells abrogated vaccine efficacy, and protection was observed to be dependent on cDC1s, using Batf3-/- mice. Modifications of scFv in the vaccine demonstrated that CD8+ T cells were specific for two mutated VH sequences. CONCLUSIONS: VH neoantigen-specific CD8+ T cells elicited by CCL3-containing Id vaccines had a therapeutic effect against MM in a mouse model. MM cells could escape rejection by losing expression of the H chain, thus giving rise to FLC MM.


Subject(s)
Multiple Myeloma , Vaccines, DNA , Animals , Mice , Multiple Myeloma/therapy , CD8-Positive T-Lymphocytes , Immunotherapy , Dendritic Cells
10.
J Immunother Cancer ; 11(7)2023 07.
Article in English | MEDLINE | ID: mdl-37500182

ABSTRACT

BACKGROUND: There has been no prospective trial for treatment of immune-related pneumonitis (irP) occurred after immune checkpoint inhibitors (ICIs). METHODS: In this single-arm phase II study, patients with cancer with grade ≥2 irP received oral prednisolone (1 mg/kg/day), tapered over 6 weeks. The primary endpoint was a pneumonitis control rate at 6 weeks from the start of the study treatment, defined as complete disappearance or partial improvement of irP in high-resolution CT of the chest. RESULTS: Among 57 patients enrolled, 56 were included in the final analysis. The most frequent cause of irP was single ICI therapy (51.8%), followed by combination with chemotherapy plus ICI (39.3%). Thirty-five (62.5%) patients had grade 2 irP and 21 (37.5%) had grade ≥3. Fifty-one (91.1%) patients completed the study treatment while 5 discontinued the study treatment because of relapse of irP (n=1), death from cancer (n=1), occurrence of immune-related hepatitis (n=1), extension of the treatment duration more than 6 weeks (n=1), and attending physician's decision (n=1). Six weeks after the start of the study treatment, 16 (28.5%) patients demonstrated complete recovery from irP, 35 (62.5%) had a partial improvement in irP, 1 (1.8%) had a relapse of irP, and 4 (7.1%) were not evaluable. The pneumonitis control rate at 6 weeks was 91.1% (95% CI, 80.7% to 96.1%). Twelve weeks after the start of the study treatment, 5 (8.9%), 27 (48.2%), and 15 (26.8%) patients demonstrated complete recovery, partial improvement, and relapse, respectively, and 9 (16.1%) were not evaluable. The pneumonitis control rate at 12 weeks was 57.1% (95% CI, 44.1% to 69.2%). During the observation period, 18 (32.1%) patients experienced a relapse of irP, and of those, 17 received re-treatment with corticosteroids. Grade ≥3 adverse events occurred in 10 (17.9%) patients, in which hyperglycemia was most frequent (n=6). There was no treatment-related death. CONCLUSIONS: In this first prospective study for irP, prednisolone at 1 mg/kg/day, tapered over 6 weeks, demonstrated a promising clinical benefit and manageable toxicity, suggesting a potential treatment option for irP. TRIAL REGISTRATION NUMBER: jRCT: 1041190029.


Subject(s)
Neoplasms , Pneumonia , Humans , Prospective Studies , Prednisolone/therapeutic use , Neoplasms/drug therapy , Recurrence
11.
J Immunother Cancer ; 11(6)2023 06.
Article in English | MEDLINE | ID: mdl-37399356

ABSTRACT

Anticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability. Consequently, the overall benefit of monotherapies remains limited. Cutting-edge technologies now allow for extensive tumor profiling, which can be used to define tumor cell intrinsic and extrinsic pathways of primary and/or acquired immune resistance, herein referred to as features or feature sets of immune resistance to current therapies. We propose that cancers can be characterized by immune resistance archetypes, comprised of five feature sets encompassing known immune resistance mechanisms. Archetypes of resistance may inform new therapeutic strategies that concurrently address multiple cell axes and/or suppressive mechanisms, and clinicians may consequently be able to prioritize targeted therapy combinations for individual patients to improve overall efficacy and outcomes.


Subject(s)
Antibodies, Bispecific , Neoplasms , Humans , Neoplasms/drug therapy , Immunotherapy , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Tumor Microenvironment
12.
J Immunother Cancer ; 11(4)2023 04.
Article in English | MEDLINE | ID: mdl-37045474

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR)-T cell-based immunotherapy constitutes a revolutionary advance for treatment of relapsed/refractory hematological malignancies. Nevertheless, cytokine release and immune effector cell-associated neurotoxicity syndromes are life-threatening toxicities in which the endothelium could be a pathophysiological substrate. Furthermore, differential diagnosis from sepsis, highly incident in these patients, is challenging. Suitable laboratory tools could be determinant for their appropriate management. METHODS: Sixty-two patients treated with CAR-T cell immunotherapy for hematological malignancies (n=46 with CD19-positive diseases, n=16 with multiple myeloma) were included. Plasma samples were obtained: before CAR-T cell infusion (baseline); after 24-48 hours; at suspicion of any toxicity onset and 24-48 hours after immunomodulatory treatment. Biomarkers of endothelial dysfunction (soluble vascular cell adhesion molecule 1 (sVCAM-1), soluble TNF receptor 1 (sTNFRI), thrombomodulin (TM), soluble suppression of tumorigenesis-2 factor (ST2), angiopoietin-2 (Ang-2)), innate immunity activation (neutrophil extracellular traps (NETs), soluble C5b-9 (sC5b-9)) and hemostasis/fibrinolysis (von Willebrand Factor antigen (VWF:Ag), ADAMTS-13 (A13), α2-antiplasmin (α2-AP), plasminogen activator inhibitor-1 antigen (PAI-1 Ag)) were measured and compared with those in cohorts of patients with sepsis and healthy donors. RESULTS: Patients who developed CAR-T cell toxicities presented increased levels of sVCAM-1, sTNFRI and ST2 at the clinical onset versus postinfusion values. Twenty-four hours after infusion, ST2 levels were good predictors of any CAR-T cell toxicity, and combination of ST2, Ang-2 and NETs differentiated patients requiring intensive care unit admission from those with milder clinical presentations. Association of Ang-2, NETs, sC5b-9, VWF:Ag and PAI-1 Ag showed excellent discrimination between severe CAR-T cell toxicities and sepsis. CONCLUSIONS: This study provides relevant contributions to the current knowledge of the CAR-T cell toxicities pathophysiology. Markers of endotheliopathy, innate immunity activation and hemostatic imbalance appear as potential laboratory tools for their prediction, severity and differential diagnosis.


Subject(s)
Hematologic Neoplasms , Hemostatics , Sepsis , Humans , T-Lymphocytes , von Willebrand Factor , Diagnosis, Differential , Plasminogen Activator Inhibitor 1 , Interleukin-1 Receptor-Like 1 Protein , Hemostasis , Hematologic Neoplasms/therapy
13.
J Immunother Cancer ; 11(4)2023 04.
Article in English | MEDLINE | ID: mdl-37072352

ABSTRACT

Increased immune cell infiltration into tumors is associated with improved patient survival and predicts response to immune therapies. Thus, identification of factors that determine the extent of immune infiltration is crucial, so that methods to intervene on these targets can be developed. T cells enter tumor tissues through the vasculature, and under control of interactions between homing receptors on the T cells and homing receptor ligands (HRLs) expressed by tumor vascular endothelium and tumor cell nests. HRLs are often deficient in tumors, and there also may be active barriers to infiltration. These remain understudied but may be crucial for enhancing immune-mediated cancer control. Multiple intratumoral and systemic therapeutic approaches show promise to enhance T cell infiltration, including both approved therapies and experimental therapies. This review highlights the intracellular and extracellular determinants of immune cell infiltration into tumors, barriers to infiltration, and approaches for intervention to enhance infiltration and response to immune therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Lymphocytes, Tumor-Infiltrating , Neoplasms/therapy , Neoplasms/pathology
14.
J Immunother Cancer ; 11(4)2023 04.
Article in English | MEDLINE | ID: mdl-37055217

ABSTRACT

Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.


Subject(s)
Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/therapy , Immunotherapy, Adoptive/methods , T-Lymphocytes, Cytotoxic , Apoptosis , Tumor Microenvironment
15.
J Immunother Cancer ; 11(3)2023 03.
Article in English | MEDLINE | ID: mdl-36931661

ABSTRACT

BACKGROUND: Initial clinical responses with gene engineered chimeric antigen receptor (CAR) T cells in cancer patients are highly encouraging; however, primary resistance and also relapse may prevent durable remission in a substantial part of the patients. One of the underlying causes is the resistance mechanisms in cancer cells that limit effective killing by CAR T cells. CAR T cells exert their cytotoxic function through secretion of granzymes and perforin. Inhibition of granzyme B (GrB) can underlie resistance to T cell-mediated killing, and it has been shown that serine proteinase inhibitor serpin B9 can effectively inhibit GrB. We aimed to determine whether expression of serpin B9 by cancer cells can lead to resistance toward CAR T cells. METHODS: Serpin B9 gene and protein expression were examined by R2 or DepMap database mining and by western blot or flow cytometric analysis, respectively. Coculture killing experiments were performed with melanoma cell line MeWo, diffuse large B cell lymphoma (DLBCL) cell line OCI-Ly7 or primary chronic lymphocytic leukemia (CLL) cells as target cells and natural killer cell line YT-Indy, CD20 CAR T cells or CD19 CAR T cells as effector cells and analyzed by flow cytometry. RESULTS: Serpin B9 protein expression was previously shown to be associated with clinical outcome in melanoma patients and in line with these observations we demonstrate that enforced serpin B9 expression in melanoma cells reduces sensitivity to GrB-mediated killing. Next, we examined serpin B9 expression in a wide array of primary tumor tissues and human cell lines to find that serpin B9 is uniformly expressed in B-cell lymphomas and most prominently in DLBCL and CLL. Subsequently, using small interfering RNA, we silenced serpin B9 expression in DLBCL cells, which increased their sensitivity to CD20 CAR T cell-mediated killing. In addition, we showed that co-ulture of primary CLL cells with CD20 CAR T cells results in selection of serpin B9-high CLL cells, suggesting these cells resist CAR T-cell killing. CONCLUSIONS: Overall, the data indicate that serpin B9 is a resistance mediator for CAR T cell-mediated tumor cell killing that should be inhibited or bypassed to improve CAR T-cell responses.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Serpins , Humans , Cell Death , Cytotoxicity, Immunologic , Serpins/genetics , T-Lymphocytes
16.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36746512

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICI) can cause off-target inflammatory and immune-related adverse events (irAE). Conceivably, COVID-19 vaccination could trigger an inflammatory and immune response that could induce or aggravate irAE. METHODS: The objective of this systematic review is to appraise the efficacy and safety of COVID-19 vaccination in patients with cancer treated with ICI. The literature search was performed in PubMed and Embase in English from December 2019 to February 2022. The review included clinical trials, observational cohort studies, case series, and case reports reporting on the clinical efficacy and safety of COVID-19 vaccines on patients with cancer treated with ICI. Outcomes of interest included seroconversion, SARS-CoV-2 infection rate, severe COVID-19, COVID-19 mortality rate. Incidence of ICI irAEs was also ascertained as well as vaccine adverse events. A meta-analysis was conducted to estimate the pooled effect sizes of the outcomes when possible, using random effects models. RESULTS: Overall, 19 studies were included for the analysis (n=10 865 with 2477 receiving ICI). We analyzed 15 cohort studies, 1 cross-sectional study, and 3 case reports. There were no statistically significant differences in seroconversion rates after the second dose of the vaccine when comparing patients with cancer receiving ICI with patients without cancer (risk ratio, RR 0.97, 95% CI 0.92 to 1.03) or with patients with cancer without active treatment (RR 1.00, 95% CI 0.96 to 1.04). There was a higher probability of seroconversion in patients with cancer treated with ICI compared with patients with cancer treated with chemotherapy (RR 1.09, 95% CI 1.00 to 1.18). In a single study in patients receiving ICI, no differences were observed in risk of irAE between those receiving inactivated vaccine and those unvaccinated (pneumonitis RR 0.88, 95% CI 0.33 to 2.3; rash RR 1.03, 95% CI 0.66 to 1.62; arthralgia RR 0.94, 95% CI 0.51 to 1.75). There were no studies for other types of vaccines comparing vaccinated vs not vaccinated in patients treated with ICI. The most common vaccine-related adverse events were local pain or fatigue. Overall, the quality of evidence was rated as very low. CONCLUSION: COVID-19 vaccination appears to be effective and safe in patients with cancer receiving ICI.


Subject(s)
COVID-19 Vaccines , COVID-19 , Neoplasms , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cross-Sectional Studies , Immune Checkpoint Inhibitors/adverse effects , Neoplasms/drug therapy , SARS-CoV-2 , Vaccination
18.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36808074

ABSTRACT

BACKGROUND: Murine chimeric antigen receptor T (CAR-T) cell therapy has demonstrated clinical benefit in patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). However, the potential immunogenicity of the murine single-chain variable fragment domain may limit the persistence of CAR-T cell, leading to relapse. METHODS: We performed a clinical trial to determine the safety and efficacy of autologous and allogeneic humanized CD19-targeted CAR-T cell (hCART19) for R/R B-ALL. Fifty-eight patients (aged 13-74 years) were enrolled and treated between February 2020 and March 2022. The endpoints were complete remission (CR) rate, overall survival (OS), event-free survival (EFS), and safety. RESULTS: Overall, 93.1% (54/58) of patients achieved CR or CR with incomplete count recovery (CRi) by day 28, with 53 patients having minimal residual disease negativity. With a median follow-up of 13.5 months, the estimated 1-year OS and EFS were 73.6% (95% CI 62.1% to 87.4%) and 46.0% (95% CI 33.7% to 62.8%), with a median OS and EFS of 21.5 months and 9.5 months, respectively. No significant increase in human antimouse antibodies was observed following infusion (p=0.78). Duration of B-cell aplasia in the blood was observed for as long as 616 days, which was longer than that in our prior mCART19 trial. All toxicities were reversible, including severe cytokine release syndrome, which developed in 36% (21/58) of patients and severe neurotoxicity, which developed in 5% (3/58) of patients. Compared with our prior mCART19 trial, patients treated with hCART19 had longer EFS without increased toxicity. Additionally, our data also suggest that patients treated with consolidation therapy, including allogeneic hematopoietic stem cell transplantation or CD22-targeted CAR-T cell, following hCART19 therapy had a longer EFS than those without consolidation therapy. CONCLUSION: hCART19 has good short-term efficacy and manageable toxicity in R/R B-ALL patients. TRIAL REGISTRATION NUMBER: NCT04532268.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Animals , Mice , Receptors, Chimeric Antigen/therapeutic use , Immunotherapy, Adoptive/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Progression-Free Survival , Lymphoma, B-Cell/drug therapy , Antigens, CD19 , Acute Disease , Adaptor Proteins, Signal Transducing
19.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36639156

ABSTRACT

BACKGROUND: While major advances have been made in improving the quality of life and survival of children with most forms of medulloblastoma (MB), those with MYC-driven tumors (Grp3-MB) still suffer significant morbidity and mortality. There is an urgent need to explore multimodal therapeutic regimens which are effective and safe for children. Large-scale studies have revealed abnormal cancer epigenomes caused by mutations and structural alterations of chromatin modifiers, aberrant DNA methylation, and histone modification signatures. Therefore, targeting epigenetic modifiers for cancer treatment has gained increasing interest, and inhibitors for various epigenetic modulators have been intensively studied in clinical trials. Here, we report a cross-entity, epigenetic drug screen to evaluate therapeutic vulnerabilities in MYC amplified MB, which sensitizes them to macrophage-mediated phagocytosis by targeting the CD47-signal regulatory protein α (SIRPα) innate checkpoint pathway. METHODS: We performed a primary screen including 78 epigenetic inhibitors and a secondary screen including 20 histone deacetylase inhibitors (HDACi) to compare response profiles in atypical teratoid/rhabdoid tumor (AT/RT, n=11), MB (n=14), and glioblastoma (n=14). This unbiased approach revealed the preferential activity of HDACi in MYC-driven MB. Importantly, the class I selective HDACi, CI-994, showed significant cell viability reduction mediated by induction of apoptosis in MYC-driven MB, with little-to-no activity in non-MYC-driven MB, AT/RT, and glioblastoma in vitro. We tested the combinatorial effect of targeting class I HDACs and the CD47-SIRPa phagocytosis checkpoint pathway using in vitro phagocytosis assays and in vivo orthotopic xenograft models. RESULTS: CI-994 displayed antitumoral effects at the primary site and the metastatic compartment in two orthotopic mouse models of MYC-driven MB. Furthermore, RNA sequencing revealed nuclear factor-kB (NF-κB) pathway induction as a response to CI-994 treatment, followed by transglutaminase 2 (TGM2) expression, which enhanced inflammatory cytokine secretion. We further show interferon-γ release and cell surface expression of engulfment ('eat-me') signals (such as calreticulin). Finally, combining CI-994 treatment with an anti-CD47 mAb targeting the CD47-SIRPα phagocytosis checkpoint enhanced in vitro phagocytosis and survival in tumor-bearing mice. CONCLUSION: Together, these findings suggest a dynamic relationship between MYC amplification and innate immune suppression in MYC amplified MB and support further investigation of phagocytosis modulation as a strategy to enhance cancer immunotherapy responses.


Subject(s)
Cerebellar Neoplasms , Glioblastoma , Medulloblastoma , Humans , Mice , Animals , Medulloblastoma/drug therapy , NF-kappa B/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Protein Glutamine gamma Glutamyltransferase 2 , Quality of Life , Phagocytosis , Macrophages , Inflammation/metabolism
20.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36653071

ABSTRACT

BACKGROUND: As a major driver of lymphocyte proliferation and activation interleukin 2 (IL-2) is a crucial mediator for antitumor responses. Despite promising activity in a subset of patients, wider therapeutic utility of IL-2 (aldesleukin) has been hampered by severe dose-limiting toxicities, the expansion of immunosuppressive regulatory T cells and a poor pharmacokinetic (PK) profile. Recent engineering efforts, including non-α IL-2 variants, have lowered the toxicity profile, but have yet to induce meaningful antitumor activity in a wider patient population. METHODS: We engineered INBRX-120, a CD8α-targeted Cisleukin™ molecule consisting of an affinity tuned IL-2 (IL2-x) connected to two high affinity CD8α-specific single domain antibodies via an effector-silenced Fc domain. To show that this large affinity differential enables directed IL-2 cis-signaling exclusively on CD8α-expressing tumoricidal effector cell populations, INBRX-120 effects on target cell expansion, activation and antitumor activity were tested in vitro. In vivo antitumor efficacy was evaluated in syngeneic mouse models alone or in combination with programmed cell death protein-1 (PD-1) blockade. Preclinical safety, as well as pharmacodynamic (PD) and PK profiling was carried out in non-human primates. RESULTS: INBRX-120 effectively expanded and enhanced the cytotoxic capacity of CD8 T cells and natural killer cells towards tumor cells without affecting regulatory T cells in vitro and in vivo. In syngeneic mouse models, INBRX-120 surrogate showed safe, potent, and durable antitumor efficacy alone and in combination with PD-1 blockade. In non-human primates, INBRX-120 expanded and activated CD8α-expressing effector cells, showed a favorable PK profile, and was well tolerated up to a dose of 1 mg/kg. CONCLUSIONS: Through its unique cis-signaling activity on CD8α-expressing effector cells, INBRX-120 overcomes the major limitations of IL-2-based therapy and effectively harnesses IL-2's potent intrinsic antitumor activity. This novel therapeutic strategy promises safer clinical activity that could induce meaningful antitumor efficacy in a wider set of patients with various cancer indications.


Subject(s)
Interleukin-2 , Neoplasms , Animals , Mice , Humans , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , Programmed Cell Death 1 Receptor , Cytotoxicity, Immunologic , CD8-Positive T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...