Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Rec ; 24(10): e202400013, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39318079

ABSTRACT

Over three decades ago, two independent groups of investigators identified free D-aspartic and later D-serine in specific brain nuclei and endocrine glands. This finding revealed a novel, non-proteinogenic role of these molecules. Moreover, the finding that aged proteins from the human eye crystallin, teeth, bone, blood vessels or the brain incorporate D-aspartic acids to specific primary protein sequences fostered the hypothesis that aging might be related to D-amino acid isomerization of body proteins. The experimental confirmation that schizophrenia and neurodegenerative diseases modify plasma free D-amino acids or tissue levelsnurtured the opportunity of using D-amino acids as therapeutic agents for several disease treatments, a strategy that prompted the successful current application of D-amino acids to human medicine.


Subject(s)
Amino Acids , Humans , Amino Acids/chemistry , Amino Acids/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Serine/chemistry , Serine/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Aging/metabolism , Stereoisomerism , Animals , D-Aspartic Acid/metabolism , D-Aspartic Acid/chemistry , Brain/metabolism , Clinical Relevance
2.
Antibiotics (Basel) ; 12(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37237724

ABSTRACT

Here we designed and synthesized analogs of two antimicrobial peptides, namely C10:0-A2, a lipopeptide, and TA4, a cationic α-helical amphipathic peptide, and used non-proteinogenic amino acids to improve their therapeutic properties. The physicochemical properties of these analogs were analyzed, including their retention time, hydrophobicity, and critical micelle concentration, as well as their antimicrobial activity against gram-positive and gram-negative bacteria and yeast. Our results showed that substitution with D- and N-methyl amino acids could be a useful strategy to modulate the therapeutic properties of antimicrobial peptides and lipopeptides, including enhancing stability against enzymatic degradation. The study provides insights into the design and optimization of antimicrobial peptides to achieve improved stability and therapeutic efficacy. TA4(dK), C10:0-A2(6-NMeLys), and C10:0-A2(9-NMeLys) were identified as the most promising molecules for further studies.

3.
Life (Basel) ; 12(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36362840

ABSTRACT

The antimicrobial peptide LL-37 and D-amino acids (D-AAs) have been proposed as antibiofilm agents. Therefore, this study aimed to test the antimicrobial effect of antibiofilm agents associated with antibiotics used in regenerative endodontic procedures (the triple antibiotic paste­TAP: ciprofloxacin + metronidazole + minocycline). An endodontic-like biofilm model grown on bovine dentin discs was used in this study. After 21-day growth, the biofilms were treated with 1 mg/mL TAP, 10 µM LL-37, an association of LL-37 + TAP, 40 mM D-AAs solution, an association of D-AAs + TAP, and phosphate-buffered saline (negative control). Colony forming unit (CFU) data were analyzed by two-way ANOVA and Tukey's multiple comparison test (p < 0.05). LL-37 + TAP showed the best antibacterial activity (7-log10 CFU/mL ± 0.5), reaching a 1 log reduction of cells in relation to the negative control (8-log10 CFU/mL ± 0.7) (p < 0.05). In turn, no significant reduction in bacterial cells was observed with TAP, LL-37, D-AAs, and D-AAs + TAP compared to the negative control. In conclusion, the combination of antibiotics and LL-37 peptide showed mild antibacterial activity, while the combination of antibiotics and D-AAs showed no activity against complex biofilms.

4.
Antibiotics (Basel) ; 10(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540860

ABSTRACT

New strategies to eradicate endodontic biofilms are needed. Therefore, we evaluated the effect of high-purity nisin alone and in combination with D-amino acids (D-AAs) or chlorhexidine (CHX) against an "endodontic-like" biofilm model. Biofilms were grown on hydroxyapatite discs for 64 h and treated with nisin, eight D-AAs mixture, nisin + eight D-AAs, 2% CHX, and nisin + 2% CHX. After the 5 min and 24 h treatments, biofilm cells were harvested and total colony-forming units were counted. Differences between groups were tested by two-way ANOVA followed by Tukey's multiple comparisons test (p < 0.05). Nisin and D-AAs, alone or in combination, were not effective in reducing bacteria after short or long exposure times. After 5 min, treatment with 2% CHX and nisin + 2% CHX resulted in 2 and 2.4-log cell reduction, respectively, compared with the no treatment control (p < 0.001). After 24 h, 2% CHX and nisin + 2% CHX drastically reduced bacterial counts. In conclusion, high-purity nisin alone or in combination with D-AAs did not show antibacterial activity against multispecies biofilms. Moreover, combined treatment using nisin and CHX showed similar antibiofilm activity compared with the use of CHX alone.

5.
J Mol Graph Model ; 86: 35-42, 2019 01.
Article in English | MEDLINE | ID: mdl-30336451

ABSTRACT

In this work we performed several in silico analyses to describe the relevant structural aspects of an enzyme N-Carbamoyl-d-amino acid amidohydrolase (d-NCAase) encoded on the genome of the Brazilian strain CPAC 15 (=SEMIA 5079) of Bradyrhizobium japonicum, a nonpathogenic species belonging to the order Rhizobiales. d-NCAase has wide applications particularly in the pharmaceutical industry, since it catalyzes the production of d-amino acids such as D-p-hydroxyphenylglycine (D-HPG), an intermediate in the synthesis of ß-lactam antibiotics. We applied a homology modelling approach and 50 ns of molecular dynamics simulations to predict the structure and the intersubunit interactions of this novel d-NCAase. Also, in order to evaluate the substrate binding site, the model was subjected to 50 ns of molecular dynamics simulations in the presence of N-Carbamoyl-d-p-hydroxyphenylglycine (Cp-HPG) (a d-NCAase canonical substrate) and water-protein/water-substrate interactions analyses were performed. Overall, the structural analysis and the molecular dynamics simulations suggest that d-NCAase of B. japonicum CPAC-15 has a homodimeric structure in solution. Here, we also examined the substrate specificity of the catalytic site of our model and the interactions with water molecules into the active binding site were comprehensively discussed. Also, these simulations showed that the amino acids Lys123, His125, Pro127, Cys172, Asp174 and Arg176 are responsible for recognition of ligand in the active binding site through several chemical associations, such as hydrogen bonds and hydrophobic interactions. Our results show a favourable environment for a reaction of hydrolysis that transforms N-Carbamoyl-d-p-hydroxyphenylglycine (Cp-HPG) into the active compound D-p-hydroxyphenylglycine (D-HPG). This work envisage the use of d-NCAase from the Brazilian Bradyrhizobium japonicum strain CPAC-15 (=SEMIA 5079) for the industrial production of D-HPG, an important intermediate for semi-synthesis of ß-lactam antibiotics such as penicillins, cephalosporins and amoxicillin.


Subject(s)
Amidohydrolases/chemistry , Bradyrhizobium , Molecular Dynamics Simulation , Protein Conformation , Amino Acid Sequence , Amino Acids , Binding Sites , Bradyrhizobium/chemistry , Bradyrhizobium/enzymology , Catalytic Domain , Hydrogen Bonding , Ligands , Molecular Docking Simulation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL