Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Chem Rec ; 24(10): e202400013, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39318079

ABSTRACT

Over three decades ago, two independent groups of investigators identified free D-aspartic and later D-serine in specific brain nuclei and endocrine glands. This finding revealed a novel, non-proteinogenic role of these molecules. Moreover, the finding that aged proteins from the human eye crystallin, teeth, bone, blood vessels or the brain incorporate D-aspartic acids to specific primary protein sequences fostered the hypothesis that aging might be related to D-amino acid isomerization of body proteins. The experimental confirmation that schizophrenia and neurodegenerative diseases modify plasma free D-amino acids or tissue levelsnurtured the opportunity of using D-amino acids as therapeutic agents for several disease treatments, a strategy that prompted the successful current application of D-amino acids to human medicine.


Subject(s)
Amino Acids , Humans , Amino Acids/chemistry , Amino Acids/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Serine/chemistry , Serine/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Aging/metabolism , Stereoisomerism , Animals , D-Aspartic Acid/metabolism , D-Aspartic Acid/chemistry , Brain/metabolism , Clinical Relevance
SELECTION OF CITATIONS
SEARCH DETAIL