Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Dent J (Basel) ; 11(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37185473

ABSTRACT

Collagen is the building block for the extracellular matrix in bone, teeth and other fibrous tissues. Osteogenesis imperfecta (OI), or brittle bone disease, is a heritable disorder that results from defective collagen synthesis or metabolism, resulting in bone fragility. The dental manifestation of OI is dentinogenesis imperfecta (DI), a genetic disorder that affects dentin structure and clinical appearance, with a characteristic feature of greyish-brown discolouration. The aim of this study was to conduct a systematic review to identify and/or define any ultrastructural changes in dentinal collagen in DI. Established databases were searched: Cochrane Library, OVID Embase, OVID Medline and PubMed/Medline. Search strategies included: Collagen Ultrastructure, DI and OI. Inclusion criteria were studies written in English, published after 1990, that examined human dental collagen of teeth affected by DI. A Cochrane data extraction form was modified and used for data collection. The final dataset included seventeen studies published from 1993 to 2021. The most prevalent findings on collagen in DI teeth were increased coarse collagen fibres and decreased fibre quantity. Additional findings included changes to fibre orientation (i.e., random to parallel) and differences to the fibre organisation (i.e., regular to irregular). Ultrastructural defects and anomalies included uncoiled collagen fibres and increased D-banding periodicity. Studies in collagen structure in DI reported changes to the surface topography, quantity, organisation and orientation of the fibres. Moreover, ultrastructural defects such as the packing/coiling and D-banding of the fibrils, as well as differences in the presence of other collagens are also noted. Taken together, this study provides an understanding of the changes in collagen and its impact on clinical translation, paving the way for innovative treatments in dental treatment.

2.
Ann Biomed Eng ; 48(12): 2924-2935, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32929559

ABSTRACT

Collagen and elastin proteins are major components of the extracellular matrix of many organs. The presence of collagen and elastin networks, and their associated properties, in different tissues have led scientists to study collagen and elastin composites for use in tissue engineering. In this study, we characterized physical, biochemical, and optical properties of gels composed of collagen and elastin blends. We demonstrated that the addition of varying amounts of elastin to the constructs alters collagen fibrillogenesis, D-banding pattern length, and storage modulus. However, the addition of elastin does not affect collagen fibril diameter. We also evaluated the autofluorescence properties of the different collagen and elastin blends with fluorescence lifetime imaging (FLIm). Autofluorescence emission showed a red shift with the addition of elastin to the hydrogels. The fluorescence lifetime values of the gels increased with the addition of elastin and were strongly correlated with the storage moduli measurements. These results suggest that FLIm can be used to monitor the gels' mechanical properties nondestructively. These collagen and elastin constructs, along with the FLIm capabilities, can be used to develop and study collagen and elastin composites for tissue engineering and regenerative medicine.


Subject(s)
Collagen Type I , Elastin , Hydrogels , Biomechanical Phenomena , Microscopy, Electron, Transmission , Optical Imaging , Physical Phenomena , Rheology
3.
Micron ; 86: 36-47, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27162200

ABSTRACT

The collagen type I segment long spacing (SLS) crystallite is a well-ordered rod-like molecular aggregate, ∼300nm in length, which is produced in vitro under mildly acidic conditions (pH 2.5-3.5) in the presence of 1mM ATP. The formation of the SLS crystallite amplifies the inherent linear structural features of individual collagen heterotrimers, due to the punctate linear distribution and summation of the bulkier amino acid side chains along the length of individual collagen heterotrimers. This can be correlated structurally with the 67nm D-banded collagen fibril that is found in vivo, and formed in vitro. Although first described many years ago, the range of conditions required for ATP-induced SLS crystallite formation from acid-soluble collagen have not been explored extensively. Consequently, we have addressed biochemical parameters such as the ATP concentration, pH, speed of formation and stability so as to provide a more complete structural understanding of the SLS crystallite. Treatment of collagen type I with 1mM ATP at neutral and higher pH (6.0-9.0) also induced the formation of D-banded fibrils. Contrary to previous studies, we have shown that the polysulphonated diazo dyes Direct red (Sirius red) and Evans blue, but not Congo red and Methyl blue, can also induce the formation of SLS-like aggregates of collagen, but under markedly different ionic conditions to those employed in the presence of ATP. Specifically, pre-formed D-banded collagen fibrils, prepared in a higher than the usual physiological NaCl concentration (e.g. 500mM NaCl, 20mM Tris-HCl pH7.4 or x3 PBS), readily form SLS aggregates when treated with 0.1mM Direct red and Evans blue, but this did not occur at lower NaCl concentrations. These new data are discussed in relation to the anion (Cl(-)) and polyanion (phosphate and sulphonate) binding by the collagen heterotrimer and their likely role in collagen fibrillogenesis and SLS formation.


Subject(s)
Adenosine Triphosphate/metabolism , Collagen Type I/chemistry , Collagen Type I/ultrastructure , Coloring Agents/chemistry , Adenosine Triphosphate/pharmacology , Azo Compounds , Collagen Type I/metabolism , Evans Blue , Microscopy, Electron/methods , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Negative Staining , Polyelectrolytes , Polymers
4.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-114883

ABSTRACT

PURPOSE: To investigate the effects of mitomycin C on the scleral collagen surfaces using atomic force microscopy (AFM). METHODS: Two non-contact mode AFM machines were used to observe changes in the morphological characteristics of human scleral surfaces before and after one, three, and five minutes of 0.02% mitomycin C application. Based on AFM topography and deflection images of the collagen fibril, the morphological characteristics of scleral fibrils including the fibril diameter and D-period were measured using the line profile. RESULTS: The sclera collagen fibril treated with 0.02% mitomycin C for one minute did not show any significant increases in mean fibril diameter (155.04 +/- 17.46 nm) or mean D-periodicity (70.02 +/- 3.33 nm), compared to those of the control group. However, the scleral collagen fibrils treated with 0.02% mitomycin C for three and five minutes showed significant increases in mean fibril diameter (182.33 +/- 16.33 nm, 199.20 +/- 12.40 nm, respectively) and mean D-periodicity (70.27 +/- 13.66 nm, 72.75 +/- 19.32 nm, respectively), compared to those of the control group. CONCLUSIONS: The present study examined the structural changes in the scleral collagen fibrils before and after mitomycin C application according to atomic force microscopy. The results indirectly suggest that three or more minutes of 0.02% mitomycin C application affects the morphology of scleral collagen.


Subject(s)
Humans , Collagen , Microscopy, Atomic Force , Mitomycin , Sclera
SELECTION OF CITATIONS
SEARCH DETAIL
...