Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 676
Filter
1.
Zhongguo Zhen Jiu ; 44(7): 797-802, 2024 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-38986593

ABSTRACT

OBJECTIVE: To observe the effects of Zhoutian moxibustion on pain symptoms and serum inflammatory factors in patients with ankylosing spondylitis of cold-damp obstruction. METHODS: Eighty-four patients with ankylosing spondylitis of cold-damp obstruction were randomly divided into a Zhoutian moxibustion group (42 cases, 2 cases dropped out) and a governor vessel moxibustion group (42 cases, 2 cases dropped out, 1 case discontinued). Both groups were given oral administration of sulfasalazine enteric-coated tablets as basic treatment. The governor vessel moxibustion group was treated with moxibustion box from Dazhui (GV 14) to Yaoyangguan (GV 3), one hour per treatment; the Zhoutian moxibustion group was treated with moxibustion box from Tiantu (CV 22) to Zhongji (CV 3) in addition to the governor vessel moxibustion group, two hours per treatment. Both groups were treated once every 3 days, twice a week, for a total of 9 weeks. The pain symptom scores of the two groups were observed before treatment and at the 3rd, 6th, and 9th weeks into treatment. ELISA was used to detect the levels of serum interleukin (IL)-1ß, IL-18, and tumor necrosis factor-α (TNF-α) before and after treatment, and the clinical efficacy of the two groups was evaluated after treatment. RESULTS: Except for the joint pain scores at the 3rd week into treatment, the total scores and the each sub-item score of pain symptom in the two groups were lower than those before treatment at the 3rd, 6th, and 9th weeks into treatment (P<0.05); at the 3rd, 6th, and 9th weeks into treatment, the total scores of pain symptom and the scores of lumbar sacral pain, back pain, joint cold pain, and limited mobility in the Zhoutian moxibustion group were lower than those in the governor vessel moxibustion group (P<0.05). After treatment, the levels of serum IL-1ß, IL-18 and TNF-α in both groups were lower than those before treatment (P<0.05), and the levels of serum IL-1ß, IL-18, and TNF-α in the Zhoutian moxibustion group were lower than those in the governor vessel moxibustion group (P<0.05). The total effective rate was 90.0% (36/40) in the Zhoutian moxibustion group, which was higher than 76.9% (30/39) in the governor vessel moxibustion group (P<0.05). CONCLUSION: Zhoutian moxibustion could effectively improve various pain symptoms in patients with ankylosing spondylitis of cold-damp obstruction, and reduce the expression of inflammatory factors.


Subject(s)
Acupuncture Points , Moxibustion , Spondylitis, Ankylosing , Tumor Necrosis Factor-alpha , Humans , Male , Female , Adult , Spondylitis, Ankylosing/therapy , Spondylitis, Ankylosing/complications , Middle Aged , Young Adult , Tumor Necrosis Factor-alpha/blood , Interleukin-1beta/blood , Adolescent , Interleukin-18/blood , Pain Management
3.
J Leukoc Biol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920274

ABSTRACT

Macrophages are essential immune cells for host defense against bacterial pathogens after radiation injury. However, the role of macrophage phagocytosis in infection following radiation injury remains poorly examined. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that dysregulates host immune system responses such as phagocytosis. We hypothesized that radiation-induced eCIRP release impairs macrophage phagocytosis of bacteria. Adult healthy mice were exposed to 6.5-Gy total body irradiation (TBI). Primary peritoneal macrophages isolated from adult healthy mice were exposed to 6.5-Gy radiation. eCIRP-neutralizing monoclonal antibody (mAb) was added to the cell culture prior to irradiation. Bacterial phagocytosis by peritoneal macrophages was assessed using pHrodo Green-labeled E. coli 7 days after irradiation ex vivo and in vitro. Bacterial phagocytosis was also assessed after treatment with recombinant murine CIRP (rmCIRP). Rac1 and ARP2 protein expression in cell lysates and eCIRP levels in the peritoneal lavage were assessed by Western blotting. Bacterial phagocytosis by peritoneal macrophages was significantly decreased after irradiation compared to controls ex vivo and in vitro. Rac1 and ARP2 expression in the peritoneal macrophages were downregulated after TBI. TBI significantly increased eCIRP levels in the peritoneal cavity. rmCIRP significantly decreased bacterial phagocytosis in a dose-dependent manner. eCIRP mAb restored bacterial phagocytosis by peritoneal macrophages after irradiation. Ionizing radiation exposure impairs bacterial phagocytosis by macrophages after irradiation. Neutralization of eCIRP restores the phagocytic ability of macrophages after irradiation. Our findings elucidate a novel mechanism of immune dysfunction and provide a potential new therapeutic approach for limiting infection after radiation injury.

4.
Cell ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38878777

ABSTRACT

NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.

5.
Phytomedicine ; 131: 155787, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851100

ABSTRACT

BACKGROUND: The gut microbiota is crucial in human health and diseases. Traditional Chinese Medicine Constitution (TCMC) divides people into those with a balanced constitution (Ping-he [PH]) and those with an unbalanced constitution. Dampness-heat constitution (Shi-re [SR]) is a common unbalanced constitution in the Chinese population and is susceptible to diseases. However, unbalanced constitutions can be regulated by Chinese medicine and lifestyle interventions in clinical practice. Ermiao Pill (EMP) is a Chinese medicine known for clearing heat and draining dampness and improving SR. However, the efficacy and mechanism of EMP are unclear. HYPOTHESIS/PURPOSE: To determine alterations in the gut microbiota and metabolome in SR and any changes after EMP treatment combined with lifestyle intervention. STUDY DESIGN: Randomized clinical trial. METHODS: We enrolled 112 healthy SR individuals and evaluated the efficacy of EMP along with lifestyle interventions. We further assessed serum cytokine levels, serum and urinary metabolomes, and the gut microbiota by 16S rRNA gene sequencing analysis before and after the EMP and lifestyle interventions. RESULTS: 107 SR individuals (55 in the intervention group and 52 in the control group) completed the 1-month-intervention and 1-year-follow-up. The intervention group significantly improved their health status within 1 month, with a reduced SR symptom score, and the efficacy lasted to the 1-year follow-up. The control group needed a further 6 months to reduce the SR symptom score. The gut microbiota of PH individuals was more diverse and had significantly higher proportions of many bacterial species than the SR. Microbiota co-occurrence network analysis showed that SR enriches metabolites correlating with microbial community structure, consistent with traits of healthy SR-enriched microbiota. CONCLUSION: EMP combined with lifestyle intervention produced health benefits in SR individuals. Our study indicates a pivotal role of gut microbiota and metabolome alterations in distinguishing between healthy SR and PH. Furthermore, the study reveals structural changes of gut microbiota and metabolites induced by EMP and lifestyle intervention. The treatment enriched the number of beneficial bacteria, such as Akkermansia muciniphila and Lactobacillus in the gut. Our findings provide a strong indication that several metabolite factors are associated with the gut microbiota. Moreover, the gut microbiome and metabolome might be powerful tools for TCMC diagnosis and personalized therapy.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Life Style , Medicine, Chinese Traditional , Metabolome , Humans , Gastrointestinal Microbiome/drug effects , Male , Female , Adult , Metabolome/drug effects , Drugs, Chinese Herbal/pharmacology , Middle Aged , Cytokines/blood , Cytokines/metabolism , Young Adult , RNA, Ribosomal, 16S/genetics
6.
Article in English | MEDLINE | ID: mdl-38916186

ABSTRACT

Significance: Fidelity of intercellular communication depends on unambiguous interactions between protein ligands and membrane receptors. Most proteins destined to the extracellular space adopt the required three-dimensional shape as they travel through the endoplasmic reticulum (ER), Golgi complex, and other organelles of the exocytic pathway. However, some proteins, many of which are involved in inflammation, avoid this classical secretory route and follow unconventional pathways to leave the cell. Recent Advances: Stringent quality control systems operate in the ER and cis-Golgi, restricting transport to native conformers, devoid of non-native disulfides and/or reactive thiols. However, some proteins released by living cells require reduced cysteines to exert their extracellular function(s). Remarkably, these proteins lack the secretory signal sequence normally required by secretory proteins for translocation into the ER lumen. Critical Issues: Why do interleukin-1ß, high mobility group box 1, and other proinflammatory proteins avoid the ER-Golgi route to reach the intercellular space? These proteins require reactive cysteines for exerting their function. Therefore, eluding thiol-mediated quality control along the exocytic pathway is likely one of the main reasons why extracellular proteins that need to be reduced utilize unconventional pathways of secretion, where a quality control aimed at oxidating native cysteines is not present. Future Directions: Particularly under stress conditions, cells release redox-active enzymes and nonprotein thiol compounds that exert an extracellular control of redox-sensitive protein activity, shaping inflammatory responses. This post-secretion, redox-dependent editing of protein messages is still largely undefined. Understanding the underlying mechanistic events will hopefully provide new tools to control inflammation.

7.
J Ethnopharmacol ; 332: 118291, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38705427

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana radix (GR) and wine-processed Gentiana radix (WGR) have been commonly used in folk medicine for the treatment of bile or liver disorders, including jaundice, hepatitis, swelling and inflammation for thousands of years. However, the therapeutic effects of gentian root (GR) and wine-made gentian root (WGR) treatment on damp-heat jaundice syndrome (DHJS) have not been studied in animal experiments. AIM OF THE STUDY: This study aimed to investigate the protective effects and mechanisms of GR and WGR on DHJS in rats. MATERIALS AND METHODS: In a high-fat and high-sugar diet in a humidified hot environment, hepatic injury induced by giving alpha-naphthalene isothiocyanate (ANIT) in rats were used as a DHJS model. Histological analysis, enzyme-linked immunosorbent assay (ELISA), PCR analysis, and metabolomics were used to elucidate the mechanism of GR and WGR for DHJS. RESULTS: The results indicated that GR and WGR affected DHJS by inhibiting the release of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), direct bilirubin (D-BIL), total bilirubin (TBIL), total bile acid (TBA), malondialdehyde (MDA), glutathione S-transferase (GST) (P < 0.05). In addition, they significantly reduced the gene expression levels of Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BESP), multidrug resistance-associated protein 2 (MRP2) and multidrug resistance-associated protein 3 (MRP3) (P < 0.05). The WGR group improved the above function indicators better than the GR group. GR and WGR could restore 11 potential biomarkers in rats with DHJS tended to return to normal levels, these biomarkers were involved in arachidonic acid metabolism, steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, porphyrin and chlorophyll metabolism, retinol metabolism, arginine biosynthesis. The results of the metabolic pathway showed that WGR was significantly better than GR in the improvement of porphyrin and chlorophyll metabolism. CONCLUSIONS: These findings suggest that treatment with GR and WGR has a beneficial effect on DHJS in rats, the major mechanisms may be involved in improving functional indicators of the body and endogenous metabolism, and WGR is more effective than GR. It provides important evidence for the clinical application of GR and WGR in the treatment of DHJS.


Subject(s)
Gentiana , Metabolomics , Rats, Sprague-Dawley , Animals , Gentiana/chemistry , Male , Rats , Plant Roots , Jaundice/drug therapy , Wine , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Drugs, Chinese Herbal/pharmacology , Disease Models, Animal
8.
Biomedicines ; 12(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38790933

ABSTRACT

Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of prematurity. Postulated mechanisms leading to inflammatory necrosis of the ileum and colon include activation of the pathogen recognition receptor Toll-like receptor 4 (TLR4) and decreased levels of transforming growth factor beta (TGFß). Extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a novel damage-associated molecular pattern (DAMP), is a TLR4 ligand and plays a role in a number of inflammatory disease processes. To test the hypothesis that eNAMPT is involved in NEC, an eNAMPT-neutralizing monoclonal antibody, ALT-100, was used in a well-established animal model of NEC. Preterm Sprague-Dawley pups delivered prematurely from timed-pregnant dams were exposed to hypoxia/hypothermia and randomized to control-foster mother dam-fed rats, injected IP with saline (vehicle) 48 h after delivery; control + mAB-foster dam-fed rats, injected IP with 10 µg of ALT-100 at 48 h post-delivery; NEC-orally gavaged, formula-fed rats injected with saline; and NEC + mAb-formula-fed rats, injected IP with 10 µg of ALT-100 at 48 h. The distal ileum was processed 96 h after C-section delivery for histological, biochemical, molecular, and RNA sequencing studies. Saline-treated NEC pups exhibited markedly increased fecal blood and histologic ileal damage compared to controls (q < 0.0001), and findings significantly reduced in ALT-100 mAb-treated NEC pups (q < 0.01). Real-time PCR in ileal tissues revealed increased NAMPT in NEC pups compared to pups that received the ALT-100 mAb (p < 0.01). Elevated serum levels of tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), interleukin-8 (IL-8), and NAMPT were observed in NEC pups compared to NEC + mAb pups (p < 0.01). Finally, RNA-Seq confirmed dysregulated TGFß and TLR4 signaling pathways in NEC pups that were attenuated by ALT-100 mAb treatment. These data strongly support the involvement of eNAMPT in NEC pathobiology and eNAMPT neutralization as a strategy to address the unmet need for NEC therapeutics.

9.
EMBO Rep ; 25(7): 2914-2949, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783164

ABSTRACT

Neutrophil extracellular traps (NETs) are a key antimicrobial feature of cellular innate immunity mediated by polymorphonuclear neutrophils (PMNs). NETs counteract microbes but are also linked to inflammation in atherosclerosis, arthritis, or psoriasis by unknown mechanisms. Here, we report that NET-associated RNA (naRNA) stimulates further NET formation in naive PMNs via a unique TLR8-NLRP3 inflammasome-dependent pathway. Keratinocytes respond to naRNA with expression of psoriasis-related genes (e.g., IL17, IL36) via atypical NOD2-RIPK signaling. In vivo, naRNA drives temporary skin inflammation, which is drastically ameliorated by genetic ablation of RNA sensing. Unexpectedly, the naRNA-LL37 'composite damage-associated molecular pattern (DAMP)' is pre-stored in resting neutrophil granules, defining sterile NETs as inflammatory webs that amplify neutrophil activation. However, the activity of the naRNA-LL37 DAMP is transient and hence supposedly self-limiting under physiological conditions. Collectively, upon dysregulated NET release like in psoriasis, naRNA sensing may represent both a potential cause of disease and a new intervention target.


Subject(s)
Alarmins , Cathelicidins , Extracellular Traps , Inflammation , Neutrophils , Extracellular Traps/metabolism , Neutrophils/metabolism , Neutrophils/immunology , Inflammation/metabolism , Inflammation/genetics , Animals , Humans , Mice , Alarmins/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Keratinocytes/metabolism , RNA/genetics , RNA/metabolism , Psoriasis/genetics , Psoriasis/metabolism , Psoriasis/pathology , Signal Transduction , Neutrophil Activation/genetics , Immunity, Innate/genetics
10.
Front Immunol ; 15: 1367053, 2024.
Article in English | MEDLINE | ID: mdl-38756775

ABSTRACT

Background: With the worsening of the greenhouse effect, the correlation between the damp-heat environment (DH) and the incidence of various diseases has gained increasing attention. Previous studies have demonstrated that DH can lead to intestinal disorders, enteritis, and an up-regulation of NOD-like receptor protein 3 (NLRP3). However, the mechanism of NLRP3 in this process remains unclear. Methods: We established a DH animal model to observe the impact of a high temperature and humidity environment on the mice. We sequenced the 16S rRNA of mouse feces, and the RNA transcriptome of intestinal tissue, as well as the levels of cytokines including interferon (IFN)-γ and interleukin (IL)-4 in serum. Results: Our results indicate that the intestinal macrophage infiltration and the expression of inflammatory genes were increased in mice challenged with DH for 14 days, while the M2 macrophages were decreased in Nlrp3 -/- mice. The alpha diversity of intestinal bacteria in Nlrp3 -/- mice was significantly higher than that in control mice, including an up-regulation of the Firmicutes/Bacteroidetes ratio. Transcriptomic analysis revealed 307 differentially expressed genes were decreased in Nlrp3 -/- mice compared with control mice, which was related to humoral immune response, complement activation, phagocytic recognition, malaria and inflammatory bowel disease. The ratio of IFN-γ/IL-4 was decreased in control mice but increased in Nlrp3 -/- mice. Conclusions: Our study found that the inflammation induced by DH promotes Th2-mediated immunity via NLRP3, which is closely related to the disruption of intestinal flora.


Subject(s)
Gastrointestinal Microbiome , Hot Temperature , NLR Family, Pyrin Domain-Containing 3 Protein , Th2 Cells , Animals , Mice , Alarmins/immunology , Cytokines/metabolism , Disease Models, Animal , Gastrointestinal Microbiome/immunology , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Th2 Cells/immunology
11.
Immunity ; 57(4): 752-771, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599169

ABSTRACT

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.


Subject(s)
Inflammation , Nucleic Acids , Humans , Immunity, Innate , Receptors, Immunologic , Alarmins
12.
Membranes (Basel) ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38668107

ABSTRACT

Giant unilamellar vesicles (GUVs) are membrane models used to study membrane properties. Electroformation is one of the methods used to produce GUVs. During electroformation protocol, dry lipid film is formed. The drying of the lipid film induces the cholesterol (Chol) demixing artifact, in which Chol forms anhydrous crystals which do not participate in the formation of vesicles. This leads to a lower Chol concentration in the vesicle bilayers compared to the Chol concentration in the initial lipid solution. To address this problem, we propose a novel electroformation protocol that includes rapid solvent exchange (RSE), plasma cleaning, and spin-coating methods to produce GUVs. We tested the protocol, focusing on vesicles with a high Chol content using different spin-coating durations and vesicle type deposition. Additionally, we compared the novel protocol using completely dry lipid film. The optimal spin-coating duration for vesicles created from the phosphatidylcholine/Chol mixture was 30 s. Multilamellar vesicles (MLVs), large unilamellar vesicles (LUVs) obtained by the extrusion of MLVs through 100 nm membrane pores and LUVs obtained by extrusion of previously obtained LUVs through 50 nm membrane pores, were deposited on an electrode for 1.5/1 Chol/phosphatidylcholine (POPC) lipid mixture, and the results were compared. Electroformation using all three deposited vesicle types resulted in a high GUV yield, but the deposition of LUVs obtained by the extrusion of MLVs through 100 nm membrane pores provided the most reproducible results. Using the deposition of these LUVs, we produced high yield GUVs for six different Chol concentrations (from 0% to 71.4%). Using a protocol that included dry lipid film GUVs resulted in lower yields and induced the Chol demixing artifact, proving that the lipid film should never be subjected to drying when the Chol content is high.

13.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673994

ABSTRACT

Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-ß (TGF-ß), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/ß-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.


Subject(s)
Alopecia Areata , Vitiligo , Alopecia Areata/immunology , Alopecia Areata/pathology , Alopecia Areata/etiology , Alopecia Areata/metabolism , Humans , Vitiligo/immunology , Vitiligo/pathology , Vitiligo/metabolism , Vitiligo/etiology , Animals , Immune Privilege , Cytokines/metabolism
14.
Immunity ; 57(4): 674-699, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599165

ABSTRACT

Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.


Subject(s)
Inflammasomes , Receptors, Pattern Recognition , Inflammasomes/metabolism , Pyroptosis , Immunity, Innate , Nucleotides
15.
Cell Rep ; 43(3): 113929, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38457343

ABSTRACT

Neutrophil-derived bactericidal/permeability-increasing protein (BPI) is known for its bactericidal activity against gram-negative bacteria and neutralization of lipopolysaccharide. Here, we define BPI as a potent activator of murine dendritic cells (DCs). As shown in GM-CSF-cultured, bone-marrow-derived cells (BMDCs), BPI induces a distinct stimulation profile including IL-2, IL-6, and tumor necrosis factor expression. Conventional DCs also respond to BPI, while M-CSF-cultivated or peritoneal lavage macrophages do not. Subsequent to BPI stimulation of BMDCs, CD4+ T cells predominantly secrete IL-22 and, when naive, preferentially differentiate into T helper 22 (Th22) cells. Congruent with the tissue-protective properties of IL-22 and along with impaired IL-22 induction, disease severity is significantly increased during dextran sodium sulfate-induced colitis in BPI-deficient mice. Importantly, physiological diversification of intestinal microbiota fosters BPI-dependent IL-22 induction in CD4+ T cells derived from mesenteric lymph nodes. In conclusion, BPI is a potent activator of DCs and consecutive Th22 cell differentiation with substantial relevance in intestinal homeostasis.


Subject(s)
T-Lymphocytes, Helper-Inducer , Tumor Necrosis Factor-alpha , Animals , Mice , Tumor Necrosis Factor-alpha/metabolism , Cells, Cultured , Dendritic Cells/metabolism , Permeability
16.
Article in English | MEDLINE | ID: mdl-38366728

ABSTRACT

Significance: Preclinical and clinical research in the past two decades has redefined the mechanism of action of some chemotherapeutics that are able to activate the immune system against cancer when cell death is perceived by the immune cells. This immunogenic cell death (ICD) activates antigen-presenting cells (APCs) and T cells to induce immune-mediated tumor clearance. One of the key requirements to achieve this effect is the externalization of the damage-associated molecular patterns (DAMPs), molecules released or exposed by cancer cells during ICD that increase the visibility of the cancer cells by the immune system. Recent Advances: In this review, we focus on the role of calreticulin (CRT) and other endoplasmic reticulum (ER) chaperones, such as the heat-shock proteins (HSPs) and the protein disulfide isomerases (PDIs), as surface-exposed DAMPs. Once exposed on the cell membrane, these proteins shift their role from that of ER chaperone and regulator of Ca2+ and protein homeostasis to act as an immunogenic signal for APCs, driving dendritic cell (DC)-mediated phagocytosis and T-mediated antitumor response. Critical Issues: However, cancer cells exploit several mechanisms of resistance to immune attack, including subverting the exposure of ER chaperones on their surface to avoid immune recognition. Future Directions: Overcoming these mechanisms of resistance represents a potential therapeutic opportunity to improve cancer treatment effectiveness and patient outcomes.

17.
J Ethnopharmacol ; 326: 117874, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38342152

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The efficacy of Shaoyao Decoction (SYD), a traditional Chinese medicine prescription, in treating damp-heat colitis is established, but its underlying mechanism remains to be elucidated. AIM OF THE STUDY: Our study aims to investigate the effect and mechanism of action of SYD in treating damp-heat colitis. MATERIALS AND METHODS: A mouse model of damp-heat colitis was induced and treated with SYD via gavage for seven days. The therapeutic efficacy of SYD was assessed through clinical indicators and histopathological examinations. The inflammatory factors and oxidative stress parameters were detected by ELISA and biochemical kits. We also analyzed alterations in the gut microbiome via 16 S rRNA gene sequencing and quantified serum indole derivatives using targeted tryptophan metabolomics. Western blotting and immunofluorescence were used to detect the expressions of AHR, CYP1A1, STAT3 and tight junction (TJ) proteins. The ELISA kit was utilized to detect the content of antibacterial peptides (Reg3ß and Reg3γ) in colon. The immunohistochemistry was employed to detect the expressions of proliferating cell nuclear antigen (PCNA) protein. RESULTS: SYD effectively alleviated symptoms in mice with damp-heat colitis, including body weight loss, shortened colon, elevated DAI, enlarged spleen, and damage to the intestinal mucosa. SYD notably reduced IL-6, TNF-α, IL-1ß and MDA levels in colon tissues, while increasing IL-10 and T-AOC levels. Furthermore, SYD mitigated gut microbiota disturbance, restored microbial tryptophan metabolite production (such as IA, IAA, and IAld), notably increased the protein levels of AHR, CYP1A1 and p-STAT3 in colon tissue, and elevated the IL-22 level. Moreover, the expression levels of Reg3ß, Reg3γ, occludin, ZO-1 and PCNA were increased in SYD group. CONCLUSION: Our study showed that SYD ameliorates damp-heat colitis by restructuring gut microbiota structure, enhancing the metabolism of tryptophan associated with gut microbiota to activate the AHR/IL-22/STAT3 pathway, thereby recovering damaged intestinal mucosa. This research offers novel insights into the therapeutic mechanisms of SYD on damp-heat colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Mice , Proliferating Cell Nuclear Antigen , Tryptophan , Cytochrome P-450 CYP1A1 , Hot Temperature , Interleukin-22 , Disease Models, Animal , Dextran Sulfate , Colitis, Ulcerative/drug therapy , Mice, Inbred C57BL , Colon
18.
Int J Radiat Biol ; 100(5): 802-816, 2024.
Article in English | MEDLINE | ID: mdl-38319688

ABSTRACT

PURPOSE: Immunogenic cell death plays an important role in anticancer treatment because it combines cell death with appearance of damage associated molecular patterns that have the potential to activate anticancer immunity. Effects of damage associated molecular patterns induced by aminolevulinic acid-based photodynamic therapy were studied mainly on dendritic cells. They have not been deeply studied on macrophages that constitute the essential component of the tumor microenvironment. The aim of this study was to analyze features of esophageal cancer cell death in relation to release capacity of damage associated molecular pattern species, and to test the effect of related extracellular environmental alterations on macrophages. MATERIAL AND METHODS: Esophageal Kyse 450 carcinoma cells were subjected to aminolevulinic acid-based photodynamic therapy at different concentrations of aminolevulinic acid. Resting, IFN/LPS and IL-4 macrophage subtypes were prepared from monocytic THP-1 cell line. Cell death features and macrophage modifications were analyzed by fluorescence-based live cell imaging. ATP and HMGB1 levels in cell culture media were determined by ELISA assays. The presence of lipid peroxidation products in culture media was assessed by spectrophotometric detection of thiobarbituric acid reactive substances. RESULTS: Aminolevulinic acid-based photodynamic therapy induced various death pathways in Kyse 450 cells that included features of apoptosis, necrosis and ferroptosis. ATP amounts in extracellular environment of treated Kyse 450 cells increased with increasing aminolevulinic acid concentration. Levels of HMGB1, detectable by ELISA assay in culture media, were decreased after the treatment. Aminolevulinic acid-based photodynamic therapy induced lipid peroxidation of cellular structures and increased levels of extracellular lipid peroxidation products. Incubation of resting and IL-4 macrophages in conditioned medium from Kyse 450 cells treated by aminolevulinic acid-based photodynamic therapy induced morphological changes in macrophages, however, comparable alterations were induced also by conditioned medium from untreated cancer cells. CONCLUSION: Aminolevulinic acid-based photodynamic therapy leads to alterations in local extracellular levels of damage associated molecular patterns, however, comprehensive studies are needed to find whether they can be responsible for macrophage phenotype modifications.


Subject(s)
Aminolevulinic Acid , Esophageal Neoplasms , Macrophages , Photochemotherapy , Aminolevulinic Acid/pharmacology , Humans , Esophageal Neoplasms/pathology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Cell Line, Tumor , Macrophages/drug effects , Macrophages/radiation effects , Macrophages/metabolism , Extracellular Space/metabolism , Photosensitizing Agents/pharmacology , THP-1 Cells , Cell Death/drug effects
19.
Eur J Respir Med ; 6(1): 389-397, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390523

ABSTRACT

Objective: Human and preclinical studies of sulfur mustard (SM)-induced acute and chronic lung injuries highlight the role of unremitting inflammation. We assessed the utility of targeting the novel DAMP and TLR4 ligand, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), utilizing a humanized mAb (ALT-100) in rat models of SM exposure. Methods: Acute (SM 4.2 mg/kg, 24 hrs), subacute (SM 0.8 mg/kg, day 7), subacute (SM 2.1 mg/kg, day 14), and chronic (SM 1.2 mg/kg, day 29) SM models were utilized. Results: Each SM model exhibited significant increases in eNAMPT expression (lung homogenates) and increased levels of phosphorylated NFkB and NOX4. Lung fibrosis (Trichrome staining) was observed in both sub-acute and chronic SM models in conjunction with elevated smooth muscle actin (SMA), TGFß, and IL-1ß expression. SM-exposed rats receiving ALT-100 (1 or 4 mg/kg, weekly) exhibited increased survival, highly significant reductions in histologic/biochemical evidence of lung inflammation and fibrosis (Trichrome staining, decreased pNFkB, SMA, TGFß, NOX4), decreased airways strictures, and decreased plasma cytokine levels (eNAMPT, IL-6, IL-1ß. TNFα). Conclusion: The highly druggable, eNAMPT/TLR4 signaling pathway is a key contributor to SM-induced ROS production, inflammatory lung injury and fibrosis. The ALT-100 mAb is a potential medical countermeasure to address the unmet need to reduce SM-associated lung pathobiology/mortality.

20.
Plant Cell Environ ; 47(3): 928-946, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164082

ABSTRACT

The green leaf volatiles (GLVs) Z-3-hexen-1-ol (Z3-HOL) and Z-3-hexenyl acetate (Z3-HAC) are airborne infochemicals released from damaged plant tissues that induce defenses and developmental responses in receiver plants, but little is known about their mechanism of action. We found that Z3-HOL and Z3-HAC induce similar but distinctive physiological and signaling responses in tomato seedlings and cell cultures. In seedlings, Z3-HAC showed a stronger root growth inhibition effect than Z3-HOL. In cell cultures, the two GLVs induced distinct changes in MAP kinase (MAPK) activity and proton fluxes as well as rapid and massive changes in the phosphorylation status of proteins within 5 min. Many of these phosphoproteins are involved in reprogramming the proteome from cellular homoeostasis to stress and include pattern recognition receptors, a receptor-like cytoplasmic kinase, MAPK cascade components, calcium signaling proteins and transcriptional regulators. These are well-known components of damage-associated molecular pattern (DAMP) signaling pathways. These rapid changes in the phosphoproteome may underly the activation of defense and developmental responses to GLVs. Our data provide further evidence that GLVs function like DAMPs and indicate that GLVs coopt DAMP signaling pathways.


Subject(s)
Plant Cells , Volatile Organic Compounds , Plant Cells/metabolism , Seedlings/metabolism , Plants/metabolism , Signal Transduction , Plant Leaves/metabolism , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...