ABSTRACT
Generation, power conversion and subsequent integration of renewable energy generation systems, such as solar photovoltaic or wind, require an efficient power conversion system that can provide sufficient quality energy according to technical standards (e.g. IEEE 519-2022). In this context, this paper focuses on the analysis, design and experimental validation of a multilevel voltage source inverter (VSI) scheme based on H-bridge cells with a modular and scalable structure for its application in power electronic converter circuits. The designed and assembled experimental setup is a versatile platform for testing experimentally varied control strategies and power converter configurations, such as the number of levels (3, 5, 7 levels) and phases (single-phase or three-phase). Therefore, the hardware design process proposed for the H-bridge cell and the measurement and conditioning circuits for voltage and current signals necessary for implementing the control algorithms are explained in detail. Moreover, a quantitative analysis of the operation of the design was carried out from measurements made with the experimental platform to verify its correct operation. Among the analysed parameters, the generated harmonics level stands out, quantified by calculating the total harmonic distortion and the mean square error between the reference signals and the measured values.
ABSTRACT
Integrating renewable energies, such as wind or photovoltaic, requires an electronic power converter, the three-phase Voltage Source Inverter (VSI) the most common for such function. This paper presents a modular design of signal acquisition and control hardware (current and voltage) for the commercial SEMIKRON SKS35F VSI converter and a Texas Instruments TMS320F28335 DSP. Consequently, the proposed modular and open-source design allows its application in control systems of a VSI converter for isolated or grid-connected systems, applied to power generation based on renewable sources. The proposed scheme allows for a personalised design since it uses an open architecture to implement its own control algorithms that allow it to adapt to the application's particular needs, unlike closed-architecture commercial equipment. Detailed electronic printed circuit board designs for implementation are shown on paper. Finally, the experimental tests' results that validate the proposed design's correct functioning are presented.
ABSTRACT
The use of renewable energies sources is taking great importance due to the high demand for electricity and the decrease in the use of fossil fuels worldwide. In this context, electricity generation through photovoltaic panels is gaining a lot of interest due to the reduction in installation costs and the rapid advance of the development of new technologies. To minimize or reduce the negative impact of partial shading or mismatches of photovoltaic panels, many researchers have proposed four configurations that depend on the power ranges and the application. The microinverter is a promising solution in photovoltaic systems, due to its high efficiency of Maximum Power Point Tracking and high flexibility. However, there are several challenges to improve microinverter's reliability and conversion efficiency that depend on the proper control design and the power converter design. This paper presents a review of different control strategies in microinverters for different applications. The control strategies are described and compared based on stability, dynamic response, topologies, and control objectives. One of the most important results showed that there is little research regarding the stability and robustness analysis of the reviewed control strategies.