Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Nanomaterials (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998719

ABSTRACT

Boron-doped diamond thin films exhibit extensive applications in chemical sensing, in which the performance could be further enhanced by nano-structuring of the surfaces. In order to discover the relationship between diamond nanostructures and properties, this paper is dedicated to deep learning target detection methods. However, great challenges, such as noise, unclear target boundaries, and mutual occlusion between targets, are inevitable during the target detection of nanostructures. To tackle these challenges, DWS-YOLOv8 (DCN + WIoU + SA + YOLOv8n) is introduced to optimize the YOLOv8n model for the detection of diamond nanostructures. A deformable convolutional C2f (DCN_C2f) module is integrated into the backbone network, as is a shuffling attention (SA) mechanism, for adaptively tuning the perceptual field of the network and reducing the effect of noise. Finally, Wise-IoU (WIoU)v3 is utilized as a bounding box regression loss to enhance the model's ability to localize diamond nanostructures. Compared to YOLOv8n, a 9.4% higher detection accuracy is achieved for the present model with reduced computational complexity. Additionally, the enhancement of precision (P), recall (R), mAP@0.5, and mAP@0.5:0.95 is demonstrated, which validates the effectiveness of the present DWS-YOLOv8 method. These methods provide effective support for the subsequent understanding and customization of the properties of surface nanostructures.

2.
J Pathol Clin Res ; 10(4): e12386, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38890810

ABSTRACT

Evidence for the tumour-supporting capacities of the tumour stroma has accumulated rapidly in colorectal cancer (CRC). Tumour stroma is composed of heterogeneous cells and components including cancer-associated fibroblasts (CAFs), small vessels, immune cells, and extracellular matrix proteins. The present study examined the characteristics of CAFs and collagen, major components of cancer stroma, by immunohistochemistry and Sirius red staining. The expression status of five independent CAF-related or stromal markers, decorin (DCN), fibroblast activation protein (FAP), podoplanin (PDPN), alpha-smooth muscle actin (ACTA2), and collagen, and their association with clinicopathological features and clinical outcomes were analysed. Patients with DCN-high tumours had a significantly worse 5-year survival rate (57.3% versus 79.0%; p = 0.044). Furthermore, hierarchical clustering analyses for these five markers identified three groups that showed specific characteristics: a solid group (cancer cell-rich, DCNLowPDPNLow); a PDPN-dominant group (DCNMidPDPNHigh); and a DCN-dominant group (DCNHighPDPNLow), with a significant association with patient survival (p = 0.0085). Cox proportional hazards model identified the PDPN-dominant group (hazard ratio = 0.50, 95% CI = 0.26-0.96, p = 0.037) as a potential favourable factor compared with the DCN-dominant group. Of note, DCN-dominant tumours showed the most advanced pT stage and contained the lowest number of CD8+ and FOXP3+ immune cells. This study has revealed that immunohistochemistry and special staining of five stromal factors with hierarchical clustering analyses could be used for the prognostication of patients with CRC. Cancer stroma-targeting therapies may be candidate treatments for patients with CRC.


Subject(s)
Biomarkers, Tumor , Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/metabolism , Male , Female , Biomarkers, Tumor/analysis , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/metabolism , Aged , Middle Aged , Cluster Analysis , Immunohistochemistry , Tumor Microenvironment , Prognosis , Membrane Glycoproteins/analysis , Membrane Glycoproteins/metabolism , Stromal Cells/pathology , Stromal Cells/metabolism , Decorin/analysis , Decorin/metabolism , Adult , Aged, 80 and over , Kaplan-Meier Estimate
3.
Sci Rep ; 14(1): 8168, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589482

ABSTRACT

Injury, tumors, ischemia, and lesions in the cerebellum show the involvement of this region in human speech. The association of the cerebellum with learned birdsong has only been identified recently. Cerebellar dysfunction in young songbirds causes learning disabilities, but its role in adult songbirds has not been established. The aim of this study was to investigate the role of the deep cerebellar nuclei (DCN) in adult birdsong. We created bilateral excitotoxic lesions in the DCN of adult male zebra finches (Taeniopygia guttata) and recorded their songs for up to 4 months. Using magnetic resonance imaging (MRI) and immunohistochemistry, we validated the lesion efficacy. We found that the song duration significantly increased from 14 weeks post-op; the increase in duration was caused by a greater number of introductory notes as well as a greater number of syllables sung after the introductory notes. On the other hand, the motif duration decreased from 8 weeks after DCN lesions were induced, which was due to faster singing of syllables, not changes in inter-syllable interval length. DCN lesions also caused a decrease in the fundamental frequency of syllables. In summary, we showed that DCN lesions influence the temporal and acoustic features of birdsong. These results suggest that the cerebellum influences singing in adult songbirds.


Subject(s)
Finches , Songbirds , Animals , Male , Cerebellum/diagnostic imaging , Communication , Learning , Vocalization, Animal
4.
Biomed Pharmacother ; 173: 116240, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401512

ABSTRACT

Abnormally high expression of lysine-specific demethylase 1 A (LSD1) and DCN1 plays a vital role in the occurrence, development, and poor prognosis of non-small cell lung cancer (NSCLC). Accumulating evidence has shown that the development of small-molecule inhibitors dually targeting LSD1 and the DCN1-UBC12 interaction probably have therapeutic promise for cancer therapy. This work reported that WS-384 dually targeted LSD1 and DCN1-UBC12 interactions and evaluated its antitumor effects in vitro and in vivo. Specifically, WS-384 inhibited A549 and H1975 cells viability and decreased colony formation and EdU incorporation. WS-384 could also trigger cell cycle arrest, DNA damage, and apoptosis. Moreover, WS-384 significantly decreased tumor weight and volume in A549 xenograft mice. Mechanistically, WS-384 increased the gene and protein level of p21 by suppressing the neddylation of cullin 1 and decreasing H3K4 demethylation at the CDKN1A promoter. The synergetic upregulation of p21 contributed to cell cycle arrest and the proapoptotic effect of WS-384 in NSCLC cells. Taken together, our proof of concept studies demonstrated the therapeutic potential of dual inhibition of LSD1 and the DCN1-UBC12 interaction for the treatment of NSCLC. WS-384 could be used as a lead compound to develop new dual LSD1/DCN1 inhibitors for the treatment of human diseases in which LSD1 and DCN1 are dysregulated.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Intracellular Signaling Peptides and Proteins , Ubiquitin-Conjugating Enzymes/metabolism , Lung Neoplasms/drug therapy , Histone Demethylases , Cell Line, Tumor
5.
Ocul Surf ; 32: 13-25, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38191093

ABSTRACT

PURPOSE: Corneal fibrosis and neovascularization (CNV) after ocular trauma impairs vision. This study tested therapeutic potential of tissue-targeted adeno-associated virus5 (AAV5) mediated decorin (DCN) and pigment epithelium-derived factor (PEDF) combination genes in vivo. METHODS: Corneal fibrosis and CNV were induced in New Zealand White rabbits via chemical trauma. Gene therapy in stroma was delivered 30-min after chemical-trauma via topical AAV5-DCN and AAV5-PEDF application using a cloning cylinder. Clinical eye examinations and multimodal imaging in live rabbits were performed periodically and corneal tissues were collected 9-day and 15-day post euthanasia. Histological, cellular, and molecular and apoptosis assays were used for efficacy, tolerability, and mechanistic studies. RESULTS: The AAV5-DCN and AAV5-PEDF combination gene therapy significantly reduced corneal fibrosis (p < 0.01 or p < 0.001) and CNV (p < 0.001) in therapy-given (chemical-trauma and AAV5-DCN + AAV5-PEDF) rabbit eyes compared to the no-therapy given eyes (chemical-trauma and AAV5-naked vector). Histopathological analyses demonstrated significantly reduced fibrotic α-smooth muscle actin and endothelial lectin expression in therapy-given corneas compared to no-therapy corneas on day-9 (p < 0.001) and day-15 (p < 0.001). Further, therapy-given corneas showed significantly increased Fas-ligand mRNA levels (p < 0.001) and apoptotic cell death in neovessels (p < 0.001) compared to no-therapy corneas. AAV5 delivered 2.69 × 107 copies of DCN and 2.31 × 107 copies of PEDF genes per µg of DNA. AAV5 vector and delivered DCN and PEDF genes found tolerable to the rabbit eyes and caused no significant toxicity to the cornea. CONCLUSION: The combination AAV5-DCN and AAV5-PEDF topical gene therapy effectively reduces corneal fibrosis and CNV with high tolerability in vivo in rabbits. Additional studies are warranted.


Subject(s)
Corneal Neovascularization , Fibrosis , Genetic Therapy , Nerve Growth Factors , Serpins , Animals , Rabbits , Cornea/pathology , Cornea/metabolism , Corneal Neovascularization/therapy , Corneal Neovascularization/genetics , Corneal Neovascularization/pathology , Corneal Neovascularization/metabolism , Decorin/genetics , Decorin/metabolism , Dependovirus/genetics , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/metabolism , Fibrosis/therapy , Genetic Therapy/methods , Genetic Vectors , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Serpins/genetics , Serpins/metabolism
7.
Biomed Pharmacother ; 166: 115285, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37597320

ABSTRACT

Heart failure (HF) is a complex clinical syndrome with impaired ventricular ability due to structural or functional cardiac disorders. A traditional Chinese formula named Xinshubao tablet (XSB) is reported to protect cardiomyocytes and decrease the risk of HF clinically; however, the underlying mechanism of XSB on decreasing HF risk is not elucidated yet. Therefore, our study aimed to investigate the therapeutic efficacy and underlying mechanism of XSB by using HF model rats and H9c2 cells with oxygen glucose deprivation. Echocardiographic and pathological features of animal experiment showed that XSB treatment effectively improved cardiac function and ameliorated myocardial injury after 4 weeks of treatment. Cellular experiments indicated that XSB pretreatment significantly inhibited apoptosis and increased mitochondrial energy metabolism. Furthermore, in vivo and in vitro experiments both demonstrated that XSB suppressed oxidative stress and inflammatory response. Our results further revealed that the potential protective mechanism of XSB was closely associated with the DCN/PPARα/PGC-1α/P300 signaling pathway. Our findings provide novel mechanistic insights for HF treatment and a pharmacological basis for the therapeutic application of XSB against cardiovascular disorders.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Heart Failure , Heart Injuries , Animals , Rats , PPAR alpha , Heart Failure/drug therapy
8.
J Med Biogr ; : 9677720231153163, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36726330

ABSTRACT

When the new twin operating theatres at the Edinburgh Department of Surgical Neurology opened for the first time on 1 July 1960, they revealed a revolutionary space-pod design. The new department had been designed to firmly establish the specialty in Scotland and the UK, setting the stage for a period of real progress. The most distinctive feature of the two operating theatres was their egg shape, including domed ceilings pierced with operating lights, general lighting, ventilation grilles and viewing ports for visitors. Norman Dott (1897-1973) and his colleagues set the foundation for prosperity and success that lasted decades. However, 60 years after their opening, the DCN theatres at Western General Hospital shut forever, as the department moved to the new Department of Clinical Neurosciences, at the new Royal Infirmary Edinburgh. Echoes of the old theatres will live on in the new; the boldness of the design of the original theatres reflected the close cooperation between clinician-teachers, architects and administrators for the public good. This tradition of tangible confidence and optimism will hopefully carry into a new era, in the new hospital.

9.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675230

ABSTRACT

Mammals have a dorsal cochlear nucleus (DCN), which is thought to be a cerebellum-like structure with similar features in terms of structure and microcircuitry to the cerebellum. Both the DCN and cerebellum perform their functions depending on synaptic and neuronal networks mediated by various glutamate receptors. Kainate receptors (KARs) are one class of the glutamate receptor family and are strongly expressed in the hippocampus, the cerebellum, and cerebellum-like structures. The cellular distribution and the potential role of KARs in the hippocampus have been extensively investigated. However, the cellular distribution and the potential role of KARs in cerebellum-like structures, including the DCN and cerebellum, are poorly understood. In this review, we summarize the similarity between the DCN and cerebellum at the levels of structure, circuitry, and cell type as well as the investigations referring to the expression patterns of KARs in the DCN and cerebellum according to previous studies. Recent studies on the role of KARs have shown that KARs mediate a bidirectional modulatory effect at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum, implying insights into their roles in cerebellum-like structures, including the DCN, that remain to be explored in the coming years.


Subject(s)
Cochlear Nucleus , Animals , Cochlear Nucleus/metabolism , Receptors, Kainic Acid/metabolism , Neurons/metabolism , Axons/metabolism , Synapses/metabolism , Cerebellum/metabolism , Mammals/metabolism
10.
Dokl Biochem Biophys ; 508(1): 31-36, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36653584

ABSTRACT

The interactome of paraoxonase-2 encoded by the PON2 gene was investigated. A cDNA library was screened using a yeast two-hybrid system to search for new proteins interacting with human PON2. Analysis of the identified candidates, along with previously published data on interactors obtained by other methods, indicates the presence of a significant number of indirect interactions between PON2 and EGFR and, consequently, possible regulation of tumor growth with mutant EGFR involving PON2.


Subject(s)
Aryldialkylphosphatase , Neoplasms , Humans , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , ErbB Receptors
11.
ACS Appl Mater Interfaces ; 15(4): 5720-5731, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36662519

ABSTRACT

Fe-based materials containing Fe-Nx sites have emerged as promising electrocatalysts in the oxygen reduction reaction (ORR), but they still suffer structural instability which may lead to loss of catalytic activity. Herein, a novel electrocatalyst Fe3C-FeSA@3DCN with the coexistence of Fe3C nanoparticles and Fe single atoms (FeSA) in a three-dimensional conductive network (3DCN) is prepared via lattice confinement and defect trapping strategies with an Fe atomic loading of as high as 4.36%. In the ORR process, the limiting current density of Fe3C-FeSA@3DCN reaches 5.72 mA cm-2, with an onset potential of 0.926 V and a Tafel slope of 66 mV/decade, showing better catalytic activity and stability than Pt/C catalysts. Notably, its assembled aqueous and solid-state Zn-air batteries (ZABs) achieve peak power densities of 166 and 56 mW cm-2, respectively, with a long service life of up to 200 h at a current density of 5 mA cm-2. In addition, the assembled ZAB can provide a constant voltage on activated carbon electrodes to perform capacitive deionization to adsorb different ions. The importance of the Fe species active sites generated by Fe3C and FeSA in the material for ORR activity to boost the electron transfer and mass transfer is demonstrated by a simple selective poisoning experiment.

12.
Sensors (Basel) ; 22(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36298232

ABSTRACT

This paper proposes a deep reinforcement learning (DRL)-based algorithm in the path-tracking controller of an unmanned vehicle to autonomously learn the path-tracking capability of the vehicle by interacting with the CARLA environment. To solve the problem of the high estimation of the Q-value of the DDPG algorithm and slow training speed, the controller adopts the deep deterministic policy gradient algorithm of the double critic network (DCN-DDPG), obtains the trained model through offline learning, and sends control commands to the unmanned vehicle to make the vehicle drive according to the determined route. This method aimed to address the problem of unmanned-vehicle path tracking. This paper proposes a Markov decision process model, including the design of state, action-and-reward value functions, and trained the control strategy in the CARLA simulator Town04 urban scene. The tracking task was completed under various working conditions, and its tracking effect was compared with the original DDPG algorithm, model predictive control (MPC), and pure pursuit. It was verified that the designed control strategy has good environmental adaptability, speed adaptability, and tracking performance.

13.
Biochem Cell Biol ; 100(4): 309-324, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35544948

ABSTRACT

Liver fibrosis is a very common health problem and currently lacks effective treatments. Cullin RING E3 ligases (CRLs) regulate the turnover of ∼20% of mammalian cell proteins. Neddylation, the process by which NEDD8 is covalently attached to cullin proteins through sequential enzymatic reactions, is critical for the activation of CRLs and was recently found to be elevated in liver fibrosis. NEDD8-activating enzyme E1-specific inhibition led to the reduced liver damage characterized by decreased apoptosis, inflammation, and fibrosis. However, the relevance of a co-E3 ligase, DCN1, in liver fibrosis remains unclear. Here, a novel and potent DCN1-UBC12 interaction inhibitor HZX-960 was discovered with an IC50 value of 9.37 nmol/L, which could inhibit the neddylation of cullin3. Importantly, we identified that HZX-960 treatment could attenuate transforming growth factor ß-induced liver fibrotic responses by reducing the deposition of collagen I and α-smooth muscle actin, and upregulating cellular NF-E2-related factor 2, hemeoxygenase 1, and NADPH quinone oxidoreductase-1 levels in two hepatic stellate cell lines. Additionally, DCN1 was shown to be unregulated in CCl4-induced mice liver tissue, and liver fibrotic signaling in mice was reduced by HZX-960. Therefore, our data demonstrated that HZX-960 possessed anti-liver fibrosis ability and that DCN1 may be a potential therapeutic target for liver fibrosis treatment.


Subject(s)
Enzyme Inhibitors , Liver Cirrhosis , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Animals , Cullin Proteins/metabolism , Enzyme Inhibitors/pharmacology , Liver Cirrhosis/drug therapy , Mice , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitination
14.
Bioengineered ; 13(4): 9872-9884, 2022 04.
Article in English | MEDLINE | ID: mdl-35420507

ABSTRACT

Long non-coding RNAs (lncRNAs) have been widely studied and play crucial roles in cervical cancer (CC) progression. Here, we investigated the function and mechanism of lncRNA PGM5-AS1 action in CC cells. Using real-time quantitative polymerase chain reaction or western blotting, PGM5-AS1 and decorin (DCN) were downregulated in CC tissues and cells, whereas miR-4284 was upregulated. Luciferase assay, RNA pull-down assay, and western blotting showed that PGM5-AS1 could sponge miR-4284 to upregulate DCN expression in CC cells. Additionally, cell functional experiments showed that PGM5-AS1 overexpression led to decreased proliferation, migration, and invasion of CC cells. However, the inhibitory effect of PGM5-AS1 overexpression on CC cells was partly relieved by DCN knockdown because of the targeting interaction between PGM5-AS1, miR-4284, and DCN. In summary, this study identified that PGM5-AS1 negatively regulates CC cell malignancy by targeting miR-4284/DCN.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Uterine Cervical Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , Cytoskeletal Proteins , Decorin/genetics , Decorin/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphoglucomutase , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
15.
Exp Eye Res ; 216: 108933, 2022 03.
Article in English | MEDLINE | ID: mdl-35031282

ABSTRACT

A characteristic rigid spatial arrangement of collagen fibrils in the stroma is critical for corneal transparency. This unique organization of collagen fibrils in corneal stroma can be impacted by the presence and interactions of proteoglycans and extracellular matrix (ECM) proteins in a corneal microenvironment. Earlier studies revealed that decorin, a leucine-rich proteoglycan in stroma, regulates keratocyte-collagen matrix assembly and wound healing in the cornea. This study investigated the role of decorin in the regulation of stromal fibrillogenesis and corneal transparency in vivo employing a loss-of-function genetic approach using decorin null (dcn-/-) and wild type (dcn+/+) mice and a standard alkali-injury model. A time-dependent ocular examinations with Slit lamp microscope in live animals assessed corneal clarity, haze, and neovascularization levels in normal and injured eyes. Morphometric changes in normal and injured dcn+/+ and dcn-/- corneas, post-euthanasia, were analyzed with Masson's Trichrome and Periodic Acid-Schiff (PAS) histology evaluations. The ultrastructure changes in all corneas were investigated with transmission electron microscopy (TEM). Injury to eye produced clinically relevant corneal haze and neovascularization in dcn-/- and dcn+/+ mice while corneas of uninjured eyes remained clear and avascular. A clinically significant haze and neovascularization appeared in injured dcn-/- corneas compared to the dcn+/+ corneas at day 21 post-injury and not at early tested times. Histological examinations revealed noticeably abnormal morphology and compromised collagen levels in injured dcn-/- corneas compared to the injured/normal dcn+/+ and uninjured dcn-/- corneas. TEM analysis exhibited remarkably uneven collagen fibrils size and distribution in the stroma with asymmetrical organization and loose packing in injured dcn-/- corneas than injured/normal dcn+/+ and uninjured dcn-/- corneas. The minimum and maximum inter-fibril distances were markedly irregular in injured dcn-/- corneas compared to all other corneas. Together, results of clinical, histological, and ultrastructural investigations in a genetic knockout model suggested that decorin influenced stromal fibrillogenesis and transparency in healing cornea.


Subject(s)
Corneal Injuries/metabolism , Decorin/physiology , Fibrillar Collagens/metabolism , Organogenesis/physiology , Wound Healing/physiology , Animals , Burns, Chemical/metabolism , Corneal Injuries/pathology , Extracellular Matrix Proteins/metabolism , Eye Burns/chemically induced , Fibrillar Collagens/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Transmission , Slit Lamp Microscopy , Sodium Hydroxide
16.
J Biomol Struct Dyn ; 40(6): 2674-2688, 2022 04.
Article in English | MEDLINE | ID: mdl-33183176

ABSTRACT

Neddylation regulates a variety of biological processes by modulating Cullin-RING E3 ubiquitin ligases (CRLs) which is considered to be an important target for human diseases. The activation of CRLs required Cullins Neddylation, which regulated by the interaction of UBC12-DCN1 complex. Here, to investigate the structure-activity relationship and binding mechanism of 41 piperidinyl ureas inhibitors based on the UBC12-DCN1 protein-protein interaction, we carried out molecular modeling studies using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations.Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q2=0.736, r2ncv=0.978, r2pred=0.78 (CoMFA), and the best CoMSIA model has q2=0.761, r2ncv=0.987, r2pred=0.86. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300 K. The results of MM-GBSA indicated the residues of Ile1083, Ile1086, Ala1098, Val1102, Ile1105, Gln1114, Phe1164 and Leu1184 might be the key residues during the process of inhibitors bound to DCN1. This study could provide an important theoretical basis for further developing novel inhibitors design based on UBC12-DCN1 protein-protein interaction. All the results can provide us more useful information for our further drug design. Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Urea/pharmacology
17.
Matrix Biol ; 105: 53-71, 2022 01.
Article in English | MEDLINE | ID: mdl-34863915

ABSTRACT

The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an understanding of the mechanisms executed by non-structural ECM molecules. Small-leucine rich proteoglycans (SLRPs) play key functions in biology by affecting collagen fibrillogenesis and regulating enzyme and growth factor bioactivities. In the current study, we evaluated collagen and elastic fiber structure-function relationships in mouse cervices using mice with genetic ablation of decorin and/or biglycan genes as representative of Class I SLRPs, and lumican gene representative of Class II SLRP. We identified structural defects in collagen fibril and elastic fiber organization in nonpregnant mice lacking decorin, or biglycan or lumican with variable resolution of defects noted during pregnancy. The severity of collagen and elastic fiber defects was greater in nonpregnant mice lacking both decorin and biglycan and defects were maintained throughout pregnancy. Loss of biglycan alone reduced tissue extensibility in nonpregnant mice while loss of both decorin and biglycan manifested in decreased rupture stretch in late pregnancy. Collagen cross-link density was similar in the Class I SLRP null mice as compared to wild-type nonpregnant and pregnant controls. A broader range in collagen fibril diameter along with an increase in mean fibril spacing was observed in the mutant mice compared to wild-type controls. Collectively, these findings uncover functional redundancy and hierarchical roles of Class I and Class II SLRPs as key regulators of cervical ECM remodeling in pregnancy. These results expand our understating of the critical role SLRPs play to maintain ECM homeostasis in the cervix.


Subject(s)
Small Leucine-Rich Proteoglycans , Uterine Cervical Neoplasms , Animals , Biglycan/genetics , Biglycan/metabolism , Cervix Uteri/metabolism , Chondroitin Sulfate Proteoglycans/genetics , Chondroitin Sulfate Proteoglycans/metabolism , Decorin/genetics , Decorin/metabolism , Extracellular Matrix Proteins/genetics , Female , Fibromodulin , Humans , Lumican/genetics , Mice , Pregnancy , Small Leucine-Rich Proteoglycans/genetics
18.
Chem Asian J ; 17(4): e202101219, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-34942037

ABSTRACT

ESIPT active PBI-keto/enol assemblies have been developed which show 'on-on' optical response towards 2,6-dichloro-4-nitroaniline (DCN) due to a combined ESIPT-AIEE phenomenon with a detection limit of 1.65 nM. The potential of PBI-keto/enol assemblies to detect DCN has also been explored in grape juice/grape residue and soil for six consecutive days. Further, the biological applications of PBI-keto/enol assemblies to detect DCN in blood serum, in MG-63 cell lines and their ability to restrict the DCN-induced cell death have been demonstrated.


Subject(s)
Chemistry , Aniline Compounds
19.
Heliyon ; 7(10): e08119, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34660929

ABSTRACT

Essential tremor, a common, debilitating motor disorder, is thought to be caused by cerebellar malfunction. It has been shown that rhythmic Purkinje cell firing is both necessary and sufficient to induce body tremor. During tremor, cerebellar nuclei (CN) cells also display oscillatory activity. This study examined whether rhythmic activity in the CN characterizes the occurrence of body tremor, or alternatively, whether aberrant bursting activity underlies body tremor. Cerebellar nuclei activity was chronically recorded and analyzed in freely moving and in harmaline treated rats. CN neurons displayed rhythmic activity in both conditions, but the number of oscillatory neurons and the relative oscillation time were significantly higher under harmaline. The dominant frequencies of the oscillations were broadly distributed under harmaline and the likelihood that two simultaneously recorded neurons would co-oscillate and their oscillation coherence were significantly lower. It is argued that these alterations rather than neuronal rhythmicity per se underlie harmaline-induced body tremor.

20.
Eur J Med Chem ; 217: 113326, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33756127

ABSTRACT

Defective in cullin neddylation 1(DCN1) is a co-E3 ligase that is important for cullin neddylation. Dysregulation of DCN1 highly correlates with the development of various cancers. Herein, from the initial high-throughput screening, a novel hit compound 5a containing a phenyltriazole thiol core (IC50 value of 0.95 µM for DCN1-UBC12 interaction) was discovered. Further structure-based optimization leads to the development of SK-464 (IC50 value of 26 nM). We found that SK-464 not only directly bound to DCN1 in vitro, but also engaged cellular DCN1, suppressed the neddylation of cullin3, and hindered the migration and invasion of two DCN1-overexpressed squamous carcinoma cell lines (KYSE70 and H2170). These findings indicate that SK-464 may be a novel lead compound targeting DCN1-UBC12 interaction.


Subject(s)
Drug Development , Enzyme Inhibitors/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Sulfhydryl Compounds/pharmacology , Triazoles/pharmacology , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...