ABSTRACT
The present study reports a new occurrence of Rhinocladiella similis isolated as an endophytic fungus in the Caatinga dry tropical forest in Brazil and describes its antifungal susceptibility. The isolate R. similis URM 7800 was obtained from leaves of the medicinal plant Myracrodruon urundeuva. Its morphological characterization was performed on potato dextrose agar medium and molecular analysis using the ITS rDNA sequence. The antifungal susceptibility profile was defined using the Clinical and Laboratory Standards Institute (CLSI) protocol M38-A2. The colony of isolate URM 7800 showed slow growth, with an olivaceous-gray color and powdery mycelium; in microculture, it showed the typical features of R. similis. In the antifungal susceptibility test, isolate URM 7800 showed high minimal inhibitory concentration (MIC) values for amphotericin B (>16 µg/mL), voriconazole (16 µg/mL), terbinafine (>0.5 µg/mL), and caspofungin (>8 µg/mL), among other antifungal drugs. Pathogenic melanized fungi are frequently isolated in environments where humans may be exposed, and these data show that it is essential to know if these isolates possess antifungal resistance.
Subject(s)
Antifungal Agents , Ascomycota , Humans , Antifungal Agents/pharmacology , Brazil , Ascomycota/genetics , ForestsABSTRACT
Melanins are a diverse group of dark pigments with similar properties. In fungi, the most studied is the dihydroxynaphtalene (DHN)-melanin, present in several species including all the chromoblastomycosis agents, a chronic, disabling, and recalcitrant subcutaneous mycosis. It is synthesized in a pathway known as the pentaketide pathway, which has the agrochemical tricyclazole as an inhibitor, widely used in in vitro studies because it does not prevent the growth of fungi. There are different methodologies for qualitative and quantitative analyses of DHN-melanin, which made it possible to discover its important structural and antioxidant functions, with melanin acting as a protective factor against the host's immune system. Also, it can interact with some of the main antifungals of medical interest, reducing its activity and the susceptibility of fungi to these agents. This review aims to discuss the aspects of DHN-melanin, focusing on chromoblastomycosis, bringing the main findings of the published scientific studies, and highlighting the need for further research to understand this important fungal pathogenicity and a virulence factor.