Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
J Med Life ; 16(7): 1105-1110, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37900069

ABSTRACT

Sepsis, a life-threatening condition arising from infection, often results in multi-organ failure, including cardiac dysfunction. This study investigated Xanthohumol, a natural compound, and its potential mechanism of action to enhance heart function following sepsis. A total of twenty-four adult male Swiss albino mice were allocated randomly to one of four equal groups (n=6): sham, CLP, vehicle Xanthohumol the same amount of DMSO injected IP 10 minutes before the CLP, and Xanthohumol group (0.4 mg/kg of Xanthohumol administered IP before the CLP process). Toll-like receptor 4, pro-inflammatory mediators, anti-inflammatory markers, oxidative stress indicators, apoptosis markers, and serum cardiac damage biomarkers were measured in the cardiac tissue using ELISA. Data with normal distribution were analyzed using t-test and ANOVA tests (p<0.05). In comparison to the sham group, the sepsis group had significantly higher levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB, while the pre-treated group with Xanthohumol had significantly lower levels (p<0.05) of these markers than the sepsis group. Bcl-2 showed no significant difference in Xanthohumol pre-treated group relative to the sepsis group, while IL-10 was significantly elevated. Xanthohumol dramatically reduced cardiac tissue injury (p<0.05) relative to the CLP group. By blocking the downstream signal transduction pathways of TLR-4 and NF-kB, Xanthohumol was shown to lessen cardiac damage in male mice during CLP-induced polymicrobial sepsis.


Subject(s)
Sepsis , Toll-Like Receptor 4 , Mice , Male , Animals , Toll-Like Receptor 4/metabolism , Signal Transduction , NF-kappa B/metabolism , Sepsis/complications , Sepsis/drug therapy
2.
J Med Life ; 16(7): 1120-1126, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37900081

ABSTRACT

As sepsis is associated with a 50% increase in mortality, sepsis-induced cardiomyopathy has become a critical topic. A multidisciplinary approach is required for the diagnosis and treatment of septic cardiomyopathy. This study looked at Sulforaphane, a natural product that aims to evaluate cardiac function after sepsis, and its likely mechanism of action. Twenty-four adult male Swiss albino mice were randomly divided into 4 equal groups (n=6): sham, CLP, vehicle Sulforaphane (the same amount of DMSO injected IP one hour before the CLP), and Sulforaphane group (one hour before the CLP, a 5mg/kg dose of Sulforaphane was injected). Cardiac tissue levels of toll-like receptor 4 (TLR-4), pro-inflammatory mediators, anti-inflammatory markers, oxidative stress markers, apoptosis markers, and serum cardiac damage biomarkers were assessed using ELISA. Statistical analyses, including t-tests and ANOVA tests, were performed with a significance level of 0.05 for normally distributed data. Compared to the sham group, the sepsis group had significantly elevated levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB (p<0.05). In contrast, the Sulforaphane pre-treated group demonstrated significantly lower levels of these markers (p<0.05). Additionally, Bcl-2 levels were significantly reduced (p<0.05) in the Sulforaphane group. Sulforaphane administration also significantly attenuated cardiac tissue injury (p<0.05). The findings suggest that Sulforaphane can decrease heart damage in male mice during CLP-induced polymicrobial sepsis by suppressing TLR-4/NF-kB downstream signal transduction pathways.


Subject(s)
Cardiomyopathies , Heart Injuries , Sepsis , Mice , Male , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/therapeutic use , Cardiomyopathies/etiology , Cardiomyopathies/complications , Heart Injuries/complications , Sepsis/complications , Sepsis/drug therapy
3.
J Med Life ; 16(6): 925-931, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37675155

ABSTRACT

Renal ischemia-reperfusion injury is a critical clinical condition with a potentially fatal prognosis if not adequately managed. NHWD-870, a known Brd4 inhibitor with anti-cancer properties, exhibits additional attributes such as antioxidant, anti-inflammatory, and anti-apoptotic effects, suggesting its potential to preserve renal tissue and mitigate damage during ischemic insults. We aimed to assess the potential nephroprotective effect of NHWD-870 by investigating its anti-apoptotic, anti-inflammatory, and antioxidant properties in a rat model of renal ischemia-reperfusion injury. Male Wistar Albino rats (n=24) were randomly assigned to four groups: sham, control, vehicle, and NHWD-870. The control group experienced bilateral renal ischemia for 30 minutes, followed by 2 hours of reperfusion, while the sham group underwent a laparotomy without ischemia-reperfusion induction. The vehicle group received a DMSO injection, and the NHWD-870 group was administered 3mg/kg NHWD-870 orally 24 hours before repeating the control group protocol. Blood samples were collected after reperfusion for blood urea nitrogen (BUN) and serum creatinine (SCr) analysis. ELISA method was used to assess IL-1B, BCL-2, PGF-2, and PI3K/AKT signaling pathways in renal tissue. Tubular injury severity was evaluated through histopathological analysis. NHWD-870 treatment improved renal function and histological preservation compared to the control and vehicle groups. BUN, sCR, IL-1B, BCL-2, and PGF-2 levels in renal tissue were significantly improved in the NHWD-870 group (p<0.05). Furthermore, the PI3K/AKT signaling pathway was significantly upregulated (p<0.01), and tubular injury severity was reduced in the NHWD-870 group. NHWD-870 demonstrated substantial nephroprotective effects in reducing renal damage induced by ischemia-reperfusion injury in rats. These effects may be attributed to the anti-apoptotic properties, as indicated by increased levels of the anti-apoptotic protein Bcl-2, and the reduction in oxidative stress marker PGF-2 through upregulation of the PI3K/AKT signaling pathway, along with the decrease in the inflammatory marker IL-1B.


Subject(s)
Phosphatidylinositol 3-Kinases , Reperfusion Injury , Male , Animals , Rats , Rats, Wistar , Proto-Oncogene Proteins c-akt , Antioxidants , Nuclear Proteins , Transcription Factors , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Kidney/physiology , Signal Transduction
4.
J Biochem ; 174(6): 533-548, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37725528

ABSTRACT

Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson's disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration.


Subject(s)
Parkinson Disease , Rotenone , Humans , Animals , Mice , Rotenone/pharmacology , Rotenone/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Cell Death , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
5.
J Biochem ; 174(3): 273-278, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37141918

ABSTRACT

Cryopreservation of mammalian cells is an important technology; however, freezing damage due to osmotic pressure differences and ice crystal formation is inevitable. In addition, cryopreserved cells cannot be used immediately after thawing in many cases. Therefore, in this study, we developed a method for supercooling and preserving adherent cells using a precision temperature-controlled CO2 incubator. The effects of the cooling rate from 37 to -4°C, the warming rate from -4 to 37°C and a preservation solution on cell viability after storage were examined. Human hepatocarcinoma-derived cell line HepG2 cells, preserved with HypoThermosol FRS at -4°C with a cooling rate of -0.028°C/min (24 h from 37°C to -4°C) and warming to 37°C at a rate of +1.0°C/min (40 min from -4 to 37°C), displayed high cell viability after 14 days of preservation. The superiority of supercooling preservation at -4°C was demonstrated by comparing the obtained results with that of refrigerated preservation at +4°C. Cells preserved for 14 days under optimal conditions showed no cell shape abnormalities and may be used for experiments immediately after thawing. The optimized supercooling preservation method determined in this study is suitable for the temporary preservation of adherent cultured cells.


Subject(s)
Cold Temperature , Cryopreservation , Humans , Cell Survival , Cells, Cultured , Cryopreservation/methods , Freezing , Temperature
6.
J Biochem ; 174(3): 239-252, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37094356

ABSTRACT

Ferroptosis is a regulated cell death induced by iron-dependent lipid peroxidation. The heme-responsive transcription factor BTB and CNC homology 1 (BACH1) promotes ferroptosis by repressing the transcription of genes involved in glutathione (GSH) synthesis and intracellular labile iron metabolism, which are key regulatory pathways in ferroptosis. We found that BACH1 re-expression in Bach1-/- immortalized mouse embryonic fibroblasts (iMEFs) can induce ferroptosis upon 2-mercaptoethanol removal, without any ferroptosis inducers. In these iMEFs, GSH synthesis was reduced, and intracellular labile iron levels were increased upon BACH1 re-expression. We used this system to investigate whether the major ferroptosis regulators glutathione peroxidase 4 (Gpx4) and apoptosis-inducing factor mitochondria-associated 2 (Aifm2), the gene for ferroptosis suppressor protein 1, are target genes of BACH1. Neither Gpx4 nor Aifm2 was regulated by BACH1 in the iMEFs. However, we found that BACH1 represses AIFM2 transcription in human pancreatic cancer cells. These results suggest that the ferroptosis regulators targeted by BACH1 may vary across different cell types and animal species. Furthermore, we confirmed that the ferroptosis induced by BACH1 re-expression exhibited a propagating effect. BACH1 re-expression represents a new strategy for inducing ferroptosis after GPX4 or system Xc- suppression and is expected to contribute to future ferroptosis research.


Subject(s)
Ferroptosis , Fibroblasts , Animals , Humans , Mice , Fibroblasts/metabolism , Ferroptosis/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Iron/metabolism , Glutathione/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism
7.
Transpl Immunol ; 78: 101831, 2023 06.
Article in English | MEDLINE | ID: mdl-37019290

ABSTRACT

It is important to calculate the CD34+ stem cell (SC) count at the right time in patients with hematological malignancies who will undergo Hematopoietic Stem Cell Transplantation (HSCT). The amount of SC infused into the patient affects the engraftment time and healing process of the patient. In this study, we aimed to compare which of the DMSO-not removed and DMSO-removed samples showed the CD34 + SC amount more accurately as the SC amount determination method after the SC was dissolved after cryopreservation in patients who will undergo HSCT. A total of 22 patients were included in the study. All 22 patients were transplanted from frozen samples using DMSO. After the SC products were dissolved in a 37 °C water bath, they were washed 2 times and the amount of CD34+ SC was studied from the samples taken by removing DMSO and without removing DMSO. In the findings, the amounts of CD34+ SC studied with both methods were compared. The increase in the number and percentage of CD34+ SC after DMSO-removed was found to be statistically significant both in terms of difference and proportionally, and the calculated effect sizes also showed that the increase was clinically significant (Cohen's d is between 0.43 and 0.677). After thawing the frozen SCs of the patients who will undergo HSCT, the analysis of CD34+ SCs from which DMSO is removed provides a more accurate calculation of the CD34+ SC amount in the AP.


Subject(s)
Dimethyl Sulfoxide , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Humans , Antigens, CD34/analysis , Cell Survival , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/chemistry , Stem Cell Transplantation
8.
J Bone Oncol ; 39: 100472, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36876225

ABSTRACT

Background: Osteosarcoma is most prevalently found primary malignant bone tumors, with primary metastatic patients accounting for approximately 25% of all osteosarcoma patients, yet their 5-year OS remains below 30%. Bilirubin plays a key role in oxidative stress-associated events, including malignancies, making the regulation of its serum levels a potential anti-tumor strategy. Herein, we investigated the association of osteosarcoma prognosis with serum levels of TBIL, IBIL and DBIL, and further explored the mechanisms by which bilirubin affects tumor invasion and migration. Methods: ROC curve was plotted to assess survival conditions based on the determined optimal cut-off values and the AUC. Then, Kaplan-Meier curves, along with Cox proportional hazards model, was applied for survival analysis. Inhibitory function of IBIL on the malignant properties of osteosarcoma cells was examined using the qRT-PCR, transwell assays, western blotting, and flow cytometry. Results: We found that, versus osteosarcoma patients with pre-operative higher IBIL (>8.9 µmol/L), those with low IBIL (≤8.9 µmol/L) had shorter OS and PFS. As indicated by the Cox proportional hazards model, pre-operative IBIL functioned as an independent prognostic factor for OS and PFS in total and gender-stratified osteosarcoma patients (P < 0.05 for all). In vitro experiments further confirmed that IBIL inhibits PI3K/AKT phosphorylation and downregulates MMP-2 expression via reducing intracellular ROS, thereby decreasing the invasion of osteosarcoma cells. Conclusions: IBIL may serve as an independent prognostic predictor for osteosarcoma patients. IBIL impairs invasion of osteosarcoma cells through repressing the PI3K/AKT/MMP-2 pathway by suppressing intracellular ROS, thus inhibiting its metastatic potential.

9.
Int J Pharm X ; 5: 100174, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36908304

ABSTRACT

The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.

10.
Int J Pharm X ; 5: 100169, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36861068

ABSTRACT

This work aimed to develop new antibiotic-coated/ antibiotic-loaded hydroxyapatite (HAp) scaffolds for orthopaedic trauma, specifically to treat the infection after fixation of skeletal fracture. The HAp scaffolds were fabricated from the Nile tilapia (Oreochromis niloticus) bones and fully characterized. The HAp scaffolds were coated with 12 formulations of poly (lactic-co-glycolic acid) (PLGA) or poly (lactic acid) (PLA), blended with vancomycin. The vancomycin release, surface morphology, antibacterial properties, and the cytocompatibility of the scaffolds were conducted. The HAp powder contains elements identical to those found in human bones. This HAp powder is suitable as a starting material to build scaffolds. After the scaffold fabrication, The ratio of HAp to ß-TCP changed, and the phase transformation of ß-TCP to α-TCP was observed. All antibiotic-coated/ antibiotic-loaded HAp scaffolds can release vancomycin into the phosphate-buffered saline (PBS) solution. PLGA-coated scaffolds obtained faster drug release profiles than PLA-coated scaffolds. The low polymer concentration in the coating solutions (20%w/v) gave a faster drug release profile than the high polymer concentration (40%w/v). All groups showed a trace of surface erosion after being submerged in PBS for 14 days. Most of the extracts can inhibit Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA). The extracts not only caused no cytotoxicity to Saos-2 bone cells but also can increase cell growth. This study demonstrates that it is possible to use these antibiotic-coated/ antibiotic-loaded scaffolds in the clinic as an antibiotic bead replacement.

11.
Toxicol Rep ; 10: 348-356, 2023.
Article in English | MEDLINE | ID: mdl-36923442

ABSTRACT

One route of human exposure to environmental chemicals is oral uptake. This is primarily true for chemicals that may leach from food packaging materials, such as bisphenols and phthalate esters. Upon ingestion, these compounds are transported along the intestinal tract, from where they can be taken up into the blood stream or distributed to mucosal sites. At mucosal sites, mucosal immune cells and in the blood stream peripheral immune cells may be exposed to these chemicals potentially modulating immune cell functions. In the present study, we investigated the impact of three common bisphenols and two phthalate esters on mucosal-associated invariant T (MAIT) cells in vitro, a frequent immune cell type in the intestinal mucosae and peripheral blood of humans. All compounds were non-cytotoxic at the chosen concentrations. MAIT cell activation was only slightly affected as seen by flow cytometric analysis. Phthalate esters did not affect MAIT cell gene expression, while bisphenol-exposure induced significant changes. Transcriptional changes occurred in ∼ 25 % of genes for BPA, ∼ 22 % for BPF and ∼ 8 % for BPS. All bisphenols down-modulated expression of CCND2, CCL20, GZMB and IRF4, indicating an effect on MAIT cell effector function. Further, BPA and BPF showed a high overlap in modulated genes involved in cellular stress response, activation signaling and effector function suggesting that BPF may not be safe substitute for BPA.

12.
Heliyon ; 9(3): e14009, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36923879

ABSTRACT

Objective: To explore the mechanism of PG against acute lymphoblastic leukaemia (ALL) by network pharmacology and experimental verification in vitro. Methods: First, the biological activity of PG against B-ALL was determined by CCK-8 and flow cytometry. Then, the potential targets of PG were obtained from the PharmMapper database. ALL-related genes were collected from the GeneCards, OMIM and PharmGkb databases. The two datasets were intersected to obtain the target genes of PG in ALL. Then, protein interaction networks were constructed using the STRING database. The key targets were obtained by topological analysis of the network with Cytoscape 3.8.0 software. In addition, the mechanism of PG in ALL was confirmed by protein‒protein interaction, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Furthermore, molecular docking was carried out by AutoDock Vina. Finally, Western blotting was performed to confirm the effect of PG on NALM6 cells. Results: PG inhibited the proliferation of NALM6 cells. A total of 174 antileukaemic targets of PG were obtained by network pharmacology. The key targets included AKT1, MAPK14, EGFR, ESR1, LCK, PTPN11, RHOA, IGF1, MDM2, HSP90AA1, HRAS, SRC and JAK2. Enrichment analysis found that PG had antileukaemic effects by regulating key targets such as MAPK signalling, and PG had good binding activity with MAPK14 protein (-8.9 kcal/mol). PG could upregulate the expression of the target protein p-P38, induce cell cycle arrest, and promote the apoptosis of leukaemia cells. Conclusion: MAPK14 was confirmed to be one of the key targets and pathways of PG by network pharmacology and molecular experiments.

13.
Redox Rep ; 28(1): 2187564, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36932927

ABSTRACT

Objective: Hydroxytyrosol (HT) is a polyphenol with a wide range of biological activities. Excessive drinking can lead to oxidative stress and inflammation in the liver, which usually develop into alcohol liver disease (ALD). At present, there is no specific drug to treat ALD. In this paper, the protection effect of HT on ALD and the underline mechanism were studied.Methods: HepG2 cells were exposed to ethanol in vitro and C57BL/6J mice were fed with a Lieber-DeCarli ethanol liquid diet in vivo.Results: triglyceride (TG) level in serum and the expression of fatty acid synthase (FASN) were reduced significantly by the treatment with HT The acetaldehyde dehydrogenase (ALDH) activity was increased, the serum level of malondialdehyde (MDA) was decreased, catalase (CAT) and glutathione (GSH) were increased, suggesting that HT may reduce its oxidative damage to the body by promoting alcohol metabolism. Furthermore, according to the mRNA levels of tnf-α, il-6 and il-1ß, HT inhibited ethanol-induced inflammation significantly. The anti-inflammatory mechanism of HT may be related to suppress the STAT3/iNOS pathway.Dissussion: Our study showed that HT could ameliorate ethanol-induced hepatic steatosis, oxidative stress and inflammation and provide a new candidate for the prevention and treatment of ALD.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fatty Liver , Liver Diseases, Alcoholic , Animals , Mice , Ethanol/toxicity , Ethanol/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Mice, Inbred C57BL , Fatty Liver/drug therapy , Fatty Liver/metabolism , Liver , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Oxidative Stress , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Glutathione/metabolism
14.
J Funct Foods ; 101: 105407, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36627926

ABSTRACT

Lophatherum gracile (L. gracile) has long been used as a functional food and herbal medicine. Previous studies have demonstrated that extracts of L. gracile attenuate inflammatory response and inhibit SARS-CoV-2 replication; however, the underlying active constituents have yet to be identified. This study investigated the bioactive components of L. gracile. Flavone C-glycosides of L. gracile were found to dominate both anti-inflammatory and antiviral effects. A simple chromatography-based method was developed to obtain flavone C-glycoside-enriched extract (FlavoLG) from L. gracile. FlavoLG and its major flavone C-glycoside isoorientin were shown to restrict respiratory bursts and the formation of neutrophil extracellular traps in activated human neutrophils. FlavoLG and isoorientin were also shown to inhibit SARS-CoV-2 pseudovirus infection by interfering with the binding of the SARS-CoV-2 spike on ACE2. These results provide scientific evidence indicating the efficacy of L. gracile as a potential supplement for treating neutrophil-associated COVID-19.

15.
Int J Pharm X ; 5: 100146, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36593986

ABSTRACT

Cellulose beads emerge as carriers for poorly water-soluble drugs due to their eco-friendly raw materials and favorable porous structure. However, drug dissolution may be limited by their poor swelling ability and the presence of closed pores caused by shrinkage of the pristine cellulose beads. In this study, novel cellulose beads that can swell in acidic environment were prepared by introducing ethylenediamine (EDA) on dialdehyde cellulose (DAC), thereby addressing the shrinkage and closed pore problem of cellulose beads. The effect of the ratio of EDA on the swelling behavior and amine content of beads was studied. Three model drugs with different physicochemical properties were selected to study the physical state of loaded drugs and their release behavior. According to the results of XRPD and DSC, indomethacin and itraconazole loaded in the beads were amorphous at a drug loading of 20%, but fenofibrate was partially crystalline. Both bead size and the ratio of amine groups influenced the release behavior of the model drugs. The in vitro dissolution results showed that the cationic beads greatly improved the solubility and dissolution rate of the drug compared with the crystalline drug. Beads with a small size and high ratio of EDA tend to achieve a better drug dissolution rate and cumulative release percentage. Physical stability studies of the itraconazole-loaded beads were also implemented under four different temperature/humidity conditions for up to two months. The results showed that crystallization only appeared after two months of storage at 40°/75% RH, and the drug maintained a non-crystalline state in the other three storage conditions (0 °C/0 %RH, 0 °C/32 %RH, 25 °C/32 %RH). In conclusion, the novel pH-responsive cationic cellulose beads show great potential as a carrier for improving the rate and extent of dissolution of poorly soluble drugs and maintaining supersaturation.

16.
Int J Pharm X ; 5: 100150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36593987

ABSTRACT

Inkjet printing has the potential to advance the treatment of eye diseases by printing drugs on demand onto contact lenses for localised delivery and personalised dosing, while near-infrared (NIR) spectroscopy can further be used as a quality control method for quantifying the drug but has yet to be demonstrated with contact lenses. In this study, a glaucoma therapy drug, timolol maleate, was successfully printed onto contact lenses using a modified commercial inkjet printer. The drug-loaded ink prepared for the printer was designed to match the properties of commercial ink, whilst having maximal drug loading and avoiding ocular inflammation. This setup demonstrated personalised drug dosing by printing multiple passes. Light transmittance was found to be unaffected by drug loading on the contact lens. A novel dissolution model was built, and in vitro dissolution studies showed drug release over at least 3 h, significantly longer than eye drops. NIR was used as an external validation method to accurately quantify the drug dose. Overall, the combination of inkjet printing and NIR represent a novel method for point-of-care personalisation and quantification of drug-loaded contact lenses.

17.
Comput Struct Biotechnol J ; 21: 688-701, 2023.
Article in English | MEDLINE | ID: mdl-36659928

ABSTRACT

The use of computer-aided methods have continued to propel accelerated drug discovery across various disease models, interestingly allowing the specific inhibition of pathogenic targets. Chloride Intracellular Channel Protein 4 (CLIC4) is a novel class of intracellular ion channel highly implicated in tumor and vascular biology. It regulates cell proliferation, apoptosis and angiogenesis; and is involved in multiple pathologic signaling pathways. Absence of specific inhibitors however impedes its advancement to translational research. Here, we integrate structural bioinformatics and experimental research approaches for the discovery and validation of small-molecule inhibitors of CLIC4. High-affinity allosteric binders were identified from a library of 1615 Food and Drug Administration (FDA)-approved drugs via a high-performance computing-powered blind-docking approach, resulting in the selection of amphotericin B and rapamycin. NMR assays confirmed the binding and conformational disruptive effects of both drugs while they also reversed stress-induced membrane translocation of CLIC4 and inhibited endothelial cell migration. Structural and dynamics simulation studies further revealed that the inhibitory mechanisms of these compounds were hinged on the allosteric modulation of the catalytic glutathione (GSH)-like site loop and the extended catalytic ß loop which may elicit interference with the catalytic activities of CLIC4. Structure-based insights from this study provide the basis for the selective targeting of CLIC4 to treat the associated pathologies.

18.
J Taibah Univ Med Sci ; 18(1): 9-18, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36398015

ABSTRACT

Objective: The immunosuppressant tacrolimus is a major cause of new-onset diabetes after transplantation. The aim of this study was to evaluate whether a low dose of the histone-deacetylase inhibitor (vorinostat) might ameliorate tacrolimus-induced new-onset diabetes. Methods: Thirty 8-week-old male Wistar rats were randomly divided into five groups: a control group, tacrolimus group (1.5 mg/kg intraperitoneally for 28 days), vorinostat group (15 mg/kg orally for 28 days), a group receiving tacrolimus with vorinostat for 28 days; and a group receiving coadministration of tacrolimus for 28 days and vorinostat for 14 days. Diabetes development was assessed on the basis of serum glucose, insulin, HOMA-IR and C-peptide. To investigate the mechanism of vorinostat, we assessed inflammatory markers (tumor necrosis factor-α and interleukin-1ß), an antioxidant marker (glutathione), an oxidant marker (nicotinamide adenine dinucleotide phosphate hydrogen oxidase) and an apoptosis marker (caspase-3). Kidney functions (creatinine and blood urea nitrogen) were also assessed. Results: The administration of tacrolimus for 28 days resulted in significantly increased serum glucose and decreased C-peptide and insulin levels than those in the control group. However, coadministration of vorinostat significantly decreased hyperglycemia and increased C-peptide and insulin levels. Moreover, combined treatment with tacrolimus and vorinostat, compared with tacrolimus treatment alone, resulted in significantly reduced inflammatory and oxidant markers, and increased glutathione. Additionally, vorinostat improved the kidney parameters. Conclusion: Vorinostat at a low dose (15 mg/kg) induces anti-inflammatory and antioxidative effects that protect the pancreas and kidney against the development of new-onset diabetes due to tacrolimus in rats. This experimental study provides insights supporting further clinical trials to improve the post-kidney transplantation protocol through addition of vorinostat to the immunosuppressive regimen.

19.
J Biochem ; 173(2): 129-138, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36477205

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) is a serine-threonine kinase that is activated by extracellular signals, such as nutrients and growth factors. It plays a key role in the control of various biological processes, such as protein synthesis and energy metabolism by mediating or regulating the phosphorylation of multiple target molecules, some of which remain to be identified. We have here reanalysed a large-scale phosphoproteomics data set for mTORC1 target molecules and identified pre-B cell leukemia transcription factor 2 (PBX2) as such a novel target that is dephosphorylated downstream of mTORC1. We confirmed that PBX2, but not other members of the PBX family, is dephosphorylated in an mTORC1 activity-dependent manner. Furthermore, pharmacological and gene knockdown experiments revealed that glycogen synthase kinase 3 (GSK3) and protein phosphatase 1 (PP1) are responsible for the phosphorylation and dephosphorylation of PBX2, respectively. Our results thus suggest that the balance between the antagonistic actions of GSK3 and PP1 determines the phosphorylation status of PBX2 and its regulation by mTORC1.


Subject(s)
Glycogen Synthase Kinase 3 , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism , Glycogen Synthase Kinase 3/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism
20.
Toxicol Rep ; 9: 1968-1976, 2022.
Article in English | MEDLINE | ID: mdl-36518435

ABSTRACT

Damnacanthal is an anthraquinone, extracted, and purified from the root of Morinda citrifolia in Thailand. This study aimed to measure acute oral toxicity and to investigate the anticancer activity of damnacanthal in colorectal tumorigenesis. We found that the growth of human colorectal cancer cells was inhibited by damnacanthal in a dose- and a time-dependent manner. The growth inhibitory effect of damnacanthal was better than that of 5-FU used as a positive control in colorectal cancer cells, along with the downregulation of cell cycle protein cyclin D1. Similarly, an oral treatment of damnacanthal effectively inhibited the growth of colorectal tumor xenografts in nude mice, which was approximately 2-3-fold higher as compared to 5-FU by tumor size as well as expression of bioluminescence. Furthermore, the study of acute oral toxicity in mice exhibited a relatively low toxicity of damnacanthal with a LD50 cut-off value of 2500 mg/kg according to OECD Guideline 423. These results reveal the potential therapeutic activity of a natural damnacanthal compound as an anti-colorectal cancer drug.

SELECTION OF CITATIONS
SEARCH DETAIL