Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.066
Filter
2.
Mol Ecol Resour ; : e13997, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086104

ABSTRACT

Molecular techniques like metabarcoding, while promising for exploring diversity of communities, are often impeded by the lack of reference DNA sequences available for taxonomic annotation. Our study explores the benefits of combining targeted DNA barcoding and morphological taxonomy to improve metabarcoding efficiency, using beach meiofauna as a case study. Beaches are globally important ecosystems and are inhabited by meiofauna, microscopic animals living in the interstitial space between the sand grains, which play a key role in coastal biodiversity and ecosystem dynamics. However, research on meiofauna faces challenges due to limited taxonomic expertise and sparse sampling. We generated 775 new cytochrome c oxidase I DNA barcodes from meiofauna specimens collected along the Netherlands' west coast and combined them with the NCBI GenBank database. We analysed alpha and beta diversity in 561 metabarcoding samples from 24 North Sea beaches, a region extensively studied for meiofauna, using both the enriched reference database and the NCBI database without the additional reference barcodes. Our results show a 2.5-fold increase in sequence annotation and a doubling of species-level Operational Taxonomic Units (OTUs) identification when annotating the metabarcoding data with the enhanced database. Additionally, our analyses revealed a bell-shaped curve of OTU richness across the intertidal zone, aligning more closely with morphological analysis patterns, and more defined community dissimilarity patterns between supralittoral and intertidal sites. Our research highlights the importance of expanding molecular reference databases and combining morphological taxonomy with molecular techniques for biodiversity assessments, ultimately improving our understanding of coastal ecosystems.

3.
Zookeys ; 1207: 325-353, 2024.
Article in English | MEDLINE | ID: mdl-39091449

ABSTRACT

This study provides a comprehensive overview of the genus Zygota Förster combining DNA barcoding and current morphology. Nineteen species of Zygota were found throughout Germany, including the newly described species Zygotawalli sp. nov. First species records for Germany are: Zygotabalteata Macek, 1997; Z.comitans Macek, 1997; Z.spinosipes (Kieffer, 1908); Z.sordida Macek, 1997; Z.angularis Macek, 1997 and Z.vigil Nixon, 1957. We also clarify diagnoses for the two related genera, Pantoclis Förster and Zygota to designate the boundaries of the Zygota genus and propose new synonymies: Zygotacaligula Buhl, 1997 is a junior synonym of Z.congener (Zetterstedt, 1840); Z.reticulata Kozlov, 1978 is a junior synonym of Z.ruficornis (Curtis, 1831). Thirteen species of Zygota sensu Nixon (1957) are transferred to the genus Pantoclis with the following new combinations proposed: Zygotabrevinervis (Kieffer, 1908) (= Pantoclisbrevinervis (Kieffer, 1909), comb. nov.); Z.brevipennis (Kieffer, 1908) (= P.brevipennis (Kieffer, 1908), comb. nov.); Z.caecutiens (Kieffer, 1908) (= P.caecutiens (Kieffer, 1908), comb. nov.); Z.cursor (Kieffer, 1908) (= P.cursor (Kieffer, 1908), comb. nov.); Z.fossulata (Thomson, 1858) (=P.fossulata (Thomson, 1858), comb. nov.); Z.fuscata (Thomson, 1858) (= P.fuscata (Thomson, 1858), comb. nov.); Z.hemiptera (Thomson, 1858) (= P.hemiptera (Thomson, 1858), comb. nov.); Z.microtoma (Kieffer, 1909) (= P.microtoma (Kieffer, 1909), comb. nov.); Z.soluta (Kieffer, 1907) (= P.soluta (Kieffer, 1907), comb. nov.); Z.striata (Kieffer, 1909) (= P.striata (Kieffer, 1909), comb. nov.); Z.subaptera (Thomson, 1858) (= P.subaptera (Thomson, 1858), comb. nov.); Z.sulciventris (Kieffer, 1909) (= P.sulciventris (Kieffer, 1909), comb. nov.), and Z.unicolor (Kieffer, 1908) (= P.unicolor (Kieffer, 1908), comb. nov.).

4.
Zookeys ; 1206: 181-190, 2024.
Article in English | MEDLINE | ID: mdl-39015529

ABSTRACT

Until the early 2000s, the genus Propomacrus was known to comprise two species, occurring in the Eastern Mediterranean and Southeast China. The discovery of Propomacrusmuramotoae Fujioka in Tibet and subsequently in Bhutan and Nepal, might play a crucial role in bridging the geographical distribution gap of the Euchirini tribe between the Mediterranean and Central China, offering profound insights into its evolution and biogeography. However, all specimens, including the holotype specimen, were sourced from a single insect vendor, with no further specimens found or catalogued in museum collections thereafter. During our examination of a P.muramotoae specimen from a private collection in South Korea, we found its COI gene sequence to be identical to that of P.bimucronatus (Pallas) from Turkey, a species known for its wide distribution and genetic variability across regional populations. This overlap in genetic identity raised significant doubts, further compounded by our detection of deliberate modifications in essential diagnostic features during morphological examination. All three specimens we examined showed crude modifications, including staining and artificial grinding. Despite our inability to access the P.muramotoae type specimens for direct examination-a challenge we attempted to overcome through various means-it is evident that significant fraudulent tampering has occurred with the P.muramotoae specimens. Therefore, a new synonymy is proposed: Propomacrusbimucronatus Pallas, 1781 = P.muramotoae Fujioka, 2007 (syn. nov.). We also advocate for a straightforward verification of the type specimen through molecular analysis of the COI barcode region and morphological re-examination under a microscope for those who have access to the type specimens.

5.
J Sci Food Agric ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031483

ABSTRACT

BACKGROUND: Crustaceans of the superfamily Penaeoidea (e.g., shrimps and prawns) are among the most commercially available aquatic products worldwide. However, there are few studies regarding not only the presence but also the characteristics of mislabelling in these food products. Such information would be helpful for consumers in order to avoid the typical problems associated with mislabelling (e.g., health and economic issues). For this reason, this work considers Penaeoidea mislabelling by comparing different products (frozen, fresh, boiled), and sources (hypermarkets, supermarkets and fishmongers) from Spain (Europe). RESULTS: A total of 94 samples from 55 different products were collected, representing 19 different species from 13 genera. Mitochondrial DNA (COI gene) was amplified, revealing mislabelling in almost 30% of supermarket products and almost exclusively found in frozen samples (95% of the total) regardless of its price. In addition, products from the Pacific Ocean seem to be particularly susceptible to mislabelling. CONCLUSIONS: All in all, recommendations for the consumer in order to avoid mislabelling of prawns include purchasing them fresh from fishmongers; aquaculture products must not be avoided. This study represents, to our knowledge, the first attempt to provide recommendations to consumers based on DNA analyses in order to avoid mislabelling in food products. Further research is therefore required to provide such recommendations in different food products, particularly those that are processed, packaged and/or frozen. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

6.
J Fish Biol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031978

ABSTRACT

Barathronus is a genus of blind cusk eels comprising 11 valid species. In this paper, we report the second specimen ever documented of Barathronus roulei (Bythitidae) obtained from the Porcupine Bank by R.V. Vizconde de Eza using a bottom trawl at a depth of 1349 m. Morphological description and illustrations, including a radiograph, are provided. In addition, three new sequences corresponding to three different genes, cytochrome c oxidase subunit I (COI)-DNA barcoding, 16S ribosomal RNA (16S), and recombination activating protein 1 (RAG1), have been added to the molecular repositories, representing the first sequences for the species.

7.
BMC Infect Dis ; 24(1): 724, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044181

ABSTRACT

BACKGROUND: The Anopheles hyrcanus group is distributed throughout the Oriental and Palaearctic regions and can transmit diseases such as malaria, Japanese encephalitis virus, and filariasis. This investigation marks the inaugural comprehensive study to undertake a phylogenetic analysis of the constituents of this malaria vector group in the northeastern region of Iran, juxtaposed with documented occurrences from different areas within Iran and worldwide. METHODS: Mosquitoes were collected using various methods from nine different locations in Golestan province from April to December 2023. The collected mosquitoes were identified morphologically using valid taxonomic keys. DNA was isolated using the Sambio™ Kit. COI and ITS2 primers were designed using Oligo7 and GeneRunner. PCR and purification were performed with the Qiagen kit. Subsequently, sequencing was carried out at the Mehr Mam GENE Center using an Applied Biosystems 3730XL sequencer. The nucleotide sequences were then analyzed and aligned with GenBank data using BioEdit. Kimura 2-parameter was Utilized for base substitutions. DNA models were selected based on AIC and BIC criteria. Bayesian and Maximum Likelihood trees were constructed, along with a haplotype network. Molecular diversity statistics computed using DnaSP software. RESULTS: In this study, a total of 819 adult mosquitoes were collected. An. hyrcanus was the second most abundant species, predominantly found in Kalaleh and Turkman counties. The sequenced and edited COI and ITS2 sequences were deposited in GenBank under specific accession numbers. Phylogenetic analyses using ML, BI, and NJ methods confirmed a monophyletic lineage for An. hyrcanus with strong support. Molecular analysis of Iranian An. hyrcanus found 11 diverse haplotypes, with the COI gene displaying low diversity. The ITS2 gene revealed two clades - one associating with Iran, Europe, and Asia; the other originating from southwestern Iran. The haplotype network showed two main groups - one from southwest Iran and the other from north Iran. Iran exhibited six distinct haplotypes, while Turkey showcased the highest diversity. CONCLUSIONS: An. hyrcanus in southwestern Iran exhibits a distinct haplogroup, suggesting possible subspecies differentiation. Additional studies are required to validate this phenomenon.


Subject(s)
Anopheles , Electron Transport Complex IV , Mosquito Vectors , Phylogeny , Animals , Iran , Anopheles/genetics , Anopheles/classification , Electron Transport Complex IV/genetics , Mosquito Vectors/genetics , Mosquito Vectors/classification , Haplotypes , Genetic Variation , Genetics, Population , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics
8.
Natl Sci Rev ; 11(7): nwae183, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055168

ABSTRACT

Ultrasensitive protein identification is of paramount importance in basic research and clinical diagnostics but remains extremely challenging. A key bottleneck in preventing single-molecule protein sequencing is that, unlike the revolutionary nucleic acid sequencing methods that rely on the polymerase chain reaction (PCR) to amplify DNA and RNA molecules, protein molecules cannot be directly amplified. Decoding the proteins via amplification of certain fingerprints rather than the intact protein sequence thus represents an appealing alternative choice to address this formidable challenge. Herein, we report a proof-of-concept method that relies on residue-resolved DNA barcoding and composition code counting for amplifiable protein fingerprinting (AmproCode). In AmproCode, selective types of residues on peptides or proteins are chemically labeled with a DNA barcode, which can be amplified and quantified via quantitative PCR. The operation generates a relative ratio as the residue-resolved 'composition code' for each target protein that can be utilized as the fingerprint to determine its identity from the proteome database. We developed a database searching algorithm and applied it to assess the coverage of the whole proteome and secretome via computational simulations, proving the theoretical feasibility of AmproCode. We then designed the residue-specific DNA barcoding and amplification workflow, and identified different synthetic model peptides found in the secretome at as low as the fmol/L level for demonstration. These results build the foundation for an unprecedented amplifiable protein fingerprinting method. We believe that, in the future, AmproCode could ultimately realize single-molecule amplifiable identification of trace complex samples without further purification, and it may open a new avenue in the development of next-generation protein sequencing techniques.

9.
Insects ; 15(7)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39057241

ABSTRACT

To date, five species of reddish-brown Neotriplax have been described, but their highly similar body color and other phenotypic traits make accurate taxonomy challenging. To clarify species-level taxonomy and validate potential new species, the cytochrome oxidase subunit I (COI) was used for phylogenetic analysis and the geometric morphometrics of elytron, pronotum, and hind wing were employed to distinguish all reddish-brown Neotriplax species. Phylogenetic results using maximum likelihood and Bayesian analyses of COI sequences aligned well with the current taxonomy of the Neotriplax species group. Significant K2P divergences, with no overlap between intra- and interspecific genetic distances, were obtained in Neotriplax species. The automatic barcode gap discovery (ABGD), assemble species by automatic partitioning (ASAP), and generalized mixed Yule coalescent (GMYC) approaches concurred, dividing the similar species into eight molecular operational taxonomic units (MOTUs). Geometric morphometric analysis using pronotum, elytron, hind wing shape and wing vein patterns also validated the classification of all eight species. By integrating these analytical approaches with morphological evidence, we successfully delineated the reddish-brown species of Neotriplax into eight species with three new species: N. qinghaiensis sp. nov., N. maoershanensis sp. nov., and N. guangxiensis sp. nov. Furthermore, we documented the first record of N. lewisii in China. This study underscores the utility of an integrative taxonomy approach in species delimitation within Neotriplax and serves as a reference for the taxonomic revision of other morphologically challenging beetles through integrative taxonomy.

10.
Food Chem X ; 23: 101563, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38984293

ABSTRACT

Bread is an important staple food that is susceptible to spoilage, making it one of the most wasted foods. To determine the safety of partially moldy bread, five types of bread were inoculated with common mold species. After incubation, the metabolite profile was determined in and under the inoculation spot, as well as at a lateral distance of 3 cm from the moldy spot. The result showed that the metabolites were exclusively concentrated in the inoculation area and directly below the inoculation area. The only exception was citrinin, a mycotoxin produced by Penicillia such as Penicillium citrinum, which was detected in almost all tested bread areas when inoculated with the corresponding strains. The results of our study suggest that the removal of moldy parts may be a solution to reduce food waste if the remaining bread is to be used, for example for insect farming to produce animal feed.

11.
Ecol Evol ; 14(7): e11622, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979002

ABSTRACT

Torinido-shoujoubae, as it is called in Japanese, is a flightless Drosophila sp. that is sold commercially in Japan. This Drosophila sp. is often used as feeds for model organisms such as reptiles and spiders. There is no scientific name provided for the fruit fly that is known as Torinido-shoujoubae, as well as any historical background or data behind this species. There has been a previous study that was conducted through morphological characteristics analysis of the body as well as the male copulatory organ and has been estimated as Drosophila hydei. The objective of this study was to determine the species of this unidentified fly known as Torinido-shoujoubae based on a molecular evidence with a DNA barcoding. Samples were purchased from four separate suppliers to examine whether there are any differences between them. COI regions were amplified using PCR and the sequenced results were aligned against two databases, NCBI and BOLD. Torinido-shoujoubae samples provided from all suppliers were confirmed to be D. hydei.

12.
Int J Legal Med ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985195

ABSTRACT

The importance of non-human DNA in the forensic field has increased greatly in recent years, together with the type of applications. The molecular species identification of animal and botanical material may be crucial both for wildlife trafficking and crime scene investigation. However, especially for forensic botany, several challenges slow down the implementation of the discipline in the routine.Although the importance of molecular analysis of animal origin samples is widely recognized and the same value is acknowledged to the botanical counterpart, the latter does not find the same degree of application.The availability of molecular methods, especially useful in cases where the material is fragmented, scarce or spoiled preventing the morphological identification, is not well known. This work is intended to reaffirm the relevance of non-human forensic genetics (NHFG), highlighting differences, benefits and pitfalls of the current most common molecular analysis workflow for animal and botanical samples, giving a practical guide. A flowchart describing the analysis paths, divided in three major working areas (inspection and sampling, molecular analysis, data processing and interpretation), is provided. More real casework examples of the utility of non-human evidence in forensic investigations should be shared by the scientific community, especially for plants. Moreover, concrete efforts to encourage initiatives in order to promote quality and standardization in the NHFG field are also needed.

13.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000014

ABSTRACT

Based on the nucleotide sequences of the mitochondrial genome (mitogenome) of specimens taken from two mussel species (Arcuatula senhousia and Mytilus coruscus), an investigation was performed by means of the complex approaches of the genomics, molecular phylogenetics, and evolutionary genetics. The mitogenome structure of studied mussels, like in many other invertebrates, appears to be much more variable than in vertebrates and includes changing gene order, duplications, and deletions, which were most frequent for tRNA genes; the mussel species' mitogenomes also have variable sizes. The results demonstrate some of the very important properties of protein polypeptides, such as hydrophobicity and its determination by the purine and pyrimidine nucleotide ratio. This fact might indirectly indicate the necessity of purifying natural selection for the support of polypeptide functionality. However, in accordance with the widely accepted and logical concept of natural cutoff selection for organisms living in nature, which explains its action against deleterious nucleotide substitutions in the nonsynonymous codons (mutations) and its holding of the active (effective) macromolecules of the polypeptides in a population, we were unable to get unambiguous evidence in favor of this concept in the current paper. Here, the phylogeny and systematics of mussel species from one of the largest taxons of bivalve mollusks are studied, the family known as Mytilidae. The phylogeny for Mytilidae (order Mytilida), which currently has no consensus in terms of systematics, is reconstructed using a data matrix of 26-27 mitogenomes. Initially, a set of 100 sequences from GenBank were downloaded and checked for their gender: whether they were female (F) or male (M) in origin. Our analysis of the new data confirms the known drastic differences between the F/M mitogenome lines in mussels. Phylogenetic reconstructions of the F-lines were performed using the combined set of genetic markers, reconstructing only protein-coding genes (PCGs), only rRNA + tRNA genes, and all genes. Additionally, the analysis includes the usage of nucleotide sequences composed of other data matrices, such as 20-68 mitogenome sequences. The time of divergence from MRCA, estimated via BEAST2, for Mytilidae is close to 293 Mya, suggesting that they originate in the Silurian Period. From all these data, a consensus for the phylogeny of the subfamily of Mytilinae and its systematics is suggested. In particular, the long-debated argument on mussel systematics was resolved as to whether Mytilidae, and the subfamily of Mytilinae, are monophyletic. The topology signal, which was strongly resolved in this paper and in the literature, has refuted the theory regarding the monophyly of Mytilinae.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Phylogeny , Animals , Genome, Mitochondrial/genetics , Mytilidae/genetics , Mytilidae/classification , RNA, Transfer/genetics , Bivalvia/genetics , Bivalvia/classification , Mytilus/genetics , Mytilus/classification
14.
Mol Ecol Resour ; 24(6): e13987, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38956928

ABSTRACT

The utility of a universal DNA 'barcode' fragment (658 base pairs of the Cytochrome C Oxidase I [COI] gene) has been established as a useful tool for species identification, and widely criticized as one for understanding the evolutionary history of a group. Large amounts of COI sequence data have been produced that hold promise for rapid species identification, for example, for biosecurity. The fruit fly tribe Dacini holds about a thousand species, of which 80 are pests of economic concern. We generated a COI reference library for 265 species of Dacini containing 5601 sequences that span most of the COI gene using circular consensus sequencing. We compared distance metrics versus monophyly assessments for species identification and although we found a 'soft' barcode gap around 2% pairwise distance, the exceptions to this rule dictate that a monophyly assessment is the only reliable method for species identification. We found that all fragments regularly used for Dacini fruit fly identification >450 base pairs long provide similar resolution. 11.3% of the species in our dataset were non-monophyletic in a COI tree, which is mostly due to species complexes. We conclude with recommendations for the future generation and use of COI libraries. We revise the generic assignment of Dacus transversus stat. rev. Hardy 1982, and Dacus perpusillus stat. rev. Drew 1971 and we establish Dacus maculipterus White 1998 syn. nov. as a junior synonym of Dacus satanas Liang et al. 1993.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Animals , DNA Barcoding, Taxonomic/methods , Electron Transport Complex IV/genetics , Phylogeny , Sequence Analysis, DNA/methods , Tephritidae/genetics , Tephritidae/classification
15.
Heliyon ; 10(11): e32297, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947432

ABSTRACT

The authentication process involves all the supply chain stakeholders, and it is also adopted to verify food quality and safety. Food authentication tools are an essential part of traceability systems as they provide information on the credibility of origin, species/variety identity, geographical provenance, production entity. Moreover, these systems are useful to evaluate the effect of transformation processes, conservation strategies and the reliability of packaging and distribution flows on food quality and safety. In this manuscript, we identified the innovative characteristics of food authentication systems to respond to market challenges, such as the simplification, the high sensitivity, and the non-destructive ability during authentication procedures. We also discussed the potential of the current identification systems based on molecular markers (chemical, biochemical, genetic) and the effectiveness of new technologies with reference to the miniaturized systems offered by nanotechnologies, and computer vision systems linked to artificial intelligence processes. This overview emphasizes the importance of convergent technologies in food authentication, to support molecular markers with the technological innovation offered by emerging technologies derived from biotechnologies and informatics. The potential of these strategies was evaluated on real examples of high-value food products. Technological innovation can therefore strengthen the system of molecular markers to meet the current market needs; however, food production processes are in profound evolution. The food 3D-printing and the introduction of new raw materials open new challenges for food authentication and this will require both an update of the current regulatory framework, as well as the development and adoption of new analytical systems.

16.
Front Pharmacol ; 15: 1371890, 2024.
Article in English | MEDLINE | ID: mdl-38948467

ABSTRACT

Introduction: Rhubarb is a frequently used and beneficial traditional Chinese medicine. Wild resources of these plants are constantly being depleted, meaning that rhubarb products have been subjected to an unparalleled level of adulteration. Consequentially, reliable technology is urgently required to verify the authenticity of rhubarb raw materials and commercial botanical drugs. Methods: In this study, the barcode-DNA high-resolution melting (Bar-HRM) method was applied to characterize 63 rhubarb samples (five Polygonaceae species: Rheum tanguticum, Rh. palmatum, Rh. officinale, Rumex japonicus and Ru. sp.) and distinguish the rhubarb contents of 24 traditional Chinese patent medicine (TCPM) samples. Three markers, namely ITS2, rbcL and psbA-trnH, were tested to assess the candidate DNA barcodes for their effectiveness in distinguishing rhubarb from its adulterants. A segment from ITS2 was selected as the most suitable mini-barcode to identify the botanical drug rhubarb in TCPMs. Then, rhubarbs and TCPM samples were subjected to HRM analysis based on the ITS2 barcode. Results: Among the tested barcoding loci, ITS2 displayed abundant sites of variation and was effective in identifying Polygonaceae species and their botanical origins. HRM analysis based on the ITS2 mini-barcode region successfully distinguished the authenticity of five Polygonaceae species and eight batches of TCPMs. Of the 18 TCPM samples, 66.7 % (12 samples) were identified as containing Rh. tanguticum or Rh. officinale. However, 33.3 % were shown to consist of adulterants. Conclusions: These results demonstrated that DNA barcoding combined with HRM is a specific, suitable and powerful approach for identifying rhubarb species and TCPMs, which is crucial to guaranteeing the security of medicinal plants being traded internationally.

17.
Ecol Evol ; 14(7): e11677, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962021

ABSTRACT

The hemiparasitic tribe Cymbarieae (Orobanchaceae) plays a crucial role in elucidating the initial stage of the transition from autotrophism to heterotrophism. However, the complete chloroplast genome of the type genus Cymbaria has yet to be reported. In addition, the traditional Mongolian medicine Cymbaria daurica is frequently subjected to adulteration or substitution because of the minor morphological differences with Cymbaria mongolica. In this study, the complete chloroplast genomes of the two Cymbaria species were assembled and annotated, and those of other published 52 Orobanchaceae species were retrieved for comparative analyses. We found that the Cymbaria chloroplast genomes are characterized by pseudogenization or loss of stress-relevant genes (ndh) and a unique rbcL-matK inversion. Unlike the high variability observed in holoparasites, Cymbaria and other hemiparasites exhibit high similarity to autotrophs in genome size, guanine-cytosine (GC) content, and intact genes. Notably, four pairs of specific DNA barcodes were developed and validated to distinguish the medicinal herb from its adulterants. Phylogenetic analyses revealed that the genus Cymbaria and the Schwalbea-Siphonostegia clade are grouped into the tribe Cymbarieae, which forms a sister clade to the remaining Orobanchaceae parasitic lineages. Moreover, the diversification of monophyletic Cymbaria occurred during the late Miocene (6.72 Mya) in the Mongol-Chinese steppe region. Our findings provide valuable genetic resources for studying the phylogeny of Orobanchaceae and plant parasitism, and genetic tools to validate the authenticity of the traditional Mongolian medicine "Xinba.".

18.
MycoKeys ; 106: 327-354, 2024.
Article in English | MEDLINE | ID: mdl-39006907

ABSTRACT

Micarea (Ascomycota, Pilocarpaceae) is a large cosmopolitan genus of crustose lichens. We investigated molecular systematics and taxonomy of the poorly known Micareamelaeniza group focussing on M.melaeniza, M.nigella and M.osloensis. A total of 54 new sequences were generated and using Bayesian and maximum likelihood analysis of two markers (nuITS and mtSSU), we discovered two previously unrecognized phylogenetic lineages, one of which is described here as Micareaeurasiatica Kantelinen & G. Thor, sp. nov., morphologically characterized by pycnidia that are sessile to emergent, cylindrically shaped, with greenish-black K+ olive green, wall pigmentation and containing large mesoconidia up to 6 µm in length. The species is known from Japan and Finland. In addition, we show that the reproduction biology of M.osloensis has been poorly understood and that the species often occurs as an anamorph with stipitate pycnidia. We present a species synopsis and notes on pigments. Our research supports previous results of asexuality being an important reproductive strategy of species growing on dead wood.

19.
Biodivers Data J ; 12: e125601, 2024.
Article in English | MEDLINE | ID: mdl-39015799

ABSTRACT

Background: The spider genus Argiope Audouin, 1826, comprises 88 species worldwide, including 23 species occurring in China. Two Argiope species were collected by the spider survey on Yarlung Zangbo Grand Canyon National Nature Reserve, Xizang, southwest China, conducted in 2023. New information: Two species of the orb-weaver spider genus Argiope from Xizang, China are described, including a new species, A.beibeng Mi & Wang, sp. nov. (♂♀) and a known species, A.caesarea Thorell, 1897 (♂♀). The unknown male of A.caesarea is described for the first time.

20.
Biodivers Data J ; 12: e125914, 2024.
Article in English | MEDLINE | ID: mdl-39070712

ABSTRACT

Species identification of stony corals (Scleractinia), which are regulated under the Convention on International Trade in Endangered Species of Wild Fauna and Flora, is critical for effective control of harvest quotas, enforcement of trade regulations and species conservation in general. DNA barcoding has the potential to enhance species identification success, depending on the specific taxon concerned and genetic markers used. For Acropora, DNA barcoding, based on the mitochondrial putative control region (mtCR) and the nuclear PaxC intron (PaxC), has been commonly used for species identification and delimitation, but the reliability and robustness of these loci remain contentious. Therefore, we sought to verify the applicability of this approach. In this study, we obtained 127 Acropora colonies from the aquarium trade to test the effectiveness of barcoding mtCR and PaxC for species identification. We were able to recover sequences for both loci in over half of the samples (n = 68), while gene amplification and sequencing of mtCR (n = 125) outperformed PaxC (n = 70). Amongst the 68 samples with both loci recovered, just a single sample could be unambiguously identified to species. Preliminary identities, based on only one gene, were assigned for 40 and 65 samples with mtCR and PaxC, respectively. Further analyses of 110 complete mitochondrial genomes obtained from GenBank showed that, despite the full length of the sequences, only eight species were delimited, of which only three species were correspondingly monophyletic. Therefore, we conclude that the commonly used DNA barcoding markers for Acropora are ineffective for accurate species assignments due to limited variability in both markers and even across the entire mitochondrial genome. Therefore, we propose that barcoding markers should generally not be the only means for identifying corals.

SELECTION OF CITATIONS
SEARCH DETAIL
...