Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
J Appl Genet ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922510

ABSTRACT

The Trigonella species possess medicinal, nutraceutical and pharmaceutical properties due to the presence of many bioactive compounds. Its therapeutic effects are mostly valuable in medicine, cosmetics and the functional food industry. Correct genetic characterisation of plant material is needed to increase the potential of Trigonella species by breeding and conservation programs. The aim of this study was to develop a reliable marker system to support the morphological and phytochemical analysis in Trigonella taxonomic research, species identification and characterization as well as determination of the interspecific variation within this genus along with relationships between species. For this purpose, flow cytometry and SCoT molecular markers were combined. Flow cytometric analyses revealed that Trigonella species possess very small and small genomes. The range of genome sizes was from 1.10 to 5.76 pg/2C, with most species possessing very small genomes (< 2.8 pg/2C). In seeds of 14 species endopolyploid nuclei were detected. Flow cytometric analysis of genome size enabled quick identification of four out of 20 species, while combined with endopolyploidy detection in seeds, facilitated distinction of the next seven species. ScoT molecular markers helped to identify closely related species with similar genome size and cell cycle activity. Therefore, flow cytometry was proposed as the first-choice method for quick accession screening, while the more detailed genetic classification was obtained using SCoT molecular markers.

2.
Genes (Basel) ; 15(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927647

ABSTRACT

Sesamum indicum L. (Pedaliaceae) is one of the most economically important oil crops in the world, thanks to the high oil content of its seeds and its nutritional value. It is cultivated all over the world, mainly in Asia and Africa. Well adapted to arid environments, sesame offers a good opportunity as an alternative subsistence crop for farmers in Africa, particularly Niger, to cope with climate change. For the first time, the variation in genome size among 75 accessions of the Nigerien germplasm was studied. The sample was collected throughout Niger, revealing various morphological, biochemical and phenological traits. For comparison, an additional accession from Thailand was evaluated as an available Asian representative. In the Niger sample, the 2C DNA value ranged from 0.77 to 1 pg (753 to 978 Mbp), with an average of 0.85 ± 0.037 pg (831 Mbp). Statistical analysis showed a significant difference in 2C DNA values among 58 pairs of Niger accessions (p-value < 0.05). This significant variation indicates the likely genetic diversity of sesame germplasm, offering valuable insights into its possible potential for climate-resilient agriculture. Our results therefore raise a fundamental question: is intraspecific variability in the genome size of Nigerien sesame correlated with specific morphological and physiological traits?


Subject(s)
Genome Size , Genome, Plant , Sesamum , Sesamum/genetics , Niger , Genetic Variation , Seeds/genetics
3.
Sci Total Environ ; 932: 173014, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729362

ABSTRACT

BACKGROUND: Telomere length (TL) and mitochondrial function expressed as mitochondrial DNA copy number (mtDNAcn) are biomarkers of aging and oxidative stress and inflammation, respectively. Methylmercury (MeHg), a common pollutant in fish, induces oxidative stress. We hypothesized that elevated oxidative stress from exposure to MeHg decreases mtDNAcn and shortens TL. METHODS: Study participants are 6-11-year-old children from the HELIX multi-center birth cohort study, comprising six European countries. Prenatal and postnatal total mercury (THg) concentrations were measured in blood samples, TL and mtDNAcn were determined in child DNA. Covariates and confounders were obtained by questionnaires. Robust regression models were run, considering sociodemographic and lifestyle covariates, as well as fish consumption. Sex, ethnicity, and fish consumption interaction models were also run. RESULTS: We found longer TL with higher pre- and postnatal THg blood concentrations, even at low-level THg exposure according to the RfD proposed by the US EPA. The prenatal association showed a significant linear relationship with a 3.46 % increase in TL for each unit increased THg. The postnatal association followed an inverted U-shaped marginal non-linear relationship with 1.38 % an increase in TL for each unit increased THg until reaching a cut-point at 0.96 µg/L blood THg, from which TL attrition was observed. Higher pre- and postnatal blood THg concentrations were consistently related to longer TL among cohorts and no modification effect of fish consumption nor children's sex was observed. No association between THg exposure and mtDNAcn was found. DISCUSSION: We found evidence that THg is associated with TL but the associations seem to be time- and concentration-dependent. Further studies are needed to clarify the mechanism behind the telomere changes of THg and related health effects.


Subject(s)
DNA, Mitochondrial , Mercury , Telomere , Humans , Child , Mercury/blood , Female , Male , Europe , Environmental Exposure , Methylmercury Compounds , Oxidative Stress
4.
Methods Cell Biol ; 186: 271-309, 2024.
Article in English | MEDLINE | ID: mdl-38705604

ABSTRACT

This chapter was originally written in 2011. The idea was to give some history of cell cycle analysis before and after flow cytometry became widely accessible; provide references to educational material for single parameter DNA content analysis, introduce and discuss multiparameter cell cycle analysis in a methodological style, and in a casual style, discuss aspects of the work over the last 40years that we have given thought, performing some experiments, but didn't publish. It feels like there is a linear progression that moves from counting cells for growth curves, to counting labeled mitotic cells by autoradiography, to DNA content analysis, to cell cycle states defined by immunofluorescence plus DNA content analysis, to extraction of cell cycle expression profiles, and finally to probability state modeling, which should be the "right" way to analyze cytometric cell cycle data. This is the sense of this chapter. In 2023, we have updated it, but the exciting, expansive aspects brought about by spectral and mass cytometry are still young and developing, and thus have not been vetted, reviewed, and presented in mature form.


Subject(s)
Cell Cycle , Flow Cytometry , Animals , Humans , DNA , Flow Cytometry/methods
5.
Mol Biol Rep ; 51(1): 489, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578370

ABSTRACT

BACKGROUND: The determination of genome size is a fundamental step which provides a basis to initiate studies aimed at deciphering the genetic similarity of a species and to carry out other genomics based investigations. Fenugreek (Trigonella spp.) is an important spice crop which has numerous health promoting phytochemicals. Many species within this genus are known for their various health benefits owing to the presence of a wide diversity of important phytochemicals like diosgenin, trigonelline, fenugreekine, galactomannan, 4-hydroxy isoleucine, etc. It is a multipurpose crop being cultivated for food, animal feed and industrial purposes. Despite its importance, research on the genomics aspect of fenugreek remains scant. In the absence of sufficient genomic information, crop improvement in fenugreek is severely lagging. METHODS AND RESULTS: Estimation of genome size of a species is the preliminary step for initiation of any genomic studies and therefore in the present study we have estimated the genome size for fenugreek. Here, we have determined the genome sizes of three different Trigonella spp. namely T. foenum-graecum, T. corniculata and T. caerulea through flow cytometry (FC). The 2 C DNA content values were found to be 6.05 pg (T. foenum-graecum), 1.83 pg (T. corniculata) and 1.96 pg (T. caerulea). The genome size of T. foenum-graecum is approximately three times the genome size of T. corniculata and T. caerulea. This variation in genome size of more than three-fold indicates the level of genetic divergence among the three species, though within the same genus. CONCLUSIONS: The differences observed in the genome sizes of the three species provide conclusive evidence of their genetic divergence. Additionally, the information about the genome size would provide an impetus to the structural and functional genomics-based research in this crop.


Subject(s)
Trigonella , Animals , Trigonella/genetics , Trigonella/chemistry , Genome Size , Flow Cytometry , Plant Extracts , Biological Evolution
6.
Cryobiology ; 115: 104899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663664

ABSTRACT

In biotechnological processes such as chromosomal manipulation studies, semen has become a reference in the ploidy verification of the evaluated material. However, the use of fresh samples is limited to the use at field conditions because the analysis is performed under laboratory conditions. Thus, this study aimed to develop a simpler procedure for storing dry semen at 28 °C to reduce cold storage costs. For this, semen samples were evaluated according to established quality semen parameters, a protocol for dry, and 3 sterilization treatments of dry semen were applied to the store. The integrity of the DNA was evaluated every two months, using fresh semen, dry semen (untreated), and particles 3C to compare the peaks by flow cytometry. The results indicated that all samples evaluated before and after drying showed no significant difference in the DNA content. UV-treated semen showed a 1C peak in the histogram up to 180 days of storage and a non-significant difference (P > 0.05) from fresh control in the number of DNA particles up to 120 days and untreated only showed a 1C peak up to 120 days. The developed method may become an interesting procedure to serve as a reference peak for practical flow cytometric analysis, not only in the field of fish biology but also in biomedical and agricultural sciences. Furthermore, dried semen can become a tool for the preservation of genetic material and is a promising low-cost storage technique for biobanking.


Subject(s)
DNA , Flow Cytometry , Semen Preservation , Spermatozoa , Flow Cytometry/methods , Male , Semen Preservation/methods , Semen Preservation/veterinary , Spermatozoa/cytology , Animals , DNA/analysis , Cold Temperature , Cryopreservation/methods , Semen Analysis/methods , Desiccation/methods , Ultraviolet Rays
7.
Protoplasma ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467939

ABSTRACT

The genus Vigna (Leguminosae) comprises about 150 species grouped into five subgenera. The present study aimed to improve the understanding of karyotype diversity and evolution in Vigna, using new and previously published data through different cytogenetic and DNA content approaches. In the Vigna subgenera, we observed a random distribution of rDNA patterns. The 35S rDNA varied in position, from terminal to proximal, and in number, ranging from one (V. aconitifolia, V. subg. Ceratotropis) to seven pairs (V. unguiculata subsp. unguiculata, V. subg. Vigna). On the other hand, the number of 5S rDNA was conserved (one or two pairs), except for V. radiata (V. subg. Ceratotropis), which had three pairs. Genome size was relatively conserved within the genus, ranging from 1C = 0.43 to 0.70 pg in V. oblongifolia and V. unguiculata subsp. unguiculata, respectively, both belonging to V. subg. Vigna. However, we observed a positive correlation between DNA content and the number of 35S rDNA sites. In addition, data from chromosome-specific BAC-FISH suggest that the ancestral 35S rDNA locus is conserved on chromosome 6 within Vigna. Considering the rapid diversification in the number and position of rDNA sites, such conservation is surprising and suggests that additional sites may have spread out from this ancestral locus.

8.
Plants (Basel) ; 13(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38475579

ABSTRACT

Flow cytometry (FCM) is a widely used technique to study genome size (C-value), but recalcitrant metabolites in grapevines often hinder its efficiency in grapevine research. The aim of the present study was (i) to develop a novel buffer tailormade for the nuclei isolation of grapevines and (ii) to characterize a Cypriot germplasm collection based on C-values. A local cultivar "Xinisteri" was used as a pilot test to evaluate a Sorbitol-based buffer, while sprouting, young, and fully matured leaves were examined to evaluate the developmental parameter. The novel Sorbitol buffer was shown to have a coefficient of variation (CV) of 4.06%, indicating improved properties compared to other commonly used FCM buffers [WPB (7.69%), LB01 (6.69%), and LB (7.13%), respectively]. In addition, a significant variation in genome size between genotypes was found in a comprehensive application with 24 grape varieties. Nucleic content (2C) ranged from 0.577/1C pg for the "Assyrtiko" cultivar up to 0.597/1C pg for the "Spourtiko" cultivar, revealing a 17.6/1C Mbp difference. The lowest coefficient of variation (CV) across all entries was found in the variety "Ofthalmo" (2.29%), while the highest was observed in "Pinot Noir" (3.44%). Anova analysis revealed several distinct clusters, showing that in several cases, C-values can be used as a simple method to distinguish grapevine cultivars.

9.
Eur J Protistol ; 93: 126061, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394997

ABSTRACT

Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a range of 3-250 pg of genomic DNA per cell. In contrast to their relatively small cell size, their genomes are huge (about 1-80 times the human haploid genome). In the present study, we collected the genome and cell size data of dinoflagellates and compared their relationships. We found that dinoflagellate genome size exhibits a positive correlation with cell size. On the other hand, we recognized that the genome size is not correlated with phylogenetic relatedness. These may be caused by genome duplication, increased gene copy number, repetitive non-coding DNA, transposon expansion, horizontal gene transfer, organelle-to-nucleus gene transfer, and/or mRNA reintegration into the genome. Ultimate verification of these factors as potential causative mechanisms would require sequencing of more dinoflagellate genomes in the future.


Subject(s)
Dinoflagellida , Humans , Phylogeny , Dinoflagellida/genetics , Genome/genetics , Biological Evolution , DNA
10.
New Phytol ; 242(2): 744-759, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38264772

ABSTRACT

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Subject(s)
Magnoliopsida , Magnoliopsida/genetics , Genome Size , Genome, Plant , Polyploidy , Plants/genetics , Phylogeny
11.
Clin Gastroenterol Hepatol ; 22(4): 741-748.e2, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37879518

ABSTRACT

BACKGROUND & AIMS: The aim of this study was to characterize baseline morphologic features of crypts in nondysplastic Barrett's esophagus and correlate them with DNA content abnormalities and risk of progression to high-grade dysplasia (HGD) or esophageal adenocarcinoma (EAC). METHODS: The morphologic features of nondysplastic crypts in baseline biopsy specimens from 212 BE patients (2956 biopsy specimens) were graded histologically using a 4-point scale (crypt atypia levels, 0-3). DNA content abnormalities were detected using flow cytometry. RESULTS: In patients who had dysplasia in their baseline biopsy specimens, dysplasia was associated significantly with increasing grades of crypt atypia in the background nondysplastic Barrett's esophagus (P < .001). In a subset of patients without dysplasia at baseline (N = 149), a higher grade of crypt atypia was associated with longer Barrett's esophagus segment length (5.5 vs 3.3 cm; P = .0095), and a higher percentage of cells with 4N DNA content (3.67 ± 1.27 vs 2.93 ± 1.22; P = .018). Crypt atypia was associated with the development of any neoplasia (low-grade dysplasia and HGD/EAC). Although no significant association was noted between the grade of crypt atypia and increased 4N, aneuploidy, or progression to HGD/EAC, only patients with grade 2 or 3 crypt atypia showed increased 4N, aneuploidy, or progression to HGD/EAC. CONCLUSIONS: Patients with Barrett's esophagus likely develop dysplasia via a progressive increase in the level of crypt atypia before the onset of dysplasia, and these changes may reflect some alteration of DNA content.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Precancerous Conditions , Humans , Barrett Esophagus/complications , Esophageal Neoplasms/pathology , Aneuploidy , Hyperplasia , DNA , Outcome Assessment, Health Care , Disease Progression , Precancerous Conditions/pathology
12.
Turk J Med Sci ; 53(4): 883-893, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38031951

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide. Many factors such as stress, lifestyle, and dietary habits are known to play a role in the initiation and progression of the disease. Herbal therapeutic agents including curcumin can hold a great potential against cancer treatment; however, their efficacy on CRC is still under investigation. Herein, we evaluated the anticancer mechanism of curcumin on four different CRC cell lines. METHODS: Cells were treated with curcumin for 24, 48 and 72 h, and IC50 doses for each cell line were calculated. Mechanistic studies were conducted with the lowest IC50 dose determined for each cell line by evaluating apoptosis and necrosis, cell division, and NLRP3-mediated pyroptosis. RESULTS: Curcumin treatment significantly decreased viability while increasing the SubG1 phase in all cell lines tested, indicating apoptosis is the main programmed cell death pathway activated upon curcumin treatment in CRC. In terms of pyroptosis, components of NLRP3 inflammasome were found to be elevated in SW480 and HCT116 cell lines, although to a lesser extent in the latter, and NLRP3 inflammasome activation was not observed in LoVo and HT29 cells. DISCUSSION: Our results reveal that while curcumin effectively induces apoptosis, its effects on NLRP3-inflammasome mediated pyroptosis vary. Our results underline the need for further research focusing on the other inflammasome complexes to confirm the differential effects of curcumin on CRC.


Subject(s)
Colorectal Neoplasms , Curcumin , Humans , Apoptosis , Colorectal Neoplasms/drug therapy , Curcumin/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis
13.
Article in English | MEDLINE | ID: mdl-37989949

ABSTRACT

Aquatic species are exposed to a wide spectrum of substances, which can compromise their genomic integrity by inducing DNA damage or oxidative stress. Genotoxicity biomarkers as DNA strand breaks and chromosomal damages developed on sentinel species have already proved to be relevant in aquatic biomonitoring. However, these biomarkers do not reflect DNA oxidative lesions, i.e., the 8-oxodG, recognized as pre-mutagenic lesion if not or mis-repaired in human biomonitoring. The relevance to include the measure of these lesions by using the Fpg-modified comet assay on erythrocytes of the three-spined stickleback was investigated. An optimization step of the Fpg-modified comet assay considering enzyme buffer impact, Fpg concentration, and incubation time has been performed. Then, this measure was integrated in a battery of genotoxicity and cytotoxicity biomarkers (considering DNA strand breaks, DNA content variation, and cell apoptosis/necrosis and density) and applied in a freshwater monitoring program on six stations of the Artois Picardie watershed (3-week caging of control fish). These biomarkers allowed to discriminate the stations regarding the genotoxic potential of water bodies and specifically by the measure of oxidative DNA lesions, which seem to be a promising tool in environmental genotoxicity risk assessment.

14.
Ann Bot ; 132(7): 1249-1258, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37823772

ABSTRACT

BACKGROUND AND AIMS: Endoreduplication, the duplication of the nuclear genome without mitosis, is a common process in plants, especially in angiosperms and mosses. Accumulating evidence supports the relationship between endoreduplication and plastic responses to stress factors. Here, we investigated the level of endoreduplication in Ceratodon (Bryophyta), which includes the model organism Ceratodon purpureus. METHODS: We used flow cytometry to estimate the DNA content of 294 samples from 67 localities and found three well-defined cytotypes, two haploids and one diploid, the haploids corresponding to C. purpureus and Ceratodon amazonum, and the diploid to Ceratodon conicus, recombination occurring between the former two. KEY RESULTS: The endoreduplication index (EI) was significantly different for each cytotype, being higher in the two haploids. In addition, the EI of the haploids was higher during the hot and dry periods typical of the Mediterranean summer than during spring, whereas the EI of the diploid cytotype did not differ between seasons. CONCLUSIONS: Endopolyploidy may be essential in haploid mosses to buffer periods of drought and to respond rapidly to desiccation events. Our results also suggest that the EI is closely related to the basic ploidy level, but less so to the nuclear DNA content as previously suggested.


Subject(s)
Bryophyta , Bryopsida , Diploidy , Haploidy , Endoreduplication/genetics , Droughts , DNA
15.
J Environ Sci Health B ; 58(10): 617-627, 2023.
Article in English | MEDLINE | ID: mdl-37671814

ABSTRACT

The Ferronikel smelter in Drenas is one of the main industrial areas in the Kosovo and pollution by heavy metals causes serious threat for all living organisms on this area. The objective of this study was to determine the concentration of some heavy metals (Fe, Cu, Mn, Cr, Cd, Ni and Pb) in agricultural soils and in maize plants, and their potential toxic effects on this plant through some sensitive biochemical and molecular markers. Maize seedlings growth in nine soil samples from different locations of this area. The highest concentrations of heavy metals in soils and maize leaves were conducted close to the Ferronikel smelter, and in some locations, the nickel and chromium concertation in soils exceeded 800 mg kg-1. A significant effects of heavy metals induced toxicity resulted in the, build-up aminolevulinic acid and reduced activity of δ-aminolevulinic acid dehydratase, and chlorophyll content in the maize leaves. In general, maize seedlings growth in polluted locations showed an increase in nuclear DNA content and in G2M phase. We concluded that locations close to the smelter are affected by soil heavy metals pollution and these biochemical and molecular analysis would be a powerful ecotoxicological tool in biomonitoring of heavy metal pollution.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil/chemistry , Zea mays , Kosovo , Environmental Monitoring/methods , Soil Pollutants/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysis , Biomarkers , DNA Damage , Risk Assessment , China
16.
Protist ; 174(6): 125992, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37738738

ABSTRACT

Dinoflagellate genomes have a unique architecture that may constrain their physiological and biochemical responsiveness to environmental stressors. Here we quantified how nitrogen (N) starvation influenced macromolecular allocation and C:N:P of three photosynthetic marine dinoflagellates, representing different taxonomic classes and genome sizes. Dinoflagellates respond to nitrogen starvation by decreasing cellular nitrogen, protein and RNA content, but unlike many other eukaryotic phytoplankton examined RNA:protein is invariant. Additionally, 2 of the 3 species exhibit increases in cellular phosphorus and very little change in cellular carbon with N-starvation. As a consequence, N starvation induces moderate increases in C:N, but extreme decreases in N:P and C:P, relative to diatoms. Dinoflagellate DNA content relative to total C, N and P is much higher than similar sized diatoms, but similar to very small photosynthetic picoeukaryotes such as Ostreococcus. In aggregate these results indicate the accumulation of phosphate stores may be an important strategy employed by dinoflagellates to meet P requirements associated with the maintenance and replication of their large genomes.


Subject(s)
Diatoms , Dinoflagellida , Dinoflagellida/genetics , Dinoflagellida/metabolism , Phytoplankton/genetics , Diatoms/genetics , Diatoms/metabolism , Genomics , RNA , Nitrogen/metabolism
17.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L568-L579, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37697923

ABSTRACT

The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.


Subject(s)
Asthma , Electronic Nicotine Delivery Systems , Pneumonia , Humans , Adult , Male , Female , Mice , Animals , Nicotine/toxicity , Respiratory Aerosols and Droplets , Asthma/pathology , Lung/pathology , Pneumonia/pathology , Inflammation/pathology , Disease Models, Animal , DNA, Mitochondrial
18.
PhytoKeys ; 224: 1-88, 2023.
Article in English | MEDLINE | ID: mdl-37396566

ABSTRACT

The dandelions from Taraxacumsect.Erythrosperma are taxonomically well distinguished and ecologically restricted to warm and sunlit habitats of steppes, dry and sandy grasslands, and distributed in temperate regions of Europe and Central Asia, with some being introduced to North America. Despite the long tradition of botanical research, the taxonomy and distribution of dandelions of T.sect.Erythrosperma is still underexplored in central Europe. In this paper, by combining traditional taxonomic studies supported by micromorphological, molecular and flow cytometry analyses as well as potential distribution modelling we shed light on taxonomical and phylogenetical relationships between members of T.sect.Erythrosperma in Poland. We also provide an identification key, species-checklist, detailed descriptions of morphology and occupated habitats as well as distribution maps for 14 Polish erythrosperms (T.bellicum, T.brachyglossum, T.cristatum, T.danubium, T.disseminatum, T.dissimile, T.lacistophyllum, T.parnassicum, T.plumbeum, T.proximum, T.sandomiriense, T.scanicum, T.tenuilobum, T.tortilobum). Finally, conservation assessments performed using the IUCN method and threat categories for all the examined species are proposed.

19.
Curr Protoc ; 3(7): e825, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37428889

ABSTRACT

This article contains detailed protocols for the simultaneous flow cytometric identification of tumor cells and stromal cells and measurement of DNA content of formalin-fixed, paraffin-embedded (FFPE) tissues. The vimentin-positive stromal cell fraction can be used as an internal reference for accurate DNA content assessments of FFPE carcinoma tissues. This allows clear detection of keratin-positive tumor cells with a DNA index lower than 1.0 (near-haploidy) and of keratin-positive tumor cells with a DNA index close to 1.0 in overall DNA aneuploid samples, thus improving DNA ploidy assessment in FFPE carcinomas. Furthermore, the protocol is useful for studying molecular genetic alterations and intratumor heterogeneity in archival FFPE samples. Keratin-positive tumor cell fractions can be sorted for further molecular genetic analysis, while DNA from the sorted vimentin-positive stromal cells can serve as a reference when normal tissue of the patient is not available. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Multiparameter DNA content analysis of FFPE carcinomas Alternate Protocol 1: Immunocytochemistry for keratin and vimentin, and DNA labeling for blue and red excitation Alternate Protocol 2: Immunocytochemistry for keratin and vimentin, and DNA labeling for blue excitation Support Protocol: Sorting cell population from FFPE carcinomas.


Subject(s)
Carcinoma , Ploidies , Humans , Flow Cytometry/methods , Vimentin/genetics , Paraffin Embedding , DNA/genetics , DNA/analysis , Keratins/genetics , Keratins/analysis
20.
Gene ; 881: 147637, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37442306

ABSTRACT

The large size of the germplasm collection along with scanty information on their cytological and genome constitution have hindered well-planned breeding schemes in mulberry. To address the issue, a study was undertaken to investigate the variability in DNA content and genome size, chromosome number, ploidy and its relation with important stomatal characteristics among 162 mulberry germplasm collection. These germplasm comprise a core subset of 150 collections along with a representative collection of different mulberry species including the wild. Among the germplasm belonging to 16 species, we identified 122 diploids (2n = 28), 4 aneuploids (2n = 30), 13 triploids (2n = 42), 15 tetraploids (2n = 56), 7 hexaploids (2n = 84) and 1 dodecosaploid (2n = 308) based on the chromosome count. Most of the cultivated mulberries are found to be diploids. The mean nuclear 2C DNA content estimated by Flow cytometry, varied from 0.723 ± 0.006 pg (M. australis, 2n = 2x) to 7.732 pg (M. nigra, 2n = 22x). The 2C DNA content positively correlated with the ploidy status and stomatal length (r = 0.814, p < 0.001). Based on the 1Cx value, the study also suggests that the majority of the polyploid species have experienced genome downsizing in relation to their diploid progenitors. This study provides the most essential information on chromosome number, ploidy and DNA content to facilitate the utilization of a core subset of germplasm in the mulberry breeding program.


Subject(s)
Morus , Morus/genetics , Genome Size , DNA, Plant/genetics , Genome, Plant , Plant Breeding , Ploidies , Chromosomes, Plant/genetics , Triploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...