Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 509
Filter
1.
Front Microbiol ; 15: 1361217, 2024.
Article in English | MEDLINE | ID: mdl-39086653

ABSTRACT

Background: Staphylococcus aureus is an important pathogen that causes mild to invasive infections in hospitals and the community. Although methicillin-susceptible Staphylococcus aureus (MSSA) isolates continue to cause different infections, there is no data on the genetic backgrounds of the MSSA colonizing or causing infections in Kuwait hospitals. This study aimed to investigate MSSA isolated from patients admitted to Kuwait hospitals for antibiotic resistance and genetic backgrounds to understand their clonal composition. Methods: Consecutive MSSA isolates were collected from single patients during two surveillance periods in 2016 and 2021 in 13 public hospitals. The isolates were characterized using antibiogram, staphylococcal protein A (spa) typing, DNA microarray analysis, and multilocus sequence typing (MLST) using standard protocols. Results: A total of 446 MSSA was cultured from different clinical samples in 2016 (n = 240) and 2021 (n = 206). All isolates were susceptible to vancomycin [minimum inhibitory concentration (MIC) ≤ 2 mg/L], teicoplanin (MIC ≤2 mg/L), linezolid (MIC ≤4 mg/L), ceftaroline (MIC ≤2 mg/L), rifampicin, and mupirocin but were resistant to erythromycin (21.3%), clindamycin (14.0%), gentamicin (3.8%), kanamycin (10.5%), fusidic acid (27.0%), tetracycline (6.9%), trimethoprim (23.1%), and ciprofloxacin (35.2%). Molecular typing identified 155 spa types, dominated by t127 (15.0%), t084 (5.4%), t3841 (5.4%), t267 (2.4%), t442 (2.2%), t091 (2.2%), t021 (2.2%), and t003 (2.2%); 31 clonal complexes (CCs); and 56 sequence types (STs). The majority of the isolates (n = 265; 59.4%) belonged to CC1 (20.6%), CC15 (10.9%), CC22 (5.1%), CC30 (7.6%), CC361 (10.1%), and CC398 (4.7%). Discussion: The MSSA isolates belonged to diverse genetic backgrounds dominated by CC1, CC15, CC22, CC30, CC361, and CC398. The distribution of MSSA clones in 2016 and 2021 showed the stability of these clones over time. The study provides the first comprehensive data on the clonal distribution of MSSA in Kuwait hospitals.

2.
Comput Biol Med ; 179: 108833, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981212

ABSTRACT

This study provides a comprehensive perspective on the deregulated pathways and impaired biological functions prevalent in human glioblastoma (GBM). In order to characterize differences in gene expression between individuals diagnosed with GBM and healthy brain tissue, we have designed and manufactured a specific, custom DNA microarray. The results obtained from differential gene expression analysis were validated by RT-qPCR. The datasets obtained from the analysis of common differential expressed genes in our cohort of patients were used to generate protein-protein interaction networks of functionally enriched genes and their biological functions. This network analysis, let us to identify 16 genes that exhibited either up-regulation (CDK4, MYC, FOXM1, FN1, E2F7, HDAC1, TNC, LAMC1, EIF4EBP1 and ITGB3) or down-regulation (PRKACB, MEF2C, CAMK2B, MAPK3, MAP2K1 and PENK) in all GBM patients. Further investigation of these genes and enriched pathways uncovered in this investigation promises to serve as a foundational step in advancing our comprehension of the molecular mechanisms underpinning GBM pathogenesis. Consequently, the present work emphasizes the critical role that the unveiled molecular pathways likely play in shaping innovative therapeutic approaches for GBM management. We finally proposed in this study a list of compounds that target hub of GBM-related genes, some of which are already in clinical use, underscoring the potential of those genes as targets for GBM treatment.

3.
Article in English | MEDLINE | ID: mdl-38990431

ABSTRACT

Staphylococcus aureus CC239-MRSA-III is an ancient pandemic strain of hospital-associated, methicillin-resistant S. aureus that spread globally for decades and that still can be found in some parts of the world. In Kuwait, microarray-based surveillance identified from 2019 to 2022 a series of isolates of a hitherto unknown variant of this strain that carried a second set of recombinase genes, ccrA/B-2. To elucidate the structure of its SCCmec element, two isolates were subjected to nanopore sequencing. This revealed, in addition to ccrA/B-2, several SCC-associated genes including speG (spermidine N acetyltransferase) and a gene encoding a large "E-domain containing protein" (dubbed as edcP-SCC). This gene contained three regions consisting of multiple repeating units. In terms of sequence and structure it was similar but not identical to the biofilm-related aap gene from S. epidermidis. A review of published sequences identified edcP-SCC in eighteen genome sequences of S. aureus, S. epidermidis and S. capitis, and frequently it appears in a similar cluster of genes as in the strains sequenced herein. Isolates also carried a prophage with the adhesion factor sasX/sesI and aminoglycoside resistance genes. This is consistent with an affiliation to the "South-East Asian" Clade of CC239. The emergence of edcP-SCC and sasX-positive CC239 strain shows that, against a global trend towards community-associated MRSA, the ancient pandemic CC239 hospital strain still continues to evolve and to cause outbreaks.

4.
Exp Dermatol ; 33(7): e15138, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005203

ABSTRACT

Seborrheic keratosis (SK) is a common benign tumour, often associated with hyperpigmentation. To investigate the mechanism of melanin accumulation in SK, we have conducted comprehensive gene expression and histological analyses. We obtained five pairs of skin samples, including non-lesional and SK samples, from the backs of three male Japanese participants aged 40-59 years. To examine melanocytes and keratinocytes in SK, three pairs of skin samples were separated by laser capture microdissection into the basal layer and the other layer in the epidermis. We performed a comprehensive gene expression analysis to identify differentially expressed genes between non-lesional and SK skin, followed by gene ontology and pathway analysis. We found abnormal morphogenesis and cell proliferation in the basal layer, along with increased immune response and impaired cell differentiation and metabolism in the other layer of SK. We focused on cell proliferation and differentiation, as these are directly associated with melanin accumulation. Immunohistochemical analyses of Ki67, keratin 10, and keratin 14 demonstrated the decreases in the proliferation and early differentiation of the epidermis. Contrarily, no significant changes were observed in terminal differentiation markers, filaggrin and loricrin. Although the number of melanocytes was higher in SK than in non-lesional skin, melanogenic activity showed no difference. These results indicated that melanin accumulation in SK is caused by delayed melanin excretion due to reduced turnover around the basal and spinous layers of the epidermis and melanin production due to an increased number of melanocytes. Our findings provide new insights for therapeutic approaches in SK.


Subject(s)
Cell Differentiation , Cell Proliferation , Filaggrin Proteins , Keratinocytes , Keratosis, Seborrheic , Melanins , Melanocytes , Humans , Melanocytes/metabolism , Melanocytes/pathology , Keratosis, Seborrheic/metabolism , Keratosis, Seborrheic/pathology , Male , Melanins/metabolism , Middle Aged , Keratinocytes/metabolism , Adult , Epidermis/metabolism , Epidermis/pathology , Membrane Proteins
5.
Genes (Basel) ; 15(5)2024 05 15.
Article in English | MEDLINE | ID: mdl-38790256

ABSTRACT

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Subject(s)
Hair , Oils , Animals , Female , Mice , Computational Biology/methods , Filaggrin Proteins , Gene Expression Profiling/methods , Hair/growth & development , Hair/drug effects , Hair/metabolism , Hair Follicle/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Mice, Inbred C57BL , Minoxidil/administration & dosage , Oligonucleotide Array Sequence Analysis/methods , Skin/metabolism , Skin/drug effects , Whales , Oils/administration & dosage
6.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474603

ABSTRACT

Glutathione (GSH) has long been recognised for its antioxidant and detoxifying effects on the liver. The hepatoprotective effect of GSH involves the activation of antioxidative systems such as NRF2; however, details of the mechanisms remain limited. A comparative analysis of the biological events regulated by GSH under physiological and oxidative stress conditions has also not been reported. In this study, DNA microarray analysis was performed with four experiment arms including Control, GSH, hydrogen peroxide (HP), and GSH + HP treatment groups. The GSH-treated group exhibited a significant upregulation of genes clustered in cell proliferation, growth, and differentiation, particularly those related to MAPK, when compared with the Control group. Additionally, liver functions such as alcohol and cholesterol metabolic processes were significantly upregulated. On the other hand, in the HP-induced oxidative stress condition, GSH (GSH + HP group) demonstrated a significant activation of cell proliferation, cell cycle, and various signalling pathways (including TGFß, MAPK, PI3K/AKT, and HIF-1) in comparison to the HP group. Furthermore, several disease-related pathways, such as chemical carcinogenesis-reactive oxygen species and fibrosis, were significantly downregulated in the GSH + HP group compared to the HP group. Collectively, our study provides a comprehensive analysis of the effects of GSH under both physiological and oxidative stress conditions. Our study provides essential insights to direct the utilisation of GSH as a supplement in the management of conditions associated with oxidative stress.


Subject(s)
Antioxidants , Phosphatidylinositol 3-Kinases , Humans , Antioxidants/pharmacology , Hep G2 Cells , Phosphatidylinositol 3-Kinases/metabolism , Glutathione/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Gene Expression Profiling , Hydrogen Peroxide/pharmacology , NF-E2-Related Factor 2/metabolism
7.
J Glob Antimicrob Resist ; 36: 326-335, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307251

ABSTRACT

OBJECTIVES: The objective of the present study was to examine the diversity of Staphylococcus aureus from mastitis milk samples of cows in Rwanda. METHODS: A total of 1080 quarter milk samples from 279 dairy cows were collected in 80 different farms from all five provinces of Rwanda. In total, 135 S. aureus isolates were obtained and subjected to genotyping (spa typing, DNA microarray, whole-genome sequencing (WGS)), antimicrobial susceptibility testing (AST) and phenotypic profiling by Fourier Transform Infrared (FTIR) spectroscopy (including capsular serotyping). RESULTS: Resistance to penicillin and/or tetracycline was most frequently observed. Ten sequence types (STs) (ST1, ST151, ST152, ST5477, ST700, ST7110, ST7983, ST7984, ST8320, ST97) belonging to seven clonal complexes (CCs) (CC1, CC130, CC152, CC3591, CC3666, CC705, CC97) were detected. The Panton-Valentine leukocidin (PVL) genes (lukF-PV/lukS-PV), the bovine leukocidin genes (lukM/lukF-P83) and the human and bovine toxic shock syndrome toxin gene tst-1 variants were detected. FTIR-based capsular serotyping showed CC-specific differences. Most CC97 (cap5 allele) isolates were primarily nonencapsulated (82%), whereas isolates of CC3591 and CC3666 (cap8 allele) were mostly encapsulated (86.4% and 57.8%, respectively). Our results underline the widespread global distribution of cattle-adapted CC97. CONCLUSION: The presence of CC3591 and CC3666 in bovine mastitis suggests an important role in cattle health and dairy production in Rwanda. The results of the present study support the need for a rigorous One-Health Surveillance program of the bovine-human interface.


Subject(s)
Mastitis , Staphylococcal Infections , Female , Cattle , Animals , Humans , Staphylococcus aureus , Rwanda/epidemiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Anti-Bacterial Agents/pharmacology
8.
Neurosci Lett ; 823: 137646, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38278317

ABSTRACT

Recent research has underscored the influence of aging and exercise on brain function. In this study, we aimed to explore alterations in the expression of novel molecular factors and gain insight into underlying molecular mechanisms in the hippocampus of rats engaged in voluntary wheel running. We assessed the expression of aging-related genes in the hippocampus using a high-throughput whole genome DNA microarray approach in rats engaged in voluntary running for four weeks. The results indicated that compared to the control group, wheel running significantly altered the expressions of aging-related genes in the hippocampus. Functional categorization, utilizing pathway-focused gene classifications and disease state-focused gene classifications, along with Ingenuity Pathway Analysis (IPA), revealed changes in expression pattern in major categories of cell death and survival, renal necrosis/cell death, and cardiovascular disease genes. These findings suggest that exercise may mitigate the risk of age-related cognitive decline by regulating of aging-related genes in the hippocampus. Further research is warranted to elucidate the mechanisms driving changes in gene expression and to determine the long-term effects of exercise on brain function.


Subject(s)
Motor Activity , Physical Conditioning, Animal , Rats , Animals , Hippocampus/metabolism , Aging/physiology , Oligonucleotide Array Sequence Analysis , Physical Conditioning, Animal/physiology
9.
Geroscience ; 46(2): 1671-1691, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37721682

ABSTRACT

In recent years, exploring natural compounds with functional properties to ameliorate aging-associated cognitive decline has become a research priority to ensure healthy aging. In the present study, we investigated the effects of Trigonelline (TG), a plant alkaloid, on memory and spatial learning in 16-week-old senescence-accelerated mouse model SAMP8 using an integrated approach for cognitive and molecular biology aspects. After 30 days of oral administration of TG at the dose of 5 mg/kg/day, the mice were trained in Morris Water Maze task. TG-treated SAMP8 mice exhibited significant improvement in the parameters of escape latency, distance moved, and annulus crossing index. Next, we performed a whole-genome transcriptome profiling of the mouse hippocampus using microarrays. Gene ontology analyses showed that a wide range of biological processes, including nervous system development, mitochondrial function, ATP synthesis, and several signaling pathways related to inflammation, autophagy, and neurotransmitter release, were significantly enriched in TG-treated SAMP8 compared to nontreated. Further, a nonlinear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP), was applied to identify clusters of functions that revealed TG primarily regulated pathways related to inflammation, followed by those involved in neurotransmitter release. In addition, a protein-protein interaction network analysis indicated that TG may exert its biological effects through negatively modulating Traf6-mediated NF-κB activation. Finally, ELISA test showed that TG treatment significantly decreased proinflammatory cytokines- TNFα and IL6 and increased neurotransmitters- dopamine, noradrenaline, and serotonin in mouse hippocampus. Altogether, our integrated bio-cognitive approach highlights the potential of TG in alleviating age-related memory and spatial impairment.


Subject(s)
Alkaloids , Cytokines , Mice , Animals , Disease Models, Animal , Gene Expression Profiling , Alkaloids/pharmacology , Alkaloids/therapeutic use , Memory Disorders/drug therapy , Neurotransmitter Agents/therapeutic use , Inflammation
10.
J Biomol Struct Dyn ; : 1-14, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962871

ABSTRACT

Helicobacter pylori infects 50% of the world population and in 80% of cases, the infection progresses to the point where an ulcer develops leading to gastric cancer (GC). This study aimed to prevent GC by predicting Hub genes that are inducing GC. Furthermore, the study objective was to screen inhibitory molecules that block the function of predicted genes through several biophysical approaches. These proteins, such as Mucin 4 (MUC4) and Baculoviral IAP repeat containing 3 (BIRC3), had LogFC values of 2.28 and 3.39, respectively, and were found to be substantially expressed in those who had H. pylori infection. The MUC4 and BIRC3 inhibit apoptosis of infected cells and promote cancerous cell survival. The proteins were examined for their Physico-chemical characteristics, 3D structure and secondary structure analysis, solvent assessable surface area (SASA), active site identification, and network analysis. The MUC4 and BIRC3 expression was inhibited by docking eighty different compounds collected from the ZINC database. Fifty-seven compounds were successfully docked into the active site resulting in the lowest binding energy scores. The ZINC585267910 and ZINC585268691 compounds showed the lowest binding energy of -8.5 kcal/mol for MUC4 and -7.1 kcal/mol for BIRC3, respectively, and were considered best-docked solutions for molecular dynamics simulations. The mean root mean square deviation (RMSD) value for the ZINC585267910-MUC4 complex was 0.86 Å and the ZINC585268691-BIRC3 complex was 1.01 Å. The net MM/GBSA energy value of the ZINC585267910-MUC4 complex estimated was -46.84 kcal/mol and that of the ZINC585268691-BIRC3 complex was -44.84 kcal/mol. In a nutshell, the compounds might be investigated further as an inhibitor of the said proteins to stop the progress of GC induced by H. pylori.Communicated by Ramaswamy H. Sarma.

11.
Int J Mol Sci ; 24(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958806

ABSTRACT

The aim of this research was to test the efficacy and potential clinical application of intranasal administration of galanin-like peptide (GALP) as an anti-obesity treatment under the hypothesis that GALP prevents obesity in mice fed a high-fat diet (HFD). Focusing on the mechanism of regulation of lipid metabolism in peripheral tissues via the autonomic nervous system, we confirmed that, compared with a control (saline), intranasally administered GALP prevented further body weight gain in diet-induced obesity (DIO) mice with continued access to an HFD. Using an omics-based approach, we identified several genes and metabolites in the liver tissue of DIO mice that were altered by the administration of intranasal GALP. We used whole-genome DNA microarray and metabolomics analyses to determine the anti-obesity effects of intranasal GALP in DIO mice fed an HFD. Transcriptomic profiling revealed the upregulation of flavin-containing dimethylaniline monooxygenase 3 (Fmo3), metallothionein 1 and 2 (Mt1 and Mt2, respectively), and the Aldh1a3, Defa3, and Defa20 genes. Analysis using the DAVID tool showed that intranasal GALP enhanced gene expression related to fatty acid elongation and unsaturated fatty acid synthesis and downregulated gene expression related to lipid and cholesterol synthesis, fat absorption, bile uptake, and excretion. Metabolite analysis revealed increased levels of coenzyme Q10 and oleoylethanolamide in the liver tissue, increased levels of deoxycholic acid (DCA) and taurocholic acid (TCA) in the bile acids, increased levels of taurochenodeoxycholic acid (TCDCA), and decreased levels of ursodeoxycholic acid (UDCA). In conclusion, intranasal GALP administration alleviated weight gain in obese mice fed an HFD via mechanisms involving antioxidant, anti-inflammatory, and fatty acid metabolism effects and genetic alterations. The gene expression data are publicly available at NCBI GSE243376.


Subject(s)
Diet, High-Fat , Galanin-Like Peptide , Mice , Animals , Diet, High-Fat/adverse effects , Galanin-Like Peptide/metabolism , Galanin-Like Peptide/pharmacology , Oligonucleotide Array Sequence Analysis , Transcriptome , Administration, Intranasal , Obesity/etiology , Obesity/genetics , Liver/metabolism , Weight Gain , Metabolome , Lipid Metabolism , Fatty Acids/metabolism , Mice, Inbred C57BL
12.
BMC Ophthalmol ; 23(1): 390, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752463

ABSTRACT

BACKGROUND: Human papillomavirus (HPV) has been detected in eyelid sebaceous gland carcinoma (SGC) and squamous cell carcinoma (SCC), and detection rates greatly varied across studies. This study aimed to investigate the presence of HPV in eyelid SGC and SCC among Koreans and its correlation with clinicopathological characteristics. METHODS: Surgically resected eyelid samples diagnosed as SGC or SCC from January 1999 to June 2011 were identified from the pathology database of three referral centres in Korea. Clinicopathological information including origin (skin vs. tarsal conjunctiva) and treatment outcomes were retrospectively reviewed. Immunohistochemistry (IHC) for p16, HPV DNA in situ hybridisation (ISH), and polymerase chain reaction-based DNA microarray were performed in paraffin-embedded tissue sections. RESULTS: Our cohort included 34 SGC and 12 SCC cases with Asian ethnicity. HPV was detected in 4 SGC and 6 SCC by DNA microarray, while 2 SCC (16.7%) showed positivity in ISH. SCC of tarsal conjunctival origin was significantly more common in HPV-positive SCC than in HPV-negative SCC (5 of 6 vs. 0 of 6, P = 0.015, Fisher's exact test). Among samples showing positive staining in p16 IHC, HPV positivity rates were 0.0% (0/19) in SGC and 100% (3/3) in SCC. There was no significant difference in overall and local recurrence rate in eyelid SGC and SCC according to the HPV status (P > 0.99). CONCLUSIONS: HPV was found in a subset of eyelid SGC and SCC among Koreans and might be aetiologically related to SCC of tarsal conjunctival origin. Overexpression of p16 is considered to be inappropriate as an indicator of HPV infection in eyelid SGC. Further investigation is required to elucidate the transmission route and pathogenic roles of HPV.


Subject(s)
Adenocarcinoma, Sebaceous , Carcinoma , Eyelid Neoplasms , Papillomavirus Infections , Sebaceous Gland Neoplasms , Skin Neoplasms , Humans , Eyelid Neoplasms/epidemiology , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Prevalence , East Asian People , Retrospective Studies
13.
Exp Appl Acarol ; 91(2): 291-317, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37755526

ABSTRACT

Control of complex parasites via vaccination remains challenging, with the current combination of vaccines and small drugs remaining the choice for an integrated control strategy. Studies conducted to date, are providing evidence that multicomponent vaccines will be needed for the development of protective vaccines against endo- and ectoparasites, though multicomponent vaccines require an in-depth understanding of parasite biology which remains insufficient for ticks. With the rapid development and spread of acaricide resistance in ticks, new targets for acaricide development also remains to be identified, along with novel targets that can be exploited for the design of lead compounds. In this study, we analysed the differential gene expression of Rhipicephalus microplus ticks that were fed on cattle vaccinated with a multi-component vaccine (Bm86 and 3 putative Bm86-binding proteins). The data was scrutinised for the identification of vaccine targets, small drug targets and novel pathways that can be evaluated in future studies. Limitations associated with targeting novel proteins for vaccine and/or drug design is also discussed and placed into the context of challenges arising when targeting large protein families and intracellular localised proteins. Lastly, this study provide insight into how Bm86-based vaccines may reduce successful uptake and digestion of the bloodmeal and overall tick fecundity.

14.
Data Brief ; 50: 109499, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37663770

ABSTRACT

The tumor suppressor p53 exerts its role mainly as a transcription factor. The TP53 gene, which encodes the p53 protein, is the most commonly mutated gene in human cancers, particularly triple negative breast cancer (TNBC). Variations in the TP53 gene occur mainly in exons 5-8 and result in missense mutations in the DNA-binding domain of the p53 protein that alter DNA binding specificity. To identify the target genes of mutant p53, we performed chromatin immunoprecipitation followed by DNA microarray (ChIP-chip). Briefly, the TNBC cell line MDA-MB-468 containing the endogenous p53-R273H mutation (the arginine residue at position 273 is mutated to a histidine) was cross-linked with 1% formaldehyde and ultrasonically sheared to generate chromatin fragments in a range of 200∼1000 bp. An aliquot of the sheared chromatin was kept as input, and the other chromatin was precipitated with a p53 monoclonal antibody. DNA was purified from the precipitated chromatin and the unprecipitated chromatin (i.e., input), amplified, and labeled with Cy5 (ChIP DNA) or Cy3 (input DNA). Cy5- and Cy3-labeled DNA samples were cohybridized with the NimbleGen Human ChIP-chip 2.1 M Deluxe Promoter Array. The raw and analyzed data are described in this article. They are useful for identifying target genes and consensus binding motifs of the p53 R273H mutant and for further clarifying the molecular mechanism underlying the oncogenic activity of the p53 mutant.

15.
Front Cell Infect Microbiol ; 13: 1183078, 2023.
Article in English | MEDLINE | ID: mdl-37457951

ABSTRACT

Introduction: The clinical practicability of DNA microarray chip in detecting the presence of mycobacterial species/isolates directly in the skin tissues has not been evaluated, nor the efficacy of DNA microarray chip as a novel diagnostic tool for the early diagnosis of cutaneous mycobacterial infections is known. Methods: The present study analyzed the incidence of cutaneous mycobacterial infections in Shanghai and explored the efficacy of a novel DNA microarray chip assay for the clinical diagnosis of the disease from skin tissue specimens compared to traditional detection methods. A total of 60 participants fulfilling the defined diagnostic criteria and confirmed positive for cutaneous mycobacterial infections from 2019 to 2021 were enrolled in the study. Subsequent to recording the participants' medical history and clinical characteristics, the skin tissue specimens were collected for analyses. The specimens underwent histopathological analyses, skin tissue culture, and DNA microarray chip assay. Results: Increased incidence of cutaneous mycobacterial infection was detected from 2019 to 2021. The most common infecting pathogen was M. marinum followed by M. abscessus. The sensitivity, specificity and accuracy of the skin tissue culture method were 70%, 100% and 76.62%, respectively, while that of the DNA microarray chip assay were 91.67%, 100% and 93.51%, respectively. The sensitivity and accuracy of the DNA microarray chip assay were significantly higher than those of the skin tissue culture method. The positive likelihood and diagnostic odds ratio were >10 and >1, respectively for both the methods. The negative likelihood ratio was significantly higher (30% vs 8.33%) and the Youden's index was significantly lower (70.00% vs 91.67%) in the skin culture method compared to that of the DNA microarray chip assay. There was a significant association of false negative results with a history of antibiotic use in the skin tissue culture method. Discussion: Given the increasing incidence of cutaneous mycobacterial infections, early diagnosis remains a prime clinical focus. The DNA microarray chip assay provides a simple, rapid, high-throughput, and reliable method for the diagnosis of cutaneous mycobacterial infections with potential for clinical application.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium Infections , Mycobacterium , Skin Diseases, Bacterial , Humans , Oligonucleotide Array Sequence Analysis , China , Mycobacterium Infections/microbiology , Mycobacterium/genetics , Skin Diseases, Bacterial/diagnosis , Skin Diseases, Bacterial/microbiology , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/genetics
16.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445596

ABSTRACT

Oleacein (OLE), a rare natural compound found in unfiltered extra virgin olive oil, has been shown to have anti-inflammatory and anti-obesity properties. However, little is known regarding the mechanisms by which OLE influences metabolic processes linked to disease targets, particularly in the context of lipid metabolism. In the present study, we conducted whole-genome DNA microarray analyses in adipocytes differentiated from human adipose-derived stem cells (hASCs) and diabetic hASCs (d-hASCs) to examine the effects of OLE on modulating metabolic pathways. We found that OLE significantly inhibited lipid formation in adipocytes differentiated from both sources. In addition, microarray analysis demonstrated that OLE treatment could significantly downregulate lipid-metabolism-related genes and modulate glucose metabolism in both adipocyte groups. Transcription factor enrichment and protein-protein interaction (PPI) analyses identified potential regulatory gene targets. We also found that OLE treatment enhanced the anti-inflammatory properties in adipocytes. Our study findings suggest that OLE exhibits potential benefits in improving lipid and glucose metabolism, thus holding promise for its application in the management of metabolic disorders.


Subject(s)
Diabetes Mellitus , Olea , Humans , Transcriptome , Adipocytes/metabolism , Lipid Metabolism , Olive Oil/pharmacology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Stem Cells , Glucose/metabolism
17.
Int J Mol Sci ; 24(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37047640

ABSTRACT

The present study aimed to evaluate the effects of Botryococcus terribilis ethanol extract (BTEE) on lipopolysaccharide (LPS)-induced inflammation in RAW264 cells. BTEE significantly attenuated LPS-induced nitric oxide production and inflammatory cytokines release, including Ccl2, Cox2, and Il6. On the other hand, several anti-inflammatory mediators, such as Pgc1ß and Socs1, were increased in BTEE-treated cells. Further, we performed an untargeted whole-genome microarray analysis to explore the anti-inflammatory molecular mechanism of BTEE. Enrichment analysis showed BTEE significantly downregulated 'response to stimulus', 'locomotion', and 'immune system response' and upregulated 'cell cycle' gene ontologies in both 6- and 17-h post-LPS stimulation conditions. Pathway analysis revealed BTEE could downregulate the expressions of chemokines of the CC and CXC subfamily, and cytokines of the TNF family, TGFß family, IL1-like, and class I helical. PPI analysis showed AXL receptor tyrosine kinase (Axl), a receptor tyrosine kinase from the TAM family, and its upstream transcription factors were downregulated in both conditions. Node neighborhood analysis showed several Axl coexpressed genes were also downregulated. Further, kinase enrichment and chemical perturbation analyses supported Axl inhibition in BTEE-treated conditions. Altogether, these findings suggest anti-inflammatory effects of BTEE that are mediated via the suppression of pro-inflammatory cytokines and predict its potential as an Axl inhibitor.


Subject(s)
Ethanol , Macrophages , Animals , Mice , Ethanol/pharmacology , Macrophages/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , RAW 264.7 Cells , Cytokines/metabolism , Nitric Oxide/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism
18.
Int J Mol Sci ; 24(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36902003

ABSTRACT

Sweat plays a critical role in human body, including thermoregulation and the maintenance of the skin environment and health. Hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion, resulting in severe skin conditions (pruritus and erythema). Bioactive peptide and pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and identified to activate adenylate cyclase in pituitary cells. Recently, it was reported that PACAP increases sweat secretion via PAC1R in mice and promotes the translocation of AQP5 to the cell membrane through increasing intracellular [Ca2+] via PAC1R in NCL-SG3 cells. However, intracellular signaling mechanisms by PACAP are poorly clarified. Here, we used PAC1R knockout (KO) mice and wild-type (WT) mice to observe changes in AQP5 localization and gene expression in sweat glands by PACAP treatment. Immunohistochemistry revealed that PACAP promoted the translocation of AQP5 to the lumen side in the eccrine gland via PAC1R. Furthermore, PACAP up-regulated the expression of genes (Ptgs2, Kcnn2, Cacna1s) involved in sweat secretion in WT mice. Moreover, PACAP treatment was found to down-regulate the Chrna1 gene expression in PAC1R KO mice. These genes were found to be involved in multiple pathways related to sweating. Our data provide a solid basis for future research initiatives in order to develop new therapies to treat sweating disorders.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide , Sweat , Mice , Humans , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Sweat/metabolism , Sweating , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Gland/metabolism
19.
Methods ; 213: 33-41, 2023 05.
Article in English | MEDLINE | ID: mdl-37001684

ABSTRACT

DNA microarrays are very useful tools to study the realm of nucleic acids interactions at high throughput. The conventional approach to microarray synthesis employs phosphoramidite chemistry and yields unmodified DNA generally attached to a surface at the 3' terminus. Having a freely accessible 3'-OH instead of 5'-OH is desirable too, and being able to introduce nucleoside analogs in a combinatorial manner is highly relevant in the context of nucleic acid therapeutics and in aptamer research. Here, we describe an enzymatic approach to the synthesis of high-density DNA microarrays that can also contain chemical modifications. The method uses a standard DNA microarray, to which a DNA primer is covalently bound through photocrosslinking. The extension of the primer with a DNA polymerase yields double-stranded DNA but is also amenable to the incorporation of modified dNTPs. Further processing with T7 exonuclease, which catalyzes the degradation of DNA in a specific (5'→3') direction, results in template strand removal. Overall, the method produces surface-bound natural and non-natural DNA oligonucleotides, is applicable to commercial microarrays and paves the way for the preparation of combinatorial, chemically modified aptamer libraries.


Subject(s)
DNA-Directed DNA Polymerase , DNA , Oligonucleotide Array Sequence Analysis , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA/genetics , DNA Primers/metabolism , DNA Replication/genetics , Oligonucleotides
20.
Exp Biol Med (Maywood) ; 248(4): 350-360, 2023 02.
Article in English | MEDLINE | ID: mdl-36814407

ABSTRACT

After myocardial infarction (MI) occurs, progressive pathological cardiac remodeling results in heart dysfunction and even heart failure during the following months or years. The present study explored the molecular mechanisms underlying the late phase of MI at the global transcript level. A rhesus monkey model of myocardial ischemia induced by left anterior descending (LAD) artery ligation was established, and the heart tissue was collected eight weeks after ligation for transcriptome analysis by DNA microarray technology. Differentially expressed genes in the core infarcted area and remote infarcted area of the ischemic heart were detected with significance analysis of microarray (SAM), and related pathways were detected by Gene Ontology (GO)/pathway analysis. We found that compared to the sham condition, prolonged ischemia increased the levels of 941 transcripts, decreased the levels of 380 transcripts in the core infarcted area, and decreased the levels of 8 transcripts in the remote area in monkey heart tissue. Loss of coordination between the expression of genes, including natriuretic peptide A (NPPA), NPPB, and corin (Corin, serine peptidase), may aggravate cardiac remodeling. Furthermore, imbalance in the enriched significantly changed pathways, including fibrosis-related pathways, cardioprotective pathways, and the cardiac systolic pathway, likely also plays a key role in regulating the development of heart remodeling.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Animals , Macaca mulatta , Ventricular Remodeling/genetics , Heart , Myocardial Ischemia/pathology , Myocardial Infarction/pathology , Gene Expression , Myocardium/pathology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...