Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 562
Filter
1.
J Biol Chem ; 300(7): 107461, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876299

ABSTRACT

Theta-mediated end joining (TMEJ) is critical for survival of cancer cells when other DNA double-stranded break repair pathways are impaired. Human DNA polymerase theta (Pol θ) can extend ssDNA oligonucleotides, but little is known about preferred substrates and mechanism. We show that Pol θ can extend both ssDNA and RNA substrates by unimolecular stem-loop synthesis initiated by only two 3' terminal base pairs. Given sufficient time, Pol θ uses alternative pairing configurations that greatly expand the repertoire of sequence outcomes. Further primer-template adjustments yield low-fidelity outcomes when the nucleotide pool is imbalanced. Unimolecular stem-loop synthesis competes with bimolecular end joining, even when a longer terminal microhomology for end joining is available. Both reactions are partially suppressed by the ssDNA-binding protein replication protein A. Protein-primer grasp residues that are specific to Pol θ are needed for rapid stem-loop synthesis. The ability to perform stem-loop synthesis from a minimally paired primer is rare among human DNA polymerases, but we show that human DNA polymerases Pol η and Pol λ can catalyze related reactions. Using purified human Pol θ, we reconstituted in vitro TMEJ incorporating an insertion arising from a stem-loop extension. These activities may help explain TMEJ repair events that include inverted repeat sequences.

2.
Mol Ther ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867450

ABSTRACT

Stem and progenitor cells hold great promise for regenerative medicine and gene therapy approaches. However, transplantation of living cells entails a fundamental risk of unwanted growth, potentially exacerbated by CRISPR-Cas9 or other genetic manipulations. Here, we describe a safety system to control cell proliferation while allowing robust and efficient cell manufacture, without any added genetic elements. Inactivating TYMS, a key nucleotide metabolism enzyme, in several cell lines resulted in cells that proliferate only when supplemented with exogenous thymidine. Under supplementation, TYMS-/--pluripotent stem cells proliferate, produce teratomas, and successfully differentiate into potentially therapeutic cell types such as pancreatic ß cells. Our results suggest that supplementation with exogenous thymidine affects stem cell proliferation, but not the function of stem cell-derived cells. After differentiation, postmitotic cells do not require thymidine in vitro or in vivo, as shown by the production of functional human insulin in mice up to 5 months after implantation of stem cell-derived pancreatic tissue.

3.
Chemistry ; : e202402318, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896019

ABSTRACT

A portfolio of six modified 2'-deoxyribonucleoside triphosphate (dNTP) derivatives derived from 5-substituted pyrimidine or 7-substituted 7-deazapurine bearing different carbohydrate units (d-glucose, d-galactose, d-mannose, l-fucose, sialic acid and N-Ac-d-galactosamine) tethered through propargyl-glycoside linker was designed and synthesized via the Sonogashira reactions of halogenated dNTPs with the corresponding propargyl-glycosides. The nucleotides were found to be good substrates for DNA polymerases in enzymatic primer extension and PCR synthesis of modified and hypermodified DNA displaying up to four different sugars. Proof of concept binding study of sugar-modified oligonucleotides with concanavalin A showed positive effect of avidity and sugar units count.

4.
Small Methods ; : e2301585, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807543

ABSTRACT

DNA-based data storage is a new technology in computational and synthetic biology, that offers a solution for long-term, high-density data archiving. Given the critical importance of medical data in advancing human health, there is a growing interest in developing an effective medical data storage system based on DNA. Data integrity, accuracy, reliability, and efficient retrieval are all significant concerns. Therefore, this study proposes an Effective DNA Storage (EDS) approach for archiving medical MRI data. The EDS approach incorporates three key components (i) a novel fraction strategy to address the critical issue of rotating encoding, which often leads to data loss due to single base error propagation; (ii) a novel rule-based quaternary transcoding method that satisfies bio-constraints and ensure reliable mapping; and (iii) an indexing technique designed to simplify random search and access. The effectiveness of this approach is validated through computer simulations and biological experiments, confirming its practicality. The EDS approach outperforms existing methods, providing superior control over bio-constraints and reducing computational time. The results and code provided in this study open new avenues for practical DNA storage of medical MRI data, offering promising prospects for the future of medical data archiving and retrieval.

5.
Acta Naturae ; 16(1): 77-85, 2024.
Article in English | MEDLINE | ID: mdl-38738632

ABSTRACT

The standardization of DNA fragment assembly methods for many tasks of synthetic biology is crucial. This is necessary for synthesizing a wider repertoire of sequences, as well as for further automation and miniaturization of such reactions. In this work, we proposed conditions for the assembly of DNA fragments from chemically synthesized oligonucleotides and we identified the errors occurring in the sequence under these conditions. Additionally, we proposed conditions for further combining synthetic fragments into larger DNA fragments. We showed that the optimized conditions are suitable for the assembly of a wide range of sequences.

6.
ACS Synth Biol ; 13(5): 1394-1399, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38757697

ABSTRACT

Substantial improvements in DNA sequencing and synthesis technologies and increased understanding of genome biology have empowered the development of synthetic genomics. The ability to design and construct engineered living cells boosted up by synthetic chromosomes provides opportunities to tackle enormous current and future challenges faced by humanity and the planet. Here we review the progresses, considerations, challenges, and future direction of the "design-build-test-learn" cycle used in synthetic genomics. We also discuss future applications enabled by synthetic genomics as this emerging field shapes and revolutionizes biomanufacturing and biomedicine.


Subject(s)
Genomics , Synthetic Biology , Genomics/methods , Synthetic Biology/methods , Humans , Genetic Engineering/methods
7.
Toxicology ; 505: 153828, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740169

ABSTRACT

The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 µM fluxapyroxad or 500 µM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid ß-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 µM fluxapyroxad or 500 µM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 µM fluxapyroxad or 500 µM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.


Subject(s)
Constitutive Androstane Receptor , Fungicides, Industrial , Hepatocytes , Rats, Wistar , Receptors, Cytoplasmic and Nuclear , Animals , Male , Female , Rats , Fungicides, Industrial/toxicity , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Dose-Response Relationship, Drug , Organ Size/drug effects , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/metabolism , DNA Replication/drug effects , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Liver Neoplasms/pathology
8.
ChemMedChem ; : e202400189, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632104

ABSTRACT

The development of bioelectronic devices is heading toward high throughput and high resolution. Yet, most electrode materials utilized in electrical biosensing are not compatible with the manufacturing techniques of semiconductor chips, which somehow hinders the integration and miniaturization of these devices. Titanium nitride (TiN) is a durable and economical material that is widely used in CMOS-based integrated circuits, bioelectronic systems, electrocatalytic systems, etc. Considering different application scenarios, new and efficient methods are required to functionalize TiN surface. In this study, a surface functionalization approach by covalent grafting of an organic thin film containing hydroxyl groups on TiN surface via electroreduction of diazonium salt 4-(2-hydroxyethyl)benzenediazonium was presented. Cyclic voltammetry (CV) procedures were carried out at the potential ranges of -0.8 V~0.5 V (vs Ag/AgCl) with varying numbers of potential cycles (i. e., 5, 25, and 50 cycles) in order to study the thickness of modification layer. Then, the electrochemical property, surface morphology, and chemical structures of the sample before and after modifications were investigated via multiple characterization techniques, such as CV, atomic force microscopy (AFM), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), etc., thereby confirming the successful grafting of hydroxyl groups onto the TiN surface. The experiments on DNA synthesis aimed to explore the potential of modified TiN electrode as a novel platform for DNA data storage applications and the corresponding proof-of-principle was accomplished by the process of coupling Cy3-phosphoramidite. Finally, the experiments were successfully reproduced on the randomly selected sites of the modified TiN microarray chips demonstrating the potential of technical protocol to extend applications in future bioelectronic devices, such as bio-sensing, high-throughput DNA synthesis, and molecular manipulation.

9.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612916

ABSTRACT

Eukaryotic REV1 serves as a scaffold protein for the coordination of DNA polymerases during DNA translesion synthesis. Besides this structural role, REV1 is a Y-family DNA polymerase with its own distributive deoxycytidyl transferase activity. However, data about the accuracy and efficiency of DNA synthesis by REV1 in the literature are contrasting. Here, we expressed and purified the full-length human REV1 from Saccharomyces cerevisiae and characterized its activity on undamaged DNA and a wide range of damaged DNA templates. We demonstrated that REV1 carried out accurate synthesis opposite 8-oxoG and O6-meG with moderate efficiency. It also replicated thymine glycol surprisingly well in an error-prone manner, but was blocked by the intrastrand 1,2-GG cisplatin crosslink. By using the 1,N6-ethenoadenine and 7-deaza-adenine lesions, we have provided biochemical evidence of the importance for REV1 functioning of the Hoogsteen face of template A, the second preferable template after G.


Subject(s)
Adenine , Humans , Cisplatin , DNA Damage , DNA Replication , DNA-Directed DNA Polymerase , Nucleotidyltransferases/genetics , Saccharomyces cerevisiae/genetics
10.
Biochem Soc Trans ; 52(2): 773-792, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38629643

ABSTRACT

The preservation of genome integrity requires specialised DNA damage repair (DDR) signalling pathways to respond to each type of DNA damage. A key feature of DDR is the integration of numerous post-translational modification signals with DNA repair factors. These modifications influence DDR factor recruitment to damaged DNA, activity, protein-protein interactions, and ultimately eviction to enable access for subsequent repair factors or termination of DDR signalling. SUMO1-3 (small ubiquitin-like modifier 1-3) conjugation has gained much recent attention. The SUMO-modified proteome is enriched with DNA repair factors. Here we provide a snapshot of our current understanding of how SUMO signalling impacts the major DNA repair pathways in mammalian cells. We highlight repeating themes of SUMO signalling used throughout DNA repair pathways including the assembly of protein complexes, competition with ubiquitin to promote DDR factor stability and ubiquitin-dependent degradation or extraction of SUMOylated DDR factors. As SUMO 'addiction' in cancer cells is protective to genomic integrity, targeting components of the SUMO machinery to potentiate DNA damaging therapy or exacerbate existing DNA repair defects is a promising area of study.


Subject(s)
DNA Damage , DNA Repair , Signal Transduction , Small Ubiquitin-Related Modifier Proteins , Sumoylation , Humans , Small Ubiquitin-Related Modifier Proteins/metabolism , Animals , Protein Processing, Post-Translational , Ubiquitin/metabolism
11.
Biosensors (Basel) ; 14(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38667170

ABSTRACT

Using DNA as the next-generation medium for data storage offers unparalleled advantages in terms of data density, storage duration, and power consumption as compared to existing data storage technologies. To meet the high-speed data writing requirements in DNA data storage, this paper proposes a novel design for an ultra-high-density and high-throughput DNA synthesis platform. The presented design mainly leverages two functional modules: a dynamic random-access memory (DRAM)-like integrated circuit (IC) responsible for electrode addressing and voltage supply, and the static droplet array (SDA)-based microfluidic structure to eliminate any reaction species diffusion concern in electrochemical DNA synthesis. Through theoretical analysis and simulation studies, we validate the effective addressing of 10 million electrodes and stable, adjustable voltage supply by the integrated circuit. We also demonstrate a reaction unit size down to 3.16 × 3.16 µm2, equivalent to 10 million/cm2, that can rapidly and stably generate static droplets at each site, effectively constraining proton diffusion. Finally, we conducted a synthesis cycle experiment by incorporating fluorescent beacons on a microfabricated electrode array to examine the feasibility of our design.


Subject(s)
DNA , Electrodes , Microfluidics , Biosensing Techniques
12.
Zool Res ; 45(3): 478-491, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38682430

ABSTRACT

Acetaminophen (APAP), the most frequently used mild analgesic and antipyretic drug worldwide, is implicated in causing 46% of all acute liver failures in the USA and between 40% and 70% in Europe. The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine (NAC); however, its efficacy is limited in cases of advanced liver injury or when administered at a late stage. In the current study, we discovered that treatment with a moderate intensity static magnetic field (SMF) notably reduced the mortality rate in mice subjected to high-dose APAP from 40% to 0%, proving effective at both the initial liver injury stage and the subsequent recovery stage. During the early phase of liver injury, SMF markedly reduced APAP-induced oxidative stress, free radicals, and liver damage, resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione (GSH). During the later stage of liver recovery, application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation. Moreover, the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery, even 24 h post overdose, when the effectiveness of NAC alone substantially declines. Overall, this study provides a non-invasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose. Of note, this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP, and potentially other toxic overdoses.


Subject(s)
Acetaminophen , Analgesics, Non-Narcotic , Chemical and Drug Induced Liver Injury , Drug Overdose , Acetaminophen/toxicity , Animals , Mice , Analgesics, Non-Narcotic/toxicity , Oxidative Stress/drug effects , Male , Magnetic Fields , Acetylcysteine/therapeutic use , Acetylcysteine/pharmacology
13.
Methods Mol Biol ; 2760: 133-145, 2024.
Article in English | MEDLINE | ID: mdl-38468086

ABSTRACT

Efficient preparation of DNA oligonucleotides containing unnatural nucleobases (UBs) that can pair with their cognates to form unnatural base pairs (UBPs) is an essential prerequisite for the application of UBPs in vitro and in vivo. Traditional preparation of oligonucleotides containing unnatural nucleobases largely relies on solid-phase synthesis, which needs to use unstable nucleoside phosphoramidites and a DNA synthesizer, and is environmentally unfriendly and limited in product length. To overcome these limitations of solid-phase synthesis, we developed enzymatic methods for daily laboratory preparation of DNA oligonucleotides containing unnatural nucleobase dNaM, dTPT3, or one of the functionalized dTPT3 derivatives, which can be used for orthogonal DNA labeling or the preparation of DNAs containing UBP dNaM-dTPT3, one of the most successful UBPs to date, based on the template-independent polymerase terminal deoxynucleotidyl transferase (TdT). Here, we first provide a detailed procedure for the TdT-based preparation of DNA oligonucleotides containing 3'-nucleotides of dNaM, dTPT3, or one of dTPT3 derivatives. We then present the procedures for enzyme-linked oligonucleotide assay (ELONA) and imaging of bacterial cells using DNA oligonucleotides containing 3'-nucleotides of dTPT3 derivatives with different functional groups. The procedure for enzymatic synthesis of DNAs containing an internal UBP dNaM-dTPT3 is also described. Hopefully, these methods will greatly facilitate the application of UBPs and the construction of semi-synthetic organisms with an expanded genetic alphabet.


Subject(s)
DNA Nucleotidylexotransferase , Synthetic Biology , DNA Nucleotidylexotransferase/genetics , Synthetic Biology/methods , DNA/genetics , DNA-Directed DNA Polymerase , Nucleotides/genetics , Oligonucleotides/genetics
14.
Heliyon ; 10(6): e26967, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38500977

ABSTRACT

DNA synthesis and assembly primarily revolve around the innovation and refinement of tools that facilitate the creation of specific genes and the manipulation of entire genomes. This multifaceted process encompasses two fundamental steps: the synthesis of lengthy oligonucleotides and the seamless assembly of numerous DNA fragments. With the advent of automated pipetting workstations and integrated experimental equipment, a substantial portion of repetitive tasks in the field of synthetic biology can now be efficiently accomplished through integrated liquid handling workstations. This not only reduces the need for manual labor but also enhances overall efficiency. This review explores the ongoing advancements in the oligonucleotide synthesis platform, automated DNA assembly techniques, and biofoundries. The development of accurate and high-throughput DNA synthesis and assembly technologies presents both challenges and opportunities.

15.
Virology ; 594: 110035, 2024 06.
Article in English | MEDLINE | ID: mdl-38554655

ABSTRACT

The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.


Subject(s)
Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , DNA, Viral/genetics , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , Virus Replication , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA Replication
16.
Mol Ther Methods Clin Dev ; 32(2): 101227, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38516691

ABSTRACT

Biotechnologies such as gene therapy have brought DNA vectors to the forefront of pharmaceuticals. The quality of starting material plays a pivotal role in determining final product quality. Here, we examined the fidelity of DNA replication using enzymatic methods (in vitro) compared to plasmid DNA produced in vivo in E. coli. Next-generation sequencing approaches rely on in vitro polymerases, which have inherent limitations in sensitivity. To address this challenge, we introduce a novel assay based on loss-of-function (LOF) mutations in the conditionally toxic sacB gene. Our findings show that DNA production in E. coli results in significantly fewer LOF mutations (80- to 3,000-fold less) compared to enzymatic DNA replication methods such as polymerase chain reaction (PCR) and rolling circle amplification (RCA). These results suggest that using DNA produced by PCR or RCA may introduce a substantial number of mutation impurities, potentially affecting the quality and yield of final pharmaceutical products. Our study underscores that DNA synthesized in vitro has a significantly higher mutation rate than DNA produced traditionally in E. coli. Therefore, utilizing in vitro enzymatically produced DNA in biotechnology and biomanufacturing may entail considerable fidelity-related risks, while using DNA starting material derived from E. coli substantially mitigates this risk.

17.
Cell Syst ; 15(3): 264-274.e9, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38460522

ABSTRACT

Functionalizing materials with biomacromolecules such as enzymes has broad applications in biotechnology and biomedicine. Here, we introduce a grafting method mediated by living cells to functionalize materials. We use polymeric scaffolds to trap engineered bacteria and micron-sized particles with chemical groups serving as active sites for grafting. The bacteria synthesize the desired protein for grafting and autonomously lyse to release it. The released functional moieties are locally grafted onto the active sites, generating the materials engineered by living grafting (MELGs). MELGs are resilient to perturbations because of both the bonding and the regeneration of functional domains synthesized by living cells. The programmability of the bacteria enables us to fabricate MELGs that can respond to external input, decompose a pollutant, reconstitute synthetic pathways for natural product synthesis, and purify mismatched DNA. Our work establishes a bacteria-assisted grafting strategy to functionalize materials with a broad range of biological activities in an integrated, flexible, and modular manner. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Biotechnology , Genetic Engineering , Proteins , Synthetic Biology , Bacteria/genetics
18.
EMBO J ; 43(7): 1273-1300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448672

ABSTRACT

MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.


Subject(s)
Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Proliferating Cell Nuclear Antigen/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitin/metabolism , Peptides/metabolism , DNA Damage
19.
Mol Biol Rep ; 51(1): 271, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302795

ABSTRACT

BACKGROUND: Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity. METHODS: Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. RESULTS: The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment. CONCLUSION: The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.


Subject(s)
Bombesin , Interleukin-6 , Phenols , Humans , Bombesin/pharmacology , Culture Media, Conditioned/pharmacology , Interleukin-6/genetics , Interleukin-6/pharmacology , Benzhydryl Compounds/toxicity , Inflammation/chemically induced , Inflammation/genetics , Liver/metabolism , Cell Proliferation , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA
20.
Semin Cancer Biol ; 99: 45-55, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38346544

ABSTRACT

Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.


Subject(s)
DNA Replication , Mitosis , Humans , S Phase/genetics , Cell Cycle/genetics , DNA Replication/genetics , Mitosis/genetics , DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...