Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Fungi (Basel) ; 7(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073466

ABSTRACT

Paracoccidioidomycosis (PCM), caused by the Paracoccidioides species, is a systemic disease endemic in several Latin American countries, mainly in Brazil, Colombia, Argentina, and Venezuela. Current treatment approaches are challenging as they require prolonged durations of antifungal drugs that have potential toxicities, and despite antifungals, relapses are common. Hence, new therapeutic approaches, such as vaccines, are being investigated. The therapeutic vaccine consisting of peptide P10 associated with lipid cationic DODAB (P10+DODAB) is effective in murine models of PCM. However, the specific immune mechanisms required for the protective response has not been fully elucidated. The present work aims at evaluating the participation of neutrophils in the immune response induced by P10+DODAB. We found that the vaccine reduced both the influx of pulmonary neutrophils and the fungal load in comparison to infected animals that did not receive this treatment. The parenchymal architecture of the lungs of P10+DODAB-treated animals was largely preserved with only a few granulomas present, and tissue cytokine analysis showed a Th1 cytokine profile with augmented levels of IL-12, IFN-γ and TNF-α, and low levels of IL-4. When neutrophils were depleted 24 h prior to each treatment, the effectiveness of the P10+DODAB vaccine was completely lost as the fungal burdens remained high and histological examination showed a marked inflammation and fungal dissemination with a dysregulated cytokine response. In conclusion, these findings indicate that neutrophils are vital to ensure the triggering of an effective immune response to P10+DODAB.

2.
Molecules ; 25(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291367

ABSTRACT

The dioctadecyldimethylammonium bromide (DODAB) is a double-chained cationic lipid with potent bactericide and fungistatic activities; however, its toxicity on protozoan parasites is still unknown. Here, we show the antileishmanial activity of DODAB nano-sized cationic bilayer fragments on stationary-phase promastigotes and amastigotes of Leishmania amazonensis, the causative agent of cutaneous leishmaniasis. Upon treatment with DODAB, we analyzed the parasite surface zeta-potential, parasite viability, cellular structural modifications, and intracellular proliferation. The DODAB cytotoxic effect was dose-dependent, with a median effective concentration (EC50) of 25 µM for both life-cycle stages, comparable to the reported data for bacteria and fungi. The treatment with DODAB changed the membrane zeta-potential from negative to positive, compromised the parasite's morphology, affected the cell size regulation, caused a loss of intracellular organelles, and probably dysregulated the plasma membrane permeability without membrane disruption. Moreover, the parasites that survived after treatment induced small parasitophorous vacuoles and failed to proliferate inside macrophages. In conclusion, DODAB displayed antileishmanial activity, and it remains to be elucidated how DODAB acts on the protozoan membrane. Understanding this mechanism can provide insights into the development of new parasite-control strategies.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cations/chemistry , Leishmania mexicana/drug effects , Nanoparticles/chemistry , Quaternary Ammonium Compounds/chemistry , Animals , Leishmaniasis, Cutaneous/drug therapy , Life Cycle Stages/drug effects , Lipids/chemistry , Macrophages/drug effects , Mice , Mice, Inbred C57BL
3.
Immunobiology ; 223(12): 750-760, 2018 12.
Article in English | MEDLINE | ID: mdl-30055864

ABSTRACT

BACKGROUND: The Neisseria meningitidis bacterium is a Gram-negative diplococcus that can be classified into different serogroups according to the capsular structure. Six of them (A, B, C, W, X, Y) are responsible for causing Invasive Meningococcal Disease (IMD). The strategies for the development of a vaccine for serogroup B have been directed to the use of outer membrane vesicles (OMVs). The aim of this study was to evaluate the immunogenicity of antigenic determinants from OMVs of N. meningitidis B complexed with two different adjuvants: DODAB-BF and aluminum hydroxide (alum), comparing the evaluation of intranasal and subcutaneous route of immunization. METHODS: We used prime-boost immunization for the first time in outbred neonatal mice evaluating the cellular and humoral immune response. RESULTS: Immunoblot, ELISA DOT-ELISA and ELISpot were used universal methods of antibody detection, in order to detect the humoral and cellular immune response in male and female mice. Immunoblot analyzes the specificity of antibodies with the homologous N. meningitidis strain. ELISA served to quantify and compare the titers of antibodies in the serum of mice immunized with DODAB-BF + OMVs and alum + OMVs for IgG, IgG1, and IgG2a. Intranasal immunization produced a mixed response in the T helper cells Th1 and Th2, while subcutaneous immunization exhibited a Th1 profile. The DOT-ELISA identified cross-reactivity with DODAB-BF to different serogroups of N. meningitidis (B, C, W, and Y) that was not observed with alum. ELISpot analyzed IFN-γ- and IL-4 and the results showed the response directly to Th1 and Th2 profile. CONCLUSION: Our findings indicate that DODAB-BF can be an alternative adjuvant for mucosal cell activation with OMVs of N. meningitidis B and that DODAB-BF was similar to aluminum hydroxide as an adjuvant for subcutaneous immunization.


Subject(s)
Adjuvants, Immunologic , Immunization , Neisseria meningitidis/immunology , Neisseria/immunology , Quaternary Ammonium Compounds , Administration, Intranasal , Animals , Antibodies, Bacterial/immunology , Antibody Affinity/immunology , Antigens, Bacterial/immunology , Enzyme-Linked Immunosorbent Assay , Female , Immunity, Humoral , Immunization/methods , Immunoglobulin Isotypes/immunology , Injections, Subcutaneous , Male , Mice
4.
Molecules ; 22(8)2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28933729

ABSTRACT

Numerous applications have been described for microperoxidases (MPs) such as in photoreceptors, sensing, drugs, and hydrogen evolution. The last application was obtained by replacing Fe(III), the native central metal, by cobalt ion and inspired part of the present study. Here, the Fe(III) of MP-11 was replaced by Cu(II) that is also a stable redox state in aerated medium, and the structure and activity of both MPs were modulated by the interaction with the positively charged interfaces of lipids. Comparative spectroscopic characterization of Fe(III) and Cu(II)MP-11 in the studied media demonstrated the presence of high and low spin species with axial distortion. The association of the Fe(III)MP-11 with CTAB and Cu(II)MP-11 with DODAB affected the colloidal stability of the surfactants that was recovered by heating. This result is consistent with hydrophobic interactions of MPs with DODAB vesicles and CTAB micelles. The hydrophobic interactions decreased the heme accessibility to substrates and the Fe(III) MP-11catalytic efficiency. Cu(II)MP-11 challenged by peroxides exhibited a cyclic Cu(II)/Cu(I) interconversion mechanism that is suggestive of a mimetic Cu/ZnSOD (superoxide dismutase) activity against peroxides. Hydrogen peroxide-activated Cu(II)MP-11 converted Amplex Red® to dihydroresofurin. This study opens more possibilities for technological applications of MPs.


Subject(s)
Copper/chemistry , Ferric Compounds/chemistry , Peroxidases/chemistry , Catalysis , Cetrimonium , Cetrimonium Compounds/chemistry , Heme/chemistry , Hydrogen Peroxide/chemistry , Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Micelles , Oxidation-Reduction , Protein Binding , Protein Conformation , Quaternary Ammonium Compounds/chemistry , Superoxide Dismutase/chemistry , Surface Properties
5.
Carbohydr Polym ; 140: 129-35, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26876836

ABSTRACT

A three-dimensional layer-by-layer (LbL) structure composed by xanthan and galactomannan biopolymers over dioctadecyldimethylammonium bromide (DODAB) liposome template was proposed and characterized for protein drug delivery. The polymers and the surfactant interaction were sufficiently strong to create a LbL structure up to 8 layers, evaluated using quartz crystal microbalance (QCM) and zeta potential analysis. The polymer-liposome binding enthalpy was determined by isothermal titration calorimetry (ITC). The bilayer of biopolymer-coated liposomes with diameters of 165 (±15)nm, measured by dynamic light scattering (DLS), and ζ-potential of -4 (±13)mV. These bilayer-coated nanoparticles increased up to 5 times the sustained release of epidermal growth factor (EGF) at a first order rate of 0.005min(-1). This system could be useful for improving the release profile of low-stability drugs like EGF.


Subject(s)
Epidermal Growth Factor/administration & dosage , Epidermal Growth Factor/chemistry , Liposomes/chemistry , Mannans/chemistry , Polysaccharides, Bacterial/chemistry , Delayed-Action Preparations , Drug Liberation , Galactose/analogs & derivatives , Kinetics , Quaternary Ammonium Compounds/chemistry
6.
Carbohydr Polym ; 115: 478-84, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25439922

ABSTRACT

The interactions of the cationic surfactant DODAB with anionic xanthan (XAN) and nonionic galactomannan (GMC) polysaccharides in solution were investigated using tensiometry, differential scanning microcalorimetry (µ-DSC), zeta potential and dynamic light scattering (DLS) techniques and by the calculated thermodynamic parameters of ΔG(ves)(0), ΔG(ads)(0), Γ(max) and a(min). The surfactant formed large unilamellar vesicles (LUV) that aggregated with both the polymers in solution. Increasing DODAB concentrations resulted in greater and greater DODAB-XAN aggregates, high turbidity and even precipitation, while DODAB-GMC aggregates remained equal sized, clear solution and no precipitation observed. Further addition of DODAB to XAN solution was able to resuspend the precipitates. The interactions with both polysaccharides resulted in a more spontaneous adsorption of the DODAB-polymer aggregates at the air/solution interface with lower surfactant population.


Subject(s)
Mannans/chemistry , Polysaccharides, Bacterial/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Adsorption , Galactose/analogs & derivatives , Thermodynamics
7.
J Colloid Interface Sci ; 431: 24-30, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24980622

ABSTRACT

The antiparasitic properties of antiparasitic drugs are believed to be associated with their interactions with the protozoan membrane, encouraging research on the identification of membrane sites capable of drug binding. In this study, we investigated the interaction of mefloquine hydrochloride, known to be effective against malaria, with cell membrane models represented by Langmuir monolayers of selected lipids. It is shown that even small amounts of the drug affect the surface pressure-area isotherms as well as surface vibrational spectra of some lipid monolayers, which points to a significant interaction. The effects on the latter depend on the electrical charge of the monolayer-forming molecules, with the drug activity being particularly distinctive for negatively charged lipids. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic drug, which may have important implications in understanding how the drug acts on specific sites of the protozoan membrane.


Subject(s)
Antimalarials/chemistry , Cell Membrane/chemistry , Mefloquine/chemistry , Membranes, Artificial , Unilamellar Liposomes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL