Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Vet Parasitol Reg Stud Reports ; 55: 101116, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39326967

ABSTRACT

Chagas disease (CD) is a zoonotic infection caused by the protozoan parasite Trypanosoma cruzi, affecting over seven million people worldwide. T. cruzi can infect more than 100 species of wild mammals, including opossums, armadillos, bats, carnivores, rodents, and primates, as well as domestic animals like dogs, cats, and exotic pets. This is the first report of T. cruzi infection in an "exotic pet" African hedgehog (Atelerix albiventris), in an endemic area for CD in Colombia. After the patient underwent euthanasia due to worsening clinical signs including diarrhea, thrombocytopenia, leukopenia, and hemiplegia, anatomopathological and histopathological examinations were conducted. Simultaneously, molecular diagnosis and genotyping of T. cruzi were performed using qPCR and Next Generation sequencing of the 18S rRNA gene, respectively. Anatomopathological examination revealed significant changes across various systems, including ulcerative hemorrhagic enteritis, left ventricular hypertrophy, lymphadenitis and diffuse meningeal edema. The main histopathological findings included mononuclear inflammatory reaction, congestion and hemorrhages in several organs, accompanied of amastigote cysts in cardiomyocytes. qPCR confirmed the presence of T. cruzi in heart, lymph node, brain, salivary gland, blood, and spleen. Regarding genotyping analyses, all organs were positive for TcI. This case confirms the susceptibility of A. albiventris to infection with T. cruzi and suggest a potential role for these pets as disseminators of T. cruzi infection in endemic areas. The ecological and epidemiological implications of these findings are discussed here.


Subject(s)
Chagas Disease , Hedgehogs , Trypanosoma cruzi , Animals , Hedgehogs/parasitology , Colombia/epidemiology , Trypanosoma cruzi/isolation & purification , Chagas Disease/veterinary , Chagas Disease/parasitology , Chagas Disease/epidemiology , Chagas Disease/diagnosis , Chagas Disease/pathology , Male , Genotype
2.
Vector Borne Zoonotic Dis ; 24(2): 95-103, 2024 02.
Article in English | MEDLINE | ID: mdl-38165392

ABSTRACT

Background: In the Amazon region, several species of triatomines occur in the natural environments. Among them, species of the genus Rhodnius are a risk to human populations due to their high rates of infection with Trypanosoma cruzi. The aim of this study was to identify the T. cruzi genotypes in Rhodnius specimens and their relationship with sylvatic hosts from different environments in the Brazilian Amazon. Methods: A total of 492 triatomines were collected from the municipalities of Monte Negro, Rondônia state, and Humaitá, Amazonas state, 382 of them being nymphs and 110 adults. Genotyping of T. cruzi in six discrete typing units (DTUs) was performed using conventional multilocus PCR. The triatomines that were positive for T. cruzi and engorged with blood were also targeted for amplification of the cytochrome B (cytB) gene to identify bloodmeal sources. Results: Of the 162 positive samples, the identified DTUs were TcI (87.65%) and TcIV (12.35%). It was observed that 102 specimens were engorged with a variety of bloodmeals. Triatomines infected with TcI were associated with DNA of all identified vertebrates, except Plecturocebus brunneus. TcIV was detected in triatomines that fed on Coendou prehensilis, Didelphis marsupialis, Mabuya nigropunctata, P. brunneus, Pithecia irrorata, Sapajus apella, and Tamandua tetradactyla. Conclusion: Results highlight the need to understand the patterns of T. cruzi genotypes in Rhodnius spp. and their association with sylvatic hosts to better elucidate their role in the transmission of Chagas disease in the Amazon region.


Subject(s)
Chagas Disease , Rhodnius , Trypanosoma cruzi , Adult , Animals , Humans , Trypanosoma cruzi/genetics , Genotype , Brazil/epidemiology , Chagas Disease/epidemiology , Chagas Disease/veterinary
3.
Pathogens ; 12(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36986290

ABSTRACT

(1) Background: Chagas disease is the main neglected tropical disease in America. It is estimated that around 6 million people are currently infected with the parasite in Latin America, and 25 million live in endemic areas with active transmission. The disease causes an estimated economic loss of USD 24 billion dollars annually, with a loss of 75,200 working years per year of life; it is responsible for around ~12,000 deaths annually. Although Mexico is an endemic country that recorded 10,186 new cases of Chagas disease during the period of 1990-2017, few studies have evaluated the genetic diversity of genes that could be involved in the prophylaxis and/or diagnosis of the parasite. One of the possible candidates proposed as a vaccine target is the 24 kDa trypomastigote excretory-secretory protein, Tc24, whose protection is linked to the stimulation of T. cruzi-specific CD8+ immune responses. (2) Methods: The aim of the present study was to evaluate the fine-scale genetic diversity and structure of Tc24 in T. cruzi isolates from Mexico, and to compare them with other populations reported in the Americas with the aim to reconsider the potential role of Tc24 as a key candidate for the prophylaxis and improvement of the diagnosis of Chagas disease in Mexico. (3) Results: Of the 25 Mexican isolates analysed, 48% (12) were recovered from humans and 24% (6) recovered from Triatoma barberi and Triatoma dimidiata. Phylogenetic inferences revealed a polytomy in the T. cruzi clade with two defined subgroups, one formed by all sequences of the DTU I and the other formed by DTU II-VI; both subgroups had high branch support. Genetic population analysis detected a single (monomorphic) haplotype of TcI throughout the entire distribution across both Mexico and South America. This information was supported by Nei's pairwise distances, where the sequences of TcI showed no genetic differences. (4) Conclusions: Given that both previous studies and the findings of the present work confirmed that TcI is the only genotype detected from human isolates obtained from various states of Mexico, and that there is no significant genetic variability in any of them, it is possible to propose the development of in silico strategies for the production of antigens that optimise the diagnosis of Chagas disease, such as quantitative ELISA methods that use this region of Tc24.

4.
Parasit Vectors ; 16(1): 26, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36691054

ABSTRACT

BACKGROUND: The study of the ecology of Trypanosoma cruzi is challenging due to its extreme adaptive plasticity, resulting in the parasitism of hundreds of mammal species and dozens of triatomine species. The genetic analysis of blood meal sources (BMS) from the triatomine vector is an accurate and practical approach for gathering information on which wild mammal species participate in a local transmission network. South American coatis, Nasua nasua, act as important reservoir host species of T. cruzi in the Pantanal biome because of their high rate of infection and elevated parasitemia, with the main discrete typing unit (DTU) lineages (TcI and TcII). Moreover, the carnivore coati is the only mammal species to build high arboreal nests for breeding and resting that can be shared by various vertebrate and invertebrate species. Herein, we applied the sensitive and specific methodology of DNA barcoding and molecular cloning to study triatomines found in a coati nest to access the diversity of mammal species that explore this structure, and therefore, may be involved in the parasite transmission network. METHODS: Twenty-three Triatoma sordida were collected in one coati's nest in the subregion of Nhecolândia, Pantanal. The DNA isolated from the gut of insects was subjected to BMS detection by PCR using universal primers that flank variable regions of the cytochrome b (cytb) and 12S rDNA mitochondrial genes from vertebrates. The Trypanosoma spp. diagnosis and DTU genotyping were based on an 18S rDNA molecular marker and also using new cytb gene primers designed in this study. Phylogenetic analyses and chord diagrams were constructed to visualize BMS haplotypes, DTU lineages detected on vectors, and their interconnections. RESULTS: Twenty of 23 triatomines analyzed were PCR-positive (86.95%) showing lineages T. cruzi DTU TcI (n = 2), TcII (n = 6), and a predominance of TcI/TcII (n = 12) mixed infection. Intra-DTU diversity was observed mainly from different TcI haplotypes. Genetic analyses revealed that the southern anteater, Tamandua tetradactyla, was the unique species detected as the BMS of triatomines collected from the coati's nest. At least three different individuals of T. tetradactyla served as BMS of 21/23 bugs studied, as indicated by the cytb and 12S rDNA haplotypes identified. CONCLUSIONS: The identification of multiple BMS, and importantly, different individuals of the same species, was achieved by the methodology applied. The study demonstrated that the southern anteaters can occupy the South American coati's nest, serving as the BMS of T. sordida specimens. Since anteaters have an individualist nonsocial behavior, the three individuals detected as BMS stayed at the coati's nest at different times, which added a temporal character to BMS detection. The TcI and TcII infection, and significantly, a predominance of TcI/TcII mixed infection profile with different TcI and TcII haplotypes was observed, due to the discriminatory capacity of the methodology applied. Tamandua tetradactyla, a host which has been little studied, may have an important role in the T. cruzi transmission in that Pantanal subregion. The data from the present study indicate the sharing of coatis' nests by other mammal species, expanding the possibilities for T. cruzi transmission in the canopy strata. We propose that coatis' nests can act as the true hubs of the T. cruzi transmission web in Pantanal, instead of the coatis themselves, as previously suggested.


Subject(s)
Chagas Disease , Coinfection , Procyonidae , Triatoma , Trypanosoma cruzi , Humans , Animals , Trypanosoma cruzi/genetics , Vermilingua , Procyonidae/parasitology , Phylogeny , Triatoma/parasitology , Ecosystem , Mammals/parasitology , Genotype
5.
Curr Res Microb Sci ; 3: 100152, 2022.
Article in English | MEDLINE | ID: mdl-35909611

ABSTRACT

Trypanosoma cruzi, the etiologic agent of Chagas disease (CD) presents a wide genetic and phenotypic diversity that is classified into seven lineages or discrete typing units (DTU: TcI to TcVI and Tcbat). Although isolates and strains that belong to a particular group can share some attributes, such as geographic distribution, others like growth rate, cell tropism, and response to treatment can be highly variable. In addition, studies that test new trypanocidal drugs are frequently conducted on T. cruzi strains maintained for a long time in axenic culture, resulting in changes in parasite virulence and other important features. This work aimed to isolate and characterize a new T. cruzi strain from a chronic Chagas disease patient. The behavior of this isolate was studied by using standard in vitro assays and in vivo mice infection tests and compared with the T. cruzi Y strain (TcY), broadly used in research laboratories worldwide. Data showed that TcM behaves as a slow-growing strain in vitro that develops chronic infections in mice and displays high tropism to muscular tissues, in accordance with its clinical performance. In contrast, the Y strain behaved as an acute strain that can infect different types of cells and tissues. Interestingly, TcM, which belongs to DTU TcV, is more susceptible to benznidazole than TcY, a TcII strain considered moderately resistant to this drug. These differential properties contribute to the characterization of a TcV strain, one of the main lineages in the southern countries of South America, and open the possibility to introduce changes that improve the management of Chagas patients in the future.

6.
Parasit Vectors ; 15(1): 307, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038947

ABSTRACT

BACKGROUND: Chagas disease, one of the most important neglected tropical diseases in the countries of Latin America, is considered to be a particularly important public health concern in the Amazon region due to increases in the number of outbreaks of acute Chagas disease and increased local transmission in the last 20 years. However, relative to other countries, in Bolivia there is little information available on its transmission in the Amazon region. The aim of this study was to investigate the infestation of palm trees, the main habitat of Triatominae in the region, in several localities, to evaluate the danger they represent to inhabitants. METHODS: Triatominae were collected using live bait traps left overnight in six localities in Pando and Beni Departments, Bolivia. DNA extraction and sequencing were used to establish the Triatominae species (Cytb, 16S and 28S-D2 gene fragments), and the blood meal sources (Cytb fragment). Trypanosoma sp. infection was analyzed by sequencing gene fragments (GPX, GPI, HMCOAR, LAP, PDH and COII) or by mini-exon multiplex PCR. RESULTS: A total of 325 Rhodnius were captured (97.3% of nymphs) from the 1200 traps placed in 238 palm trees and 32 burrows/ground holes. Sequence analyses on DNA extracted from 114 insects and phylogeny analysis identified two triatomine species: Rhodnius stali (17%) and Rhodnius montenegrensis (equated to Rhodnius robustus II, 83%). These were found in palm trees of the genera Attalea (69%), Astrocaryum (13%), Copernicia (12%), Euterpe (2%) and Acrocomia (1%). The infection rate was around 30% (165 analyzed insects), with 90% of analyzed insects infected by Trypanosoma cruzi (only the TcI discrete typing unit was detected), 3% infected by Trypanosoma rangeli (first time found in Bolivian Triatominae) and 7% infected by mixed T. cruzi (TcI)-T. rangeli. Rhodnius specimens fed on Didelphidae, rodents, gecko and humans. CONCLUSIONS: The results of this study highlight the epidemiological importance of Rhodnius in the Bolivian Amazon region. The huge geographical distribution of Rhodnius and their proximity to the human dwellings, high infection rate and frequent meals on the human population highlight a risk of transmission of Chagas disease in the region.


Subject(s)
Arecaceae , Chagas Disease , Rhodnius , Triatominae , Trypanosoma cruzi , Animals , Arecaceae/genetics , Bolivia/epidemiology , Chagas Disease/epidemiology , DNA , Humans , Insect Vectors , Rhodnius/genetics , Trees/genetics , Triatominae/genetics , Trypanosoma cruzi/genetics
7.
Acta Parasitol ; 67(4): 1584-1593, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36029434

ABSTRACT

PURPOSE: The objective of this study was to molecularly characterize Mexican isolates of T. cruzi obtained from infected triatomine bugs (the vectors of T. cruzi) and to evaluate their susceptibility to Nifurtimox (NFX). METHODS: Three isolates obtained from Triatoma dimidiata (collected in the State of Veracruz) and one isolate obtained from Triatoma bassolsae (collected in the State of Puebla) were molecularly characterized and the expression of genes associated with natural resistance to NFX was analyzed by qPCR. RESULTS: Molecular characterization by PCR showed that isolates Zn3, Zn5, and SRB1 belong to the DTU TcI, while isolate Sum3 belongs to TcIV. The latter was also confirmed by sequencing of mitochondrial genes. Isolate Zn5 was the most sensitive to treatment with NFX (IC50, 6.8 µM), isolates SRB1 and Zn3 were partially resistant (IC50, 12.8 µM and 12.7 µM) and isolate Sum3 showed a high degree of resistance to NFX (IC50, 21.4 µM). We also found an association between decreased NTR1 or OYE gene expression with NFX resistance. CONCLUSION: Our results also evidenced a high variability in the susceptibility to NFX of these T. cruzi isolates Central and Southeastern Mexico, suggesting the presence of naturally resistant isolates circulating in the country. These results have important implications for defining treatment policies for patients with Chagas disease.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Humans , Trypanosoma cruzi/genetics , Nifurtimox/pharmacology , Mexico , Insect Vectors , Genotype
8.
Pathogens ; 11(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890030

ABSTRACT

Chagas disease (ChD) is a vector zoonosis native to the American continent caused by the protozoan parasite Trypanosoma cruzi; the biological vectors are multiple species of hematophagous insects of the family Triatominae. A relevant aspect in the host-parasite relationship is the identification of the various genotypes of T. cruzi called discrete typing units (DTU) that circulate in mammals and vectors. In Chile, it has been described that the DTUs TcI, TcII, TcV, and TcVI circulate in infected humans, vectors, and wild animals. Identifying DTUs has acquired clinical importance, since it has been suggested that different genotypes could cause distinct pathologies, circulate in different geographical areas, and present different sensitivities to trypanocidal drugs. In this study, circulating T. cruzi DTUs in peripheral blood and Triatoma infestans dejections used in xenodiagnosis (XD) were amplified by qPCR in 14 Chilean patients with chronic ChD from highly endemic areas. More positive samples were detected by XD compared to peripheral blood samples, and 64.28% of the cases were simple infections and 35.72% mixed, with a statistically significant difference in the frequency of TcV DTU. This study would suggest that T. infestans from Chile is more competent to amplify one DTU over others, probably due to a process of co-evolution.

9.
Parasit Vectors ; 15(1): 239, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773725

ABSTRACT

BACKGROUND: Rhodnius robustus and Rhodnius pictipes are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease (CD), that are found in the Brazilian Amazon region. Susceptibility to infection and vector competence depend on the parasite-vector relationship. Our objective was to evaluate the interaction between T. cruzi and these two triatomine vectors in pure and mixed experimental infections of T. cruzi strains from the same or different geographic regions. METHODS: Fifth-instar nymphs of R. robustus and R. pictipes were fed on mice infected with four T. cruzi strains, namely genotypes TcIAM, TcIMG, TcIIPR, and TcIVAM, respectively, from the Brazilian states of Amazonas, Minas Gerais and Paraná. Over a period of 120 days, excreta were examined every 20 days to assess vector competence, and intestinal contents (IC) were examined every 30 days to determine susceptibility to infection. RESULTS: The highest positive rate in the fresh examination (%+FE, 30.0%), the highest number of parasitic forms (PF, n = 1969) and the highest metacyclogenesis rate (%MC, 53.8%) in the excreta were recorded for R. robustus/TcIVAM. Examination of the IC of R. pictipes revealed a higher number of PF in infections with TcIAM (22,680 PF) and TcIIPR (19,845 PF) alone or in association (17,145 PF), as well as a %+FE of 75.0% with TcII, in comparison with the other genotypes. The highest %MC (100%) was recorded for the mixed infections of TcIAM with TcIIPR or TcIVAM in the IC of R. pictipes. CONCLUSIONS: Overall, both species were found to be susceptible to the T. cruzi strains studied. Rhodnius robustus showed vector competence for genotypes TcIVAM and TcIAM+TcIVAM and R. pictipes for TcIAM+TcIVAM and TcIAM+TcIIPR; there was elimination of infective forms as early as at 20 days. Our results suggest that both the genetics of the parasite and its geographic origin influence the susceptibility to infection and vector competence, alone or in association.


Subject(s)
Chagas Disease , Kinetoplastida , Rhodnius , Triatominae , Trypanosoma cruzi , Trypanosomatina , Animals , Chagas Disease/parasitology , Mice , Rhodnius/parasitology , Triatominae/parasitology , Trypanosoma cruzi/genetics
10.
Vector Borne Zoonotic Dis ; 22(4): 244-251, 2022 04.
Article in English | MEDLINE | ID: mdl-35404133

ABSTRACT

Recurrent outbreaks of oral infection and isolated cases characterize the new epidemiological scenario of Chagas disease (CD) in the Brazilian Amazon. Acute Chagas disease (ACD) is common in Pará and Amazonas, Northeastern and Northwestern Brazilian Amazonia. In the present study, we describe the first molecularly characterized autochthonous case of ACD in Rondônia, Southwestern Amazonia. The patient, a 39-year-old male resident in the small city of Cujubim, presented typical ACD symptoms: fever, asthenia, myalgia, progressive dyspnea, swelling of the legs, and tiredness at minimal efforts, all compatible with ACD and indicative of cardiac involvement. A thick blood drop test revealed trypomastigote forms of Trypanosoma cruzi genotyped as TcIV. An epidemiological investigation ruled out oral infection, and support for vectorial transmission included the finding of Panstrongylus geniculatus positive for T. cruzi (TcIII and TcIV) inside the tent used by the patient when harvesting forest timber, and a circular cutaneous lesion resembling a chagoma of inoculation. Treatment with benznidazole led to blood parasite clearance as confirmed by molecular tests. Altogether, our findings fitted well into the ecological scenario where deforestation and colonization of forested areas represent an important risk factor to the adaptation of P. geniculatus to human habitats, favoring vectorial transmission of CD in the Amazonian region.


Subject(s)
Chagas Disease , Panstrongylus , Trypanosoma cruzi , Animals , Brazil/epidemiology , Chagas Disease/veterinary , Genotype , Humans , Male , Panstrongylus/parasitology , Trypanosoma cruzi/genetics
11.
Trans R Soc Trop Med Hyg ; 116(1): 80-84, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34134129

ABSTRACT

BACKGROUND: This study identified Trypanosoma cruzi discrete typing units (DTUs) in maternal and infant specimens collected from two hospitals in Bolivia, using conventional genotyping and DTU-specific serotyping. METHODS: Specimens from 142 mothers were used, including 24 seronegative and 118 seropositive individuals; 29 women transmitted T. cruzi to their infants. Maternal and infant parasite loads were determined by quantitative real-time PCR. Maternal sera were tested with an in-house parasite lysate ELISA and serotyped by a lineage-specific peptide ELISA, targeting the trypomastigote small surface antigen (TSSA). Trypanosoma cruzi genotypes in infected infants were determined by a triple PCR-RFLP assay. RESULTS: All infant specimens were genotyped as TcV. Maternal parasite loads and absorbance values by the lysate ELISA were significantly higher for transmitters compared with non-transmitters. Among seropositive mothers, 65.3% had positive results by the TSSA II/V/VI peptide ELISA. No significant difference in reactivity to TSSA II/V/VI was observed for transmitters compared with non-transmitters (79.3% vs 60.7%, respectively). CONCLUSIONS: Our findings reinforce the difficulty in obtaining sufficient sample numbers and parasite DNA to investigate the interaction between parasite genetics and the risk of congenital transmission and argue for the inclusion of DTU-specific serotyping in prospective studies.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Antigens, Surface , Bolivia/epidemiology , Chagas Disease/epidemiology , Chagas Disease/parasitology , Female , Humans , Male , Prospective Studies , Real-Time Polymerase Chain Reaction , Trypanosoma cruzi/genetics
12.
Acta Trop ; 213: 105754, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33166517

ABSTRACT

The mechanisms of infection and dispersion of Trypanosoma cruzi among animals, especially in the sylvatic environment, are still not entirely clear, and various aspects of the transmission dynamics of this parasite in the sylvatic environment are still unknown. T. cruzi is a parasite with a great biological and genetic diversity that infects a wide variety of hosts, therefore, transmission cycles of this parasite are complex. The objective of this study was to determine the prevalence of T. cruzi infection and analyze the genetic variability of the discrete typing units (DTUs) of the parasite in three non-human primate species (Alouatta palliata, Alouatta pigra, and Ateles geoffroyi) in southeastern Mexico. A total of one hundred sixty-four serum samples (42 samples of A. pigra, 41 samples of A. palliata (free-ranging) and 81 samples of A. geoffroyi (hosted in care centers)) were analyzed for the detection of anti-T. cruzi antibodies by ELISA assays. The seroprevalence of infection was 23.39% in A. palliata, 21.40% in A. pigra and 16.27% in A. geoffroyi. Additionally, presence of parasite DNA was assessed by PCR, and the identification of DTUs was performed by real-time PCR coupled to High Resolution Melting (qPCR-HRM). Different DTUs (TcI, TcII, TcIII, TcV and TcVI) were found in the analyzed monkeys. In addition, infection of monkeys was not associated with age or gender, but it was associated with the species. This study reveals the risk of infection in the study area and that the different DTUs of the parasite can coexist in the same habitat, indicating that T. cruzi transmission in the study area is very complex and involves many ecological factors. However, there is a need for long-term studies of host-parasite interactions to provide a solid understanding of the ecology of these species and to understand the dispersion strategies of T. cruzi.


Subject(s)
Alouatta/parasitology , Ateles geoffroyi/parasitology , Chagas Disease/transmission , Monkey Diseases/transmission , Trypanosoma cruzi/pathogenicity , Animals , Chagas Disease/parasitology , Chagas Disease/veterinary , Genotype , Host-Parasite Interactions , Humans , Mexico , Monkey Diseases/parasitology , Seroepidemiologic Studies , Species Specificity , Trypanosoma cruzi/genetics
13.
Parasit Vectors ; 13(1): 255, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32410662

ABSTRACT

BACKGROUND: Severe changes in temperature can affect the behavior and ecology of some infectious agents. Trypanosoma cruzi is a protozoan that causes Chagas disease. This parasite has high genetic variability and can be divided into six discrete typing units (DTUs). Trypanosoma cruzi also has a complex life-cycle, which includes the process of metacyclogenesis when non-infective epimastigote forms are differentiated into infective metacyclic trypomastigotes (MT). Studies in triatomines have shown that changes in temperature also affect the number and viability of MT. METHODS: The objective of this study was to evaluate how temperature affects the transcriptional profiles of T. cruzi I and II (TcI and TcII) MT by exposing parasites to two temperatures (27 °C and 28 °C) and comparing those to normal culture conditions at 26 °C. Subsequently, RNA-seq was conducted and differentially expressed genes were quantified and associated to metabolic pathways. RESULTS: A statistically significant difference was observed in the number of MT between the temperatures evaluated and the control, TcII DTU was not strongly affected to exposure to high temperatures compared to TcI. Similar results were found when we analyzed gene expression in this DTU, with the greatest number of differentially expressed genes being observed at 28 °C, which could indicate a dysregulation of different signaling pathways under this temperature. Chromosome analysis indicated that chromosome 1 harbored the highest number of changes for both DTUs for all thermal treatments. Finally, gene ontology (GO) analyses showed a decrease in the coding RNAs involved in the regulation of processes related to the metabolism of lipids and carbohydrates, the evasion of oxidative stress, and proteolysis and phosphorylation processes, and a decrease in RNAs coding to ribosomal proteins in TcI and TcII, along with an increase in the expression of surface metalloprotease GP63 in TcII. CONCLUSIONS: Slight temperature shifts lead to increased cell death of metacyclic trypomastigotes because of the deregulation of gene expression of different processes essential for the TcI and TcII DTUs of T. cruzi.


Subject(s)
Metabolic Networks and Pathways/genetics , Temperature , Transcriptome , Trypanosoma cruzi/genetics , Gene Expression Profiling , Life Cycle Stages , RNA-Seq
14.
Infect Genet Evol ; 84: 104329, 2020 10.
Article in English | MEDLINE | ID: mdl-32339759

ABSTRACT

The relationship among genetic diversity of Trypanosoma cruzi and clinical forms of Chagas disease remain elusive. In order to assess the possible association between different T. cruzi Discrete Typing Units (DTUs) and the clinical pictures of the disease, 205 chronic patients from Salta province, Argentina, were analysed. One hundred and twenty-two of these patients were clinically categorized as: cardiac 38.5% (47/122), digestive 15% (18/122), cardio-digestive 16% (20/122) and asymptomatic 30% (37/122). From each patient, blood samples were taken for both, Polymerase Chain Reaction (PCR) targeting kDNA and blood culture analyses. The presence of T. cruzi kDNA was detected in 43% (88/205) of the patients. T. cruzi DTUs were identified in 74% (65/88) of the kDNA positive patients by PCR-hybridization using specific probes. We detected the presence of DTUs TcI, TcII, TcV and TcVI. Single infections (i.e. presence of only one DTU in the sample) were detected in 38.64% of the samples (34/88), while mixed infections were 35.23% (31/88). TcV was the most prevalent DTU (60.3%- 53/88). The association analyses showed, for the first time to the best of our knowledge, that TcV and TcVI were associated with the digestive form of Chagas Disease (Fisher p = .0001).


Subject(s)
Chagas Disease/etiology , Trypanosoma cruzi/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Argentina/epidemiology , Chagas Disease/epidemiology , Chagas Disease/parasitology , DNA, Protozoan/genetics , Female , Humans , Male , Middle Aged , Prevalence , Young Adult
15.
Parasitology ; 146(3): 269-283, 2019 03.
Article in English | MEDLINE | ID: mdl-30210012

ABSTRACT

Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.


Subject(s)
Cardiomyopathies/parasitology , Chagas Disease/immunology , Cytokines/immunology , Genetic Heterogeneity , Immunity, Innate , Trypanosoma cruzi/genetics , Virulence Factors/immunology , Cardiomyopathies/immunology , Chagas Disease/parasitology , Host-Parasite Interactions , Humans
16.
Parasit Vectors ; 11(1): 611, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30497493

ABSTRACT

BACKGROUND: Trypanosoma cruzi, a hemoflagellate protozoan parasite and the etiological agent of Chagas disease (CD), exhibits great genetic and biological diversity. Infected individuals may present clinical manifestations with different levels of severity. Several hypotheses have been proposed to attempt to correlate the diversity of clinical signs and symptoms to the genetic variability of T. cruzi. This work aimed to investigate the differential expression of proteins from two distinct genetic groups of T. cruzi (discrete typing units TcI and TcII), isolated from chronically infected individuals displaying the cardiac form of CD. For this purpose, epimastigote forms of the two isolates were cultured in vitro and the cells recovered for protein extraction. Comparative two-dimensional (2D) gel electrophoreses were performed and differentially expressed spots selected for identification by mass spectrometry, followed by database searching and protein categorization. RESULTS: The 2D electrophoretic profiles revealed the complex composition of the T. cruzi extracted proteome. Protein spots were distributed along the entire pH and molecular mass ranges attesting for the integrity of the protein preparations. In total, 46 differentially expressed proteins were identified present in 40 distinct spots found in the comparative gel analyses. Of these, 16 displayed upregulation in the gel from TcI-typed parasites and 24 appeared overexpressed in the gel from TcII-typed parasites. Functional characterization of differentially expressed proteins revealed major alterations associated with stress response, lipid and amino acid metabolism in parasites of the TcII isolate, whilst those proteins upregulated in the TcI sample were primarily linked to central metabolic pathways. CONCLUSIONS: The comparative 2D-gel electrophoresis allowed detection of major differences in protein expression between two T. cruzi isolates, belonging to the TcI and TcII genotypes. Our findings suggest that patients displaying the cardiac form of the disease harbor parasites capable of exhibiting distinct proteomic profiles. This should be of relevance to disease prognosis and treatment.


Subject(s)
Chagas Cardiomyopathy/parasitology , Protozoan Proteins/genetics , Trypanosoma cruzi/genetics , Electrophoresis, Gel, Two-Dimensional , Female , Genetic Variation , Genotype , Humans , Proteomics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/isolation & purification , Trypanosoma cruzi/metabolism
17.
Article in English | MEDLINE | ID: mdl-30183555

ABSTRACT

PCR amplification and sequencing of Trypanosoma cruzi (T. cruzi) spliced-leader intergenic region of the mini-exon gene intergenic region (SL-IR) fragment was performed on intestinal tissue and fecal content DNA extracted from 19 Meccus pallidipennis (M. pallidipennis) specimens collected in the southern region of the State of Mexico. DNA sequence analysis from 49 bp T. cruzi SL-IR showed that all 19 samples corresponded to haplotype TcIa, and all of them were identical to GenBank sequence JQ028863. When extending the analysis to the whole 256 bp amplified sequence of the SL-IR, we found six sequences with a C insertion at position 10, one of which also presented a mutation (T/C) at position 54. One more sequence had an insertion (T) at position 223. Our findings suggest that two dominating TcIa clones are present in M. pallidipennis in the southern region of the State of Mexico. Interestingly, the SL-IR region of the dominating genotype was 100% identical to a circulating clone from Costa Rica present in humans, dogs, Triatoma dimidiata, and Panstrongylus rufotuberculatus. Future regional studies should explore the presence of this haplotype in humans and domestic animals.

18.
Exp Parasitol ; 176: 8-15, 2017 May.
Article in English | MEDLINE | ID: mdl-28212811

ABSTRACT

Trypanosoma cruzi is the etiologic agent of American trypanosomiasis has broad biological and genetic diversity. Remaining to be studied are polymorphisms of the blood forms and metacyclogenesis of different T. cruzi discrete typing units (DTUs). Our goal was to evaluate the relationship between T. cruzi DTUs, the morphology of blood trypomastigotes, and in vitro metacyclogenesis. T. cruzi strains that pertained to DTUs TcI, TcII, and TcIV from different Brazilian states were used. Parameters that were related to the morphology of eight strains were assessed in thin blood smears that were obtained from mice that were inoculated with blood or culture forms, depending on strain. The metacyclogenesis of 12 strains was measured using smears with Liver Infusion Tryptose culture medium and M16 culture medium (which is poor in nutrients and has a low pH) at the exponential phase of growth, both stained with Giemsa. The morphological pattern of TcII strains was consistent with broad forms of the parasite. In TcIV strains, slender forms predominated. The Y strain (TcII) was morphologically more similar to TcIV. Significant differences in polymorphisms were observed between DTUs. Metacyclogenesis parameters, although displaying large standard deviations, differed between the DTUs, with the following descending rank order: TcII > TcI > TcIV. The mean numbers of metacyclic trypomastigotes for TcII were significantly higher than the other DTUs. Although the DTUs presented overlapping characteristics, the general pattern was that different DTUs exhibited significantly different morphologies and metacyclogenesis, suggesting that the genetic diversity of T. cruzi could be related to parameters that are associated with the evolution of infection in mammalian hosts and its ability to disperse in nature.


Subject(s)
Chagas Disease/parasitology , Parasitemia/parasitology , Polymorphism, Genetic , Trypanosoma cruzi/genetics , Animals , Brazil/epidemiology , Chagas Disease/blood , Chagas Disease/epidemiology , Humans , Mice , Opossums , Parasitemia/blood , Parasitemia/epidemiology , Rhodnius , Trypanosoma cruzi/classification , Trypanosoma cruzi/growth & development
19.
Infect Genet Evol ; 49: 146-150, 2017 04.
Article in English | MEDLINE | ID: mdl-28104454

ABSTRACT

Trypanosoma cruzi, the agent of Chagas disease exhibits significant genetic diversity. This parasite is divided into six discrete typing units (DTUs) where T. cruzi I (TcI) is the most widespread in the Americas. TcI genotypes have been associated to domestic and sylvatic cycles of transmission (TcIDom and sylvatic TcI). Due to the importance of the enzootic transmission, we determined the frequency of TcI genotypes present in Rhodnius prolixus captured in different regions of the palm A. butyracea to understand the ecology of the disease and the importance of A. butyracea palms as ecotopes of R. prolixus. Forty A. butyracea palms were sampled (base crown, mid-point and crown) capturing 105 individuals identified as R. prolixus by morphological and molecular barcoding. We conducted molecular detection and typing of T. cruzi across 59 individuals. The results showed that all the insects were infected with TcI; 28.57% were sylvatic TcI, 12.38% TcIDom and 15,24% mixed infections (TcIDom/sylvatic TcI). Statistical analysis showed a similar behavior between TcIDom and mixed infections in the mid-point and at the crown of the palm, being more frequent in the crown, while sylvatic TcI does not seem to have a specific association with any of the sampled areas. These findings are consistent with other studies showing high mobility of the insect vector between different ecotopes, increasing the need to develop improvements in the programs of disease control.


Subject(s)
Chagas Disease/transmission , DNA, Protozoan/genetics , Insect Vectors/parasitology , Plant Leaves/parasitology , Rhodnius/parasitology , Trypanosoma cruzi/genetics , Animals , Arecaceae/parasitology , Colombia , Ecosystem , Genotype , Humans , Insect Control/organization & administration , Molecular Typing , Phylogeny , Trypanosoma cruzi/classification , Trypanosoma cruzi/isolation & purification
20.
Acta Trop ; 167: 108-120, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27908747

ABSTRACT

The clonal evolution of Trypanosoma cruzi sustains scientifically the hypothesis of association between parasite's genetic, biological behavior and possibly the clinical aspects of Chagas disease in patients from whom they were isolated. This study intended to characterize a range of biological properties of TcI, TcII and TcVI T. cruzi samples in order to verify the existence of these associations. Several biological features were evaluated, including in vitro epimastigote-growth, "Vero"cells infectivity and growth, along with in vivo studies of parasitemia, polymorphism of trypomastigotes, cardiac inflammation, fibrosis and response to treatment by nifurtimox during the acute and chronic murine infection. The global results showed that the in vitro essays (acellular and cellular cultures) TcII parasites showed higher values for all parameters (growth and infectivity) than TcVI, followed by TcI. In vivo TcII parasites were more virulent and originated from patients with severe disease. Two TcII isolates from patients with severe pathology were virulent in mice, while the isolate from a patient with the indeterminate form of the disease caused mild infection. The only TcVI sample, which displayed low values in all parameters evaluated, was also originated of an indeterminate case of Chagas disease. Response to nifurtimox was not associated to parasite genetic and biology, as well as to clinical aspects of human disease. Although few number of T. cruzi samples have been analyzed, a discreet correlation between parasite genetics, biological behavior in vitro and in vivo (murine model) and the clinical form of human disease from whom the samples were isolated was verified.


Subject(s)
Chagas Disease/parasitology , Nifurtimox/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/pathogenicity , Animals , Cells, Cultured , Disease Models, Animal , Humans , Mice , Trypanosoma cruzi/isolation & purification , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL