Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Neurobiol Dis ; 194: 106462, 2024 May.
Article in English | MEDLINE | ID: mdl-38442845

ABSTRACT

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Subject(s)
Dystonia , Dystonic Disorders , Fenofibrate , Rats , Animals , Dystonia/genetics , Dystonia/metabolism , Rodentia/metabolism , Fluorodeoxyglucose F18 , PPAR alpha/metabolism , Dystonic Disorders/genetics , Brain/metabolism , Energy Metabolism , Glucose
2.
Neurobiol Dis ; 193: 106453, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402912

ABSTRACT

DYT-TOR1A dystonia is the most common monogenic dystonia characterized by involuntary muscle contractions and lack of therapeutic options. Despite some insights into its etiology, the disease's pathophysiology remains unclear. The reduced penetrance of about 30% suggests that extragenetic factors are needed to develop a dystonic phenotype. In order to systematically investigate this hypothesis, we induced a sciatic nerve crush injury in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) to evoke a dystonic phenotype. Subsequently, we employed a multi-omic approach to uncover novel pathophysiological pathways that might be responsible for this condition. Using an unbiased deep-learning-based characterization of the dystonic phenotype showed that nerve-injured DYT1KI animals exhibited significantly more dystonia-like movements (DLM) compared to naive DYT1KI animals. This finding was noticeable as early as two weeks following the surgical procedure. Furthermore, nerve-injured DYT1KI mice displayed significantly more DLM than nerve-injured wildtype (wt) animals starting at 6 weeks post injury. In the cerebellum of nerve-injured wt mice, multi-omic analysis pointed towards regulation in translation related processes. These observations were not made in the cerebellum of nerve-injured DYT1KI mice; instead, they were localized to the cortex and striatum. Our findings indicate a failed translational compensatory mechanisms in the cerebellum of phenotypic DYT1KI mice that exhibit DLM, while translation dysregulations in the cortex and striatum likely promotes the dystonic phenotype.


Subject(s)
Dystonia , Dystonic Disorders , Mice , Animals , Dystonia/genetics , Gene-Environment Interaction , Dystonic Disorders/genetics , Corpus Striatum/metabolism , Genetic Predisposition to Disease
3.
Front Neurosci ; 17: 1216929, 2023.
Article in English | MEDLINE | ID: mdl-37638318

ABSTRACT

DYT-TOR1A dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the TOR1A gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling. Almost all patients with TOR1A-related dystonia harbor the same mutation, an in-frame GAG deletion (ΔGAG) in the last of its 5 exons. This recurrent variant results in the deletion of one of two tandem glutamic acid residues (i.e., E302/303) in a protein named torsinA [torsinA(△E)]. Although the mutation is hereditary, not all carriers will develop DYT-TOR1A dystonia, indicating the involvement of other factors in the disease process. The current understanding of the pathophysiology of DYT-TOR1A dystonia involves multiple factors, including abnormal protein folding, signaling between neurons and glial cells, and dysfunction of the protein quality control system. As there are currently no curative treatments for DYT-TOR1A dystonia, progress in research provides insight into its pathogenesis, leading to potential therapeutic and preventative strategies. This review summarizes the latest research advances in the pathogenesis, diagnosis, and treatment of DYT-TOR1A dystonia.

4.
Neurobiol Dis ; 179: 106056, 2023 04.
Article in English | MEDLINE | ID: mdl-36863527

ABSTRACT

The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.


Subject(s)
Dystonia , Dystonic Disorders , Peripheral Nerve Injuries , Animals , Humans , Mice , Corpus Striatum/metabolism , Dopamine/metabolism , Dystonia/genetics , Dystonia/metabolism , Dystonic Disorders/genetics , Endophenotypes , Molecular Chaperones/genetics , Peripheral Nerve Injuries/metabolism , Substantia Nigra/metabolism
5.
Parkinsonism Relat Disord ; 92: 119-122, 2021 11.
Article in English | MEDLINE | ID: mdl-34844747

ABSTRACT

The possible differential diagnoses for children presenting with kyphoscoliosis, skeletal deformities and ophthalmoplegia are diverse. We present 11-year-old identical twins with these symptoms, with interesting etiological concern for those practicing in the fields of neurology, pediatrics, spine surgery and related specialties. A new presentation for a rare genetic condition was the final diagnosis for our patients. In this movement disorder round we describe our approach to this clinical constellation and discuss clinical significance of this genetic condition.


Subject(s)
Diseases in Twins/genetics , Kyphosis/genetics , Movement Disorders/genetics , Ophthalmoplegia/genetics , Scoliosis/genetics , Child , Humans , Male
6.
Brain Dev ; 43(7): 783-788, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33832800

ABSTRACT

BACKGROUND: DYT-TOR1A is caused by a GAG deletion in the TOR1A gene. While it usually manifests as early-onset dystonia, its phenotype is extremely diverse, even within one family. Recent reports have revealed that some DYT-TOR1A cases have novel mutations in the TOR1A gene while others have mutations in both TOR1A and another DYT gene (THAP1 or SGCE). Our understanding of the correlation between genotype and phenotype is becoming increasingly complicated. CASE PRESENTATIONS: Here, we report on monozygotic twins who developed dystonia in childhood. The two children had different presentations in terms of onset age and dominant disturbances, but both exhibited marked diurnal fluctuation and jerking movements of the limbs as well as levodopa/levodopa-carbidopa responsiveness. These features are commonly associated with DYT/PARK-GCH1 and DYT-SGCE, yet these twins had no mutations in the GCH1 or SGCE genes. Whole exome sequencing eventually revealed a single GAG deletion in the TOR1A gene. CONCLUSION: Monozygotic twins whose only mutation was a GAG deletion in TOR1A exhibited DYT/PARK-GCH1-asssociated features and jerking movements reminiscent of myoclonus. This finding may expand the spectrum of phenotypes associated with DYT-TOR1A, and suggests that levodopa has potential as a treatment for DYT-TOR1A with DYT/PARK-GCH1-associated features.


Subject(s)
Dopamine Agents/pharmacology , Dystonic Disorders , Levodopa/pharmacology , Molecular Chaperones/genetics , Adolescent , Carbidopa/pharmacology , Drug Combinations , Dystonic Disorders/drug therapy , Dystonic Disorders/genetics , Dystonic Disorders/physiopathology , Humans , Male , Twins, Monozygotic
7.
Behav Brain Res ; 403: 113137, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33476687

ABSTRACT

DYT1 or DYT-TOR1A dystonia is early-onset, generalized dystonia. Most DYT1 dystonia patients have a heterozygous trinucleotide GAG deletion in DYT1 or TOR1A gene, with a loss of a glutamic acid residue of the protein torsinA. DYT1 dystonia patients show reduced striatal dopamine D2 receptor (D2R) binding activity. We previously reported reduced striatal D2R proteins and impaired corticostriatal plasticity in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice. It remains unclear how the D2R reduction contributes to the pathogenesis of DYT1 dystonia. Recent knockout studies indicate that D2R on cholinergic interneurons (Chls) has a significant role in corticostriatal plasticity, while D2R on medium spiny neurons (MSNs) plays a minor role. To determine how reduced D2Rs on ChIs and MSNs affect motor performance, we generated ChI- or MSN-specific D2R conditional knockout mice (Drd2 ChKO or Drd2 sKO). The striatal ChIs in the Drd2 ChKO mice showed an increased firing frequency and impaired quinpirole-induced inhibition, suggesting a reduced D2R function on the ChIs. Drd2 ChKO mice had an age-dependent deficient performance on the beam-walking test similar to the Dyt1 KI mice. The Drd2 sKO mice, conversely, had a deficit on the rotarod but not the beam-walking test. Our findings suggest that D2Rs on Chls and MSNs have critical roles in motor control and balance. The similarity of the beam-walking deficit between the Drd2 ChKO and Dyt1 KI mice supports our earlier notion that D2R reduction on striatal ChIs contributes to the pathophysiology and the motor symptoms of DYT1 dystonia.


Subject(s)
Cholinergic Neurons/metabolism , Corpus Striatum/metabolism , Dystonia Musculorum Deformans/metabolism , Dystonia Musculorum Deformans/physiopathology , Interneurons/metabolism , Motor Activity/physiology , Postural Balance/physiology , Receptors, Dopamine D2/metabolism , Animals , Behavior, Animal/physiology , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Mice, Transgenic
8.
Neurology Asia ; : 255-258, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-751075

ABSTRACT

@# DYT1 and DYT6 dystonias are the two most common genetic primary dystonias. However, they are rare in the Asian population and have never been reported in Thailand. DYT6 dystonia typically presents with craniosegmental dystonia with speech involvement, whereas DYT1 dystonia typically presents with lower limb dystonia, which tends to become generalized over time. Methods: Blood samples were collected from 14 patients with primary dystonia evaluated in five tertiary hospitals in Thailand. Genotyping of the TOR1A and THAP1 gene was performed. Results: Two patients were found to have a missense mutation, p.M143V (c.427A>G), in exon 3 of the THAP1 gene confirming the diagnosis of DYT6 dystonia. One patient was a woman who developed blepharospasm and lower cranial dystonia at the age of 38 years. Her dystonia spread to the neck and arm six months later. The other patient developed focal hand dystonia at the age of 34 years. The TOR1A mutation was not identified in any of these 14 patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...