Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Forensic Sci Int ; 361: 112141, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971139

ABSTRACT

Blow flies (Diptera: Calliphoridae) are frequently used in forensic investigations due to their rapid colonization of cadavers. As with other insects, environmental temperature strongly influences their developmental rates. While published research has typically explored not only the impact of the environmental temperature, but also of other factors like tissue type and drug presence on developmental rates, the influence of photoperiod on the developmental rates of forensically relevant blow fly species has remained largely underexplored. Understanding the relationship between photoperiod and developmental times is crucial, as neglecting this aspect could compromise the accuracy of minimum post-mortem interval (minPMI) estimations. The present study investigates the impact of three photoperiod conditions (0:24, 8:16, and 12:12 light:darkness) on the developmental rates of Calliphora vicina, focusing on the duration of the different immature stages and on the total developmental time. Our results revealed significant variation in the intra-puparial stage and total development time across different photoperiods. Notably, a 12:12 photoperiod led to a significantly prolonged intra-puparial stage and total development time compared to the 0:24 photoperiod, suggesting that Calliphora vicina develops faster in total darkness. These findings highlight the importance of considering photoperiod in both laboratory rearing protocols and forensic casework to improve the accuracy and reliability of minPMI estimations. In this regard, preliminary guidelines and recommendations are provided.

2.
Curr Biol ; 34(13): 2893-2906.e3, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38876102

ABSTRACT

Secondary dormancy is an adaptive trait that increases reproductive success by aligning seed germination with permissive conditions for seedling establishment. Aethionema arabicum is an annual plant and member of the Brassicaceae that grows in environments characterized by hot and dry summers. Aethionema arabicum seeds may germinate in early spring when seedling establishment is permissible. We demonstrate that long-day light regimes induce secondary dormancy in the seeds of Aethionema arabicum (CYP accession), repressing germination in summer when seedling establishment is riskier. Characterization of mutants screened for defective secondary dormancy demonstrated that RGL2 mediates repression of genes involved in gibberellin (GA) signaling. Exposure to high temperature alleviates secondary dormancy, restoring germination potential. These data are consistent with the hypothesis that long-day-induced secondary dormancy and its alleviation by high temperatures may be part of an adaptive response limiting germination to conditions permissive for seedling establishment in spring and autumn.


Subject(s)
Brassicaceae , Germination , Plant Dormancy , Seeds , Seeds/growth & development , Seeds/physiology , Brassicaceae/physiology , Photoperiod , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gibberellins/metabolism , Seasons , Seedlings/growth & development , Seedlings/physiology , Adaptation, Physiological
3.
Biol Futur ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744795

ABSTRACT

Photoperiod sensitivity in rice cultivars is defined when the cultivar begins anthesis on a relatively invariant date, varying by < 7 days, regardless of the date of sowing or germination. While the date of flowering in photoperiod sensitive (PPS) rice cultivars is characteristically determined by the day length, especially during the short-day season (September-December), the response of the flower opening time (FOT) to photoperiod remains hitherto unexplored. This paper examines whether day length restrains year-to-year variation in FOT in PPS cultivars. We examined 105 PPS and 173 photoperiod insensitive (PPI) cultivars grown in different years and estimated their year-to-year FOT difference (or FOTD) and the year-to-year difference of sunrise to anthesis duration (or SADD). Wilcoxon signed rank test and bootstrap test were then performed to test whether these descriptors significantly differed between PPS and PPI groups of cultivars. The means of FOTD and SADD were detected to be significantly less in the PPS group than in the PPI group of cultivars, indicating significantly lesser variability of FOT in PPS than in PPI cultivars. This is the first report of a strong restraining influence of photoperiod on FOT variability in PPS cultivars.

4.
Animals (Basel) ; 14(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38539974

ABSTRACT

Day length is a critical environmental factor for regulating animal growth and development. This study aimed to investigate the effects of different day lengths on the developmental changes of growth parameters, testicular sizes, testosterone secretion in Meishan male pigs, and steroidogenesis proteins and melatonin receptors. Fourteen Meishan male pigs (10 weeks (wks) of age) with the same parity, paired in litter and body weight (BW), were evenly allocated into a short-day-length group (SDL, 10 light/14 dark) and long-day-length group (LDL, 14 light/10 dark). After 12 wks of the experiment, the LDL-treated boars had more lying time and less exploring time. The LDL treatment led to significant increases in body height, chest circumference, testicular length, testicular weight, crude protein digestibility, and fecal testosterone at the 10th and 12th wks of the experiment, and cortisol at the 10th wk, compared to the SDL treatment, with no differences in the final BW, testicular width, and epididymis weight. Furthermore, the LDL treatment significantly increased the protein levels of melatonin receptor 1b (MT2), aromatase (CYP19), and steroidogenic factor 1 (SF1) in the testis, with no differences in the protein levels of melatonin receptor 1a (MT1), steroidogenic acute regulatory (StAR), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and cholesterol side-chain cleavage enzyme (P450scc). The present study suggests that day length has an effect on the growth and gonadal development in male pigs maybe via MT2 and influences steroid synthesis and secretion in the testis. Therefore, proper day length should be considered in male pig breeding.

5.
Plant Cell Environ ; 47(6): 2027-2043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38391415

ABSTRACT

Understanding the regulation of flowering time is crucial for adaptation of crops to new environment. In this study, we examined the timing of floral transition and analysed transcriptomes in leaf and shoot apical meristems of photoperiod-sensitive and -insensitive quinoa accessions. Histological analysis showed that floral transition in quinoa initiates 2-3 weeks after sowing. We found four groups of differentially expressed genes in quinoa genome that responded to plant development and floral transition: (i) 222 genes responsive to photoperiod in leaves, (ii) 1812 genes differentially expressed between accessions under long-day conditions in leaves, (iii) 57 genes responding to developmental changes under short-day conditions in leaves and (iv) 911 genes responding to floral transition within the shoot apical meristem. Interestingly, among numerous candidate genes, two putative FT orthologs together with other genes (e.g. SOC1, COL, AP1) were previously reported as key regulators of flowering time in other species. Additionally, we used coexpression networks to associate novel transcripts to a putative biological process based on the annotated genes within the same coexpression cluster. The candidate genes in this study would benefit quinoa breeding by identifying and integrating their beneficial haplotypes in crossing programs to develop adapted cultivars to diverse environmental conditions.


Subject(s)
Chenopodium quinoa , Gene Expression Regulation, Plant , Meristem , Photoperiod , Plant Leaves , Transcriptome , Chenopodium quinoa/genetics , Chenopodium quinoa/growth & development , Chenopodium quinoa/physiology , Meristem/genetics , Meristem/growth & development , Plant Leaves/genetics , Plant Leaves/growth & development , Transcriptome/genetics , Flowers/genetics , Flowers/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
6.
J Reprod Dev ; 70(1): 35-41, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38171909

ABSTRACT

This study sought to examine the impact of negative photoperiod on the incidence of multiple ovulations and pregnancies in dairy cattle. The study population consisted of 5,373 pregnant cows in their third or greater lactation that experienced their first post-partum pregnancy after spontaneous estrus. The positive photoperiod (increasing day-length) extends from December 22 to June 21, whereas the negative photoperiod (decreasing day-length) extends from June 22 to December 21. The odds ratios (ORs) for multiple ovulations and pregnancies in cows that became pregnant during the negative photoperiod and the remaining cows that became pregnant during the positive photoperiod were 1.4 and 1.3 (P < 0.0001), respectively. The ORs for cows that became pregnant ≥ 90 days in milk and the remaining cows that became pregnant < 90 days in milk were 4.3 and 4.1 (P < 0.0001), respectively. No significant differences were detected in the monthly rates of multiple ovulations or pregnancies during positive and negative photoperiods. Thus, the present study demonstrates that the ovarian function in cows is related to changes in day-length, with decreasing day-length being associated with greater multiple ovulation and pregnancy rates. The present study also shows that positive and negative photoperiods exhibit different trends. The results of this study are consistent with a growing body of work demonstrating the effects of photoperiod patterns on the reproductive physiology of cows, with clear implications for twin pregnancy prevention.


Subject(s)
Ovulation , Photoperiod , Humans , Pregnancy , Female , Cattle , Animals , Lactation/physiology , Postpartum Period , Milk
7.
Front Plant Sci ; 14: 1228464, 2023.
Article in English | MEDLINE | ID: mdl-37936935

ABSTRACT

In this study, we employed chlorophyll a fluorescence technique, to indicate plant health and status in response to changing day lengths (photoperiods) and temperatures in soybean early and late maturity groups. Chlorophyll a fluorescence study indicates changes in light reactions in photosystem II. Experiments were performed for 3-day lengths (12.5, 13.5, and 14.5 h) and five temperatures (22/14°C, 26/18°C, 30/22°C, 34/26°C, and 40/32°C), respectively. The I-P phase declined for changing day lengths. Active reaction centers decreased at long day length for maturity group III. We observed that low temperatures impacted the acceptor side of photosystem II and partially impacted electron transport toward the photosystem I end electron acceptor. Results emphasized that higher temperatures (40/32°C) triggered damage at the oxygen-evolving complex and decreased electron transport and photosynthesis. We studied specific leaf areas and aboveground mass. Aboveground parameters were consistent with the fluorescence study. Chlorophyll a fluorescence can be used as a potential technique for high-throughput phenotyping methods. The traits selected in the study proved to be possible indicators to provide information on the health status of various maturity groups under changing temperatures and day lengths. These traits can also be deciding criteria for breeding programs to develop inbreed soybean lines for stress tolerance and sensitivity based on latitudinal variations.

8.
Oecologia ; 202(2): 287-298, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37270441

ABSTRACT

Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night.


Subject(s)
Geese , Thoracica , Animals , Animal Migration , Seasons
9.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298521

ABSTRACT

In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested in four seasons in Nanjing, China. The ADL and AAT of DSF and DFM were calculated from daily day-lengths and temperatures provided by the Nanjing Meteorological Bureau. The improved restricted two-stage multi-locus genome-wide association study using gene-allele sequences as markers (coded GASM-RTM-GWAS) was performed. (i) For DSF and its related ADLDSF and AATDSF, 130-141 genes with 384-406 alleles were explored, and for DFM and its related ADLDFM and AATDFM, 124-135 genes with 362-384 alleles were explored, in a total of six gene-allele systems. DSF shared more ADL and AAT contributions than DFM. (ii) Comparisons between the eco-region gene-allele submatrices indicated that the genetic adaptation from the origin to the geographic sub-regions was characterized by allele emergence (mutation), while genetic expansion from primary maturity group (MG)-sets to early/late MG-sets featured allele exclusion (selection) without allele emergence in addition to inheritance (migration). (iii) Optimal crosses with transgressive segregations in both directions were predicted and recommended for breeding purposes, indicating that allele recombination in soybean is an important evolutionary drive. (iv) Genes of the six traits were mostly trait-specific involved in four categories of 10 groups of biological functions. GASM-RTM-GWAS showed potential in detecting directly causal genes with their alleles, identifying differential trait evolutionary drives, predicting recombination breeding potentials, and revealing population gene networks.


Subject(s)
Genome-Wide Association Study , Glycine max , Glycine max/genetics , Alleles , Linkage Disequilibrium , Quantitative Trait Loci , Plant Breeding , Polymorphism, Single Nucleotide
10.
J Exp Bot ; 74(14): 3923-3932, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37021554

ABSTRACT

The description of long photoperiod sensitivity in wheat and barley is a cause of confusion for researchers working with these crops, usually accustomed to free exchange of physiological and genetic knowledge of such similar crops. Indeed, wheat and barley scientists customarily quote studies of either crop species when researching one of them. Among their numerous similarities, the main gene controlling the long photoperiod sensitivity is the same in both crops (PPD1; PPD-H1 in barley and PPD-D1 in hexaploid wheat). However, the photoperiod responses are different: (i) the main dominant allele inducing shorter time to anthesis is the insensitive allele in wheat (Ppd-D1a) but the sensitive allele in barley (Ppd-H1) (i.e. sensitivity to photoperiod produces opposite effects on time to heading in wheat and barley); (ii) the main 'insensitive' allele in wheat, Ppd-D1a, does confer insensitivity, whilst that of barley reduces the sensitivity but still responds to photoperiod. The different behaviour of PPD1 genes in wheat and barley is put in a common framework based on the similarities and differences of the molecular bases of their mutations, which include polymorphism at gene expression levels, copy number variation, and sequence of coding regions. This common perspective sheds light on a source of confusion for cereal researchers, and prompts us to recommend accounting for the photoperiod sensitivity status of the plant materials when conducting research on genetic control of phenology. Finally, we provide advice to facilitate the management of natural PPD1 diversity in breeding programmes and suggest targets for further modification through gene editing, based on mutual knowledge on the two crops.


Subject(s)
Hordeum , Photoperiod , Triticum/genetics , Hordeum/genetics , DNA Copy Number Variations , Plant Breeding , Flowers/genetics , Alleles
11.
Ecol Evol ; 13(1): e9571, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36694548

ABSTRACT

Songbirds have evolved diverse strategies to cope with seasonality, including long-, medium-, and short-distance migration. There is some evidence that birds with a longer migration distance deposit fuel faster. However, most studies focus on long-distance migrants. Comparisons between species with different migration distances are necessary to broaden our understanding of fueling capacity in migratory birds. We present maximum fuel deposition rates of five songbird species migrating along the southeast coast of Sweden in autumn with migration distances ranging from long (neotropical migrant) to short (partial/irruptive migrant) (Willow Warbler Phylloscopus trochilus, Lesser Whitethroat Curruca curruca, Common Chiffchaff P. collybita, European Robin Erithacus rubecula, and Blue Tit Cyanistes caeruleus). The birds were fed ad libitum in captivity and were exposed to either extended or natural daylength. All species ceased to increase in mass when they reached a certain fuel load, generally corresponding to migration distance, despite unlimited access to food and ample time for foraging. Blue Tits, Willow Warblers, and Lesser Whitethroats had the highest fuel deposition rates with extended daylength (19%, 20%, and 20%, respectively), and about 13% with natural daylength, which is comparable to the highest rates found in migratory songbirds in nature. European Robins and Common Chiffchaffs that winter in the temperate Mediterranean had the lowest fuel deposition rates (12% and 12% with extended daylength, respectively). Our results suggest that the long- and short-distance migrants in this study have developed an extreme capacity for rapid refueling for different reasons; speedy migration to distant wintering grounds or winter survival in Scandinavia. This study contributes to our current knowledge of maximum fuel deposition rates in different species and the limitations posed by daylength. We highlight the need for future studies of species with different migration strategies in order to draw broad conclusions about fueling strategies of migratory birds.

12.
Article in English | MEDLINE | ID: mdl-36280226

ABSTRACT

For seasonal breeders, photoperiodic changes are important signals that mark the start of the breeding season. Thyroid-stimulating hormone (TSH) is a glycoprotein hormone that not only promotes the secretion of thyroid hormone but also plays a key role in regulating seasonal reproduction in birds and mammals. However, whether TSH activation has been implicated as a seasonal indicator in fish breeding has not been fully investigated. In this study, we isolated tshb as a starting point to elucidate the effect of photoperiodic changes on the activation of the reproductive axis of chub mackerel. The isolated tshb was classified as tshba, which is widely conserved in vertebrates. The quantitative PCR results showed that tshb was strongly expressed in the pituitary. When female and male chub mackerel with immature gonads were reared for six weeks under different photoperiodic conditions, the gonads developed substantially in the long-day (LD) reared fish compared to those in the short-day reared fish. Real-time PCR results showed that the expression level of tshb in the pituitary gland was significantly elevated in the LD group. Although there was no difference in the gonadotropin-releasing hormone 1 gene expression level in the preoptic area of the brain, follicle-stimulating hormone and luteinizing hormone gene expression levels in the pituitary were also significantly elevated in the LD group. In conclusion, TSH is a potential mediator of seasonal information in the reproductive endocrine axis and may induce gonadal development during the breeding season of chub mackerel.


Subject(s)
Cyprinidae , Perciformes , Animals , Female , Male , Thyrotropin/metabolism , Perciformes/physiology , Gonads , Pituitary Gland/metabolism , Mammals
13.
Anim Microbiome ; 4(1): 64, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36514126

ABSTRACT

BACKGROUND: Gut microbiotas play a pivotal role in host physiology and behaviour, and may affect host life-history traits such as seasonal variation in host phenotypic state. Generally, seasonal gut microbiota variation is attributed to seasonal diet variation. However, seasonal temperature and day length variation may also drive gut microbiota variation. We investigated summer-winter differences in the gut bacterial community (GBC) in 14 homing pigeons living outdoors under a constant diet by collecting cloacal swabs in both seasons during two years. Because temperature effects may be mediated by host metabolism, we determined basal metabolic rate (BMR) and body mass. Immune competence is influenced by day length and has a close relationship with the GBC, and it may thus be a link between day length and gut microbiota. Therefore, we measured seven innate immune indices. We expected the GBC to show summer-winter differences and to correlate with metabolism and immune indices. RESULTS: BMR, body mass, and two immune indices varied seasonally, other host factors did not. The GBC showed differences between seasons and sexes, and correlated with metabolism and immune indices. The most abundant genus (Lachnoclostridium 12, 12%) and associated higher taxa, were more abundant in winter, though not significantly at the phylum level, Firmicutes. Bacteroidetes were more abundant in summer. The Firmicutes:Bacteroidetes ratio tended to be higher in winter. The KEGG ortholog functions for fatty acid biosynthesis and linoleic acid metabolism (PICRUSt2) had increased abundances in winter. CONCLUSIONS: The GBC of homing pigeons varied seasonally, even under a constant diet. The correlations between immune indices and the GBC did not involve consistently specific immune indices and included only one of the two immune indices that showed seasonal differences, suggesting that immune competence may be an unlikely link between day length and the GBC. The correlations between the GBC and metabolism indices, the higher Firmicutes:Bacteroidetes ratio in winter, and the resemblance of the summer-winter differences in the GBC with the general temperature effects on the GBC in the literature, suggest that temperature partly drove the summer-winter differences in the GBC in homing pigeons.

14.
Front Plant Sci ; 13: 1044790, 2022.
Article in English | MEDLINE | ID: mdl-36340409

ABSTRACT

Photoperiod is acknowledged as a crucial environmental factor for plant flowering. According to different responses to photoperiod, plants were divided into short-day plants (SDPs), long-day plants (LDPs), and day-neutral plants (DNPs). The day length measurement system of SDPs is different from LDPs. Many SDPs, such as rice, have a critical threshold for day length (CDL) and can even detect changes of 15 minutes for flowering decisions. Over the last 20 years, molecular mechanisms of flowering time in SDP rice and LDP Arabidopsis have gradually clarified, which offers a chance to elucidate the differences in day length measurement between the two types of plants. In Arabidopsis, CO is a pivotal hub in integrating numerous internal and external signals for inducing photoperiodic flowering. By contrast, Hd1 in rice, the homolog of CO, promotes and prevents flowering under SD and LD, respectively. Subsequently, numerous dual function regulators, such as phytochromes, Ghd7, DHT8, OsPRR37, OsGI, OsLHY, and OsELF3, were gradually identified. This review assesses the relationship among these regulators and a proposed regulatory framework for the reversible mechanism, which will deepen our understanding of the CDL regulation mechanism and the negative response to photoperiod between SDPs and LDPs.

15.
J Biol Rhythms ; 37(5): 516-527, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35924307

ABSTRACT

Photoperiodic reproductive diapause is an essential part of female life cycle in several insect species living on high latitudes, where overwintering in reproductive stage involves high risks for survival and progeny production. The sensitive period (SP), during which photoperiodic cues can trigger the switch from direct development to diapause, can last from a few hours or days after emergence to the entire life span of females. Moreover, in some species, sexually mature females can enter post-reproductive diapause as a response to decreasing day length and/or temperature. We studied the duration of SP for diapause induction and the females' ability to enter post-reproductive diapause at short day lengths in Drosophila montana strains from different latitudes in Europe, North America, and Japan. Our study shows that the females of this species have a life-long SP and that they retain an ability to switch between reproduction and diapause as a response to back-and-forth changes in day length for at least 3 months. D. montana strains from different latitudes showed high variation in females' ability to enter post-reproductive diapause; females of the southern strains generally requiring longer time and/or lower temperature to enter this stage than those of the northern strains. Moreover, the proportion of females that switched to post-reproductive diapause in 3 weeks in short day conditions at 16 °C showed positive correlation with the critical day length (CDL) for diapause induction and the latitudinal and continental origin of the strains. Life-long SP increases females' flexibility to respond to short-term changes in environmental conditions and enables reproducing females to switch to post-reproductive diapause when the days get shorter and colder toward the autumn. This ability can play a major role in species phenology and should be taken into account in theoretical and empirical studies on insect adaptation to seasonal variation.


Subject(s)
Diapause , Drosophila , Animals , Circadian Rhythm , Drosophila/physiology , Female , Montana , Photoperiod , Reproduction
16.
Sci Total Environ ; 843: 156780, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35724787

ABSTRACT

Owing to climate change and frequent extreme weather events, changes in spring flowering phenology have been observed in temperate forests. The flowering time response to climate change is divergent among species and is difficult to predict due to the complexity of flowering mechanisms. To compare the effects of spring warming, winter chilling, and day length on spring flowering time, we evaluated eight process-based models (two types of forcing models, two types of chilling-forcing models, and four models with the effect of day length added to the aforementioned four models). We used flowering data of seven temperate species (Cornus officinalis, Rhododendron mucronulatum, Forsythia koreana, Prunus yedoensis, Rhododendron yedoense f. poukhanense, Rhododendron schlippenbachii, and Robinia pseudoacacia) observed in nine different arboretums in South Korea over 9 years. Generally, the forcing model performed better than the sequential chilling-forcing model, regardless of the species. The performance gap between the models was reduced when day length term was included in model, but the chilling-forcing model did not outperform the forcing model. The effect of day length on flowering time differed depending on the species. Prunus yedoensis, which had a particularly low warming sensitivity compared to other species, was more dependent on day length than other species. On the other hand, day length had little effect on the flowering time of Robinia pseudoacacia and Cornus officinalis, mostly found in the early successional stage. These findings imply that the effect of chilling on flowering time would be minor for the seven species inhabiting the warm-temperate forest, and the effect of day length on flowering time was species-specific and dependent on species' temperature (warming) sensitivity and life strategy. In the future warm climate, the flowering time of day length sensitive species would not advance significantly, which may result in a phenological mismatch and endanger their life.


Subject(s)
Climate Change , Forests , Reproduction , Seasons , Temperature
17.
J Hazard Mater ; 432: 128704, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35313159

ABSTRACT

Aluminium (Al), a limiting factor for crop productivity in acidic soils (pH ≤ 5.5), imposes drastic constraints for food safety in developing countries. The major mechanisms that allow plants to cope with Al involve manipulations of organic acids metabolism and DNA-checkpoints. When assumed individually both approaches have been insufficient to overcome Al toxicity. On analysing the centre of origin of most cultivated plants, we hypothesised that day-length seems to be a pivotal agent modulating Al tolerance across distinct plant species. We observed that with increasing distance from the Equator, Al tolerance decreases, suggesting a relationship with the photoperiod. We verified that long-day (LD) species are generally more Al-sensitive than short-day (SD) species, whereas genetic conversion of tomato for SD growth habit boosts Al tolerance. Reduced Al tolerance correlates with DNA-checkpoint activation under LD. Furthermore, DNA-checkpoint-related genes are under positive selection in Arabidopsis accessions from regions with shorter days, suggesting that photoperiod act as a selective barrier for Al tolerance. A diel regulation and genetic diversity affect Al tolerance, suggesting that day-length orchestrates Al tolerance. Altogether, photoperiodic control of Al tolerance might contribute to solving the historical obstacle that imposes barriers for developing countries to reach a sustainable agriculture.


Subject(s)
Arabidopsis , Photoperiod , Aluminum/toxicity , Arabidopsis/metabolism , DNA , Gene Expression Regulation, Plant , Plants/metabolism
18.
Ecol Appl ; 32(3): e2557, 2022 04.
Article in English | MEDLINE | ID: mdl-35112752

ABSTRACT

A wide variety of organisms use the regular seasonal changes in photoperiod as a cue to align their life cycles with favorable conditions. Yet the phenological consequences of photoperiodism for organisms exposed to new climates are often overlooked. We present a conceptual approach and phenology model that maps voltinism (generations per year) and the degree of phenological mismatch that can arise when organisms with a short-day diapause response are introduced to new regions or are otherwise exposed to new climates. Our degree-day-based model combines continent-wide spatialized daily climate data, calculated date-specific and latitude-specific day lengths, and experimentally determined developmental responses to both photoperiod and temperature. Using the case of the knotweed psyllid Aphalara itadori, a new biological control agent being introduced from Japan to North America and Europe to control an invasive weed, we show how incorporating a short-day diapause response will result in geographic patterns of attempted voltinism that are strikingly different from the potential number of generations based on degree-days alone. The difference between the attempted and potential generations represents a quantitative measure of phenological mismatch between diapause timing and the end of the growing season. We conclude that insects moved from lower to higher latitudes (or to cooler climates) will tend to diapause too late, potentially resulting in high mortality from inclement weather, and those moved from higher to lower latitude (to warmer climates) may be prone to diapausing too early, therefore not fully exploiting the growing season and/or suffering from insufficient reserves for the longer duration in diapause. Mapped output reveals a central region with good phenology match that shifts north or south depending on the geographic source of the insect and its corresponding critical photoperiod for diapause. These results have direct relevance for efforts to establish populations of classical biocontrol agents. More generally, our approach and model could be applied to a wide variety of photoperiod- and temperature-sensitive organisms that are exposed to changes in climate, including resident and invasive agricultural pests and species of conservation concern.


Subject(s)
Hemiptera , Photoperiod , Animals , Insecta , Seasons , Temperature
19.
Photochem Photobiol Sci ; 21(2): 147-158, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35037197

ABSTRACT

Seasonal reproductive cycles of most birds are regulated by photoperiod via neuroendocrine control. The present study aims to investigate the role of a single long day in triggering hypothalamic expressions of GnRH-I and GnIH in the Eurasian tree sparrow (Passer montanus). Sparrows were divided into two groups (n = 24 each) and pre-treated under short days (9L: 15D) for 4 days. On the fifth day, one group was exposed to long day (14L: 10D), while other was continued under short day for another 1 day. Birds of both the groups were sacrificed and perfused on fifth day at different time points, i.e., ZT 14, ZT 16 and ZT 18 and the expressions of GnRH-I and GnIH mRNAs and peptides were studied using real-time PCR and immunohistochemistry, respectively. In addition, testicular size was measured to know testicular development. Observations revealed that birds exposed to a single long day (14L: 10D) showed an increase in hypothalamic expressions of GnRH-I mRNA and peptide and decrease in levels of GnIH mRNA only at ZT 16 and ZT 18 with no significant change in GnIH peptide. However, no significant change in GnRH-I or GnIH expression was observed at any time point under short day and birds maintained high and low expression levels of GnIH and GnRH-I, respectively. Our results clearly indicate that the photoperiodic response system of sparrow is highly sensitive to light and responds even to single long day. Furthermore, they suggest that the GnRH-I and GnIH are expressed in the hypothalamus of tree sparrow in an anti-phasic manner and switching over of their expression occurs at late hours of exposure of birds to single long day.


Subject(s)
Sparrows , Animals , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus , Photoperiod , Reproduction/physiology , Sparrows/genetics
20.
Methods Mol Biol ; 2398: 215-226, 2022.
Article in English | MEDLINE | ID: mdl-34674179

ABSTRACT

Using a perennial model plant allows the study of reoccurring seasonal events in a way that is not possible using a fast-growing annual such as A. thaliana (Arabidopsis). In this study, we present a hybrid aspen (Populus tremula × P. tremuloides) as our perennial model plant. These plants can be grown in growth chambers to shorten growth periods and manipulate day length and temperature in ways that would be impossible under natural conditions. In addition, the use of growth chambers allows easy monitoring of height and diameter expansion, accelerating the collection of data from new strategies that allow evaluation of promoters or inhibitors of growth. Here, we describe how to study and quantify responses to seasonal changes (mainly using P. tremula × P. tremuloides) by measuring growth rate and key events under different photoperiodic cycles.


Subject(s)
Populus , Circadian Rhythm , Cold Temperature , Photoperiod , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...