Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Biol Res ; 57(1): 64, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252136

ABSTRACT

BACKGROUND: Testicular macrophages (TM) have long been recognized for their role in immune response within the testicular environment. However, their involvement in steroid hormone synthesis, particularly testosterone, has not been fully elucidated. This study aims to explore the capability of TM to synthesize and secrete testosterone de novo and to investigate the regulatory mechanisms involved. RESULTS: Transcriptomic analysis revealed significant expression of Cyp11a1, Cyp17a1, Hsd3b1, and Hsd17b3 in TM, which are key enzymes in the testosterone synthesis pathway. qPCR analysis and immunofluorescence validation confirmed the autonomous capability of TM to synthesize testosterone. Ablation of TM in mice resulted in decreased physiological testosterone levels, underscoring the significance of TM in maintaining testicular testosterone levels. Additionally, the study also demonstrated that Cebpb regulates the expression of these crucial genes, thereby modulating testosterone synthesis. CONCLUSIONS: This research establishes that TM possess the autonomous capacity to synthesize and secrete testosterone, contributing significantly to testicular testosterone levels. The transcription factor Cebpb plays a crucial role in this process by regulating the expression of key genes involved in testosterone synthesis.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Macrophages , Testis , Testosterone , Animals , Male , Testosterone/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Testis/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Gene Expression Profiling
2.
World J Microbiol Biotechnol ; 39(8): 216, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37269405

ABSTRACT

Kluyveromyces marxianus yeasts represent a valuable industry alternative due to their biotechnological potential to produce aromatic compounds. 2-phenylethanol and 2-phenylethylacetate are significant aromatic compounds widely used in food and cosmetics due to their pleasant odor. Natural obtention of these compounds increases their value, and because of this, bioprocesses such as de novo synthesis has become of great significance. However, the relationship between aromatic compound production and yeast's genetic diversity has yet to be studied. In the present study, the analysis of the genetic diversity in K. marxianus isolated from the natural fermentation of Agave duranguensis for Mezcal elaboration is presented. The results of strains in a haploid and diploid state added to the direct relationship between the mating type locus MAT with metabolic characteristics are studied. Growth rate, assimilate carbohydrates (glucose, lactose, and chicory inulin), and the production of aromatic compounds such as ethyl acetate, isoamyl acetate, isoamyl alcohol, 2-phenylethyl butyrate and phenylethyl propionate and the diversity in terms of the output of 2-phenylethanol and 2-phenylethylacetate by de novo synthesis were determinate, obtaining maximum concentrations of 51.30 and 60.39 mg/L by ITD0049 and ITD 0136 yeasts respectively.


Subject(s)
Kluyveromyces , Phenylethyl Alcohol , Phenylethyl Alcohol/metabolism , Odorants , Kluyveromyces/genetics , Yeasts/genetics , Yeasts/metabolism , Fermentation , Lactose/metabolism
3.
Methods Mol Biol ; 2174: 45-69, 2021.
Article in English | MEDLINE | ID: mdl-32813244

ABSTRACT

Colon cancer is a highly anabolic entity with upregulation of glycolysis, glutaminolysis, and de novo synthesis of fatty acids, which also induces a hypercatabolic state in the patient. The blockade of either cancer anabolism or host catabolism has been previously proven to be a successful anticancer experimental treatment. However, it is still unclear whether the simultaneous blockade of both metabolic counterparts can limit malignant survival and the energetic consequences of such an approach. In this chapter, by using the CT26.WT murine colon adenocarcinoma cell line as a model of study, we provide a method to simultaneously perform a pharmacological blockade of tumor anabolism and host catabolism, as a feasible therapeutic approach to treat cancer, and to limit its energetic supply.


Subject(s)
Adenocarcinoma/metabolism , Antineoplastic Agents/pharmacology , Colonic Neoplasms/metabolism , Fatty Acids/metabolism , Glutamine/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Diazooxonorleucine/pharmacology , Drug Screening Assays, Antitumor/methods , Fatty Acid Synthase, Type I/antagonists & inhibitors , Fatty Acid Synthase, Type I/metabolism , Female , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Glycolysis/drug effects , Hexokinase/antagonists & inhibitors , Hexokinase/metabolism , Indazoles/administration & dosage , Mice , Mice, Inbred BALB C , Molecular Targeted Therapy/methods , Orlistat/administration & dosage , Smegmamorpha
4.
ChemMedChem ; 13(7): 648-661, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29160016

ABSTRACT

Glycosaminoglycans (GAGs) are extracellular matrix and/or cell-surface sulfated glycans crucial to the regulation of various signaling proteins, the functions of which are essential in many pathophysiological systems. Because structural heterogeneity is high in GAG chains and purification is difficult, the use of structurally defined GAG oligosaccharides from natural sources as molecular models in both biophysical and pharmacological assays is limited. To overcome this obstacle, GAG-like oligosaccharides of well-defined structures are currently being synthesized by chemical and/or enzymatic means in many research groups around the world. These synthetic GAG oligosaccharides serve as useful molecular tools in studies of GAG-protein interactions. In this review, besides discussing the commonest routes used for the synthesis of GAG oligosaccharides, we also survey some libraries of these synthetic models currently available for research and discuss their activities in interaction studies with functional proteins, especially through the microarray approach.


Subject(s)
Glycomics/methods , Glycosaminoglycans/metabolism , Oligosaccharides/metabolism , Proteins/metabolism , Proteomics/methods , Small Molecule Libraries/metabolism , Carbohydrate Sequence , Humans , Microarray Analysis/methods , Oligosaccharides/chemical synthesis , Protein Binding , Small Molecule Libraries/chemical synthesis
5.
Oncol Lett ; 13(3): 1905-1910, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28454342

ABSTRACT

The aim of the present study was to investigate in vivo the feasibility and efficacy of the combination of lonidamine (LND), 6-diazo-5-oxo-L-norleucine (DON) and orlistat to simultaneously target glycolysis, glutaminolysis and de novo synthesis of fatty acids, respectively. The doses of LND and DON used in humans were translated to mouse doses (77.7 mg/kg and 145.5 mg/kg, respectively) and orlistat was used at 240 mg/kg. Three schedules of LND, DON and orlistat at different doses were administered by intraperitoneal injection to BALB/c mice in a 21-day cycle (schedule 1: LND, 0.5 mg/day; DON, 0.25 mg/day 1, 5 and 9; orlistat, 240 mg/kg/day; schedule 2: LND, 0.1 mg/day; DON, 0.5 mg/day 1, 5 and 9; orlistat, 240 mg/kg/day; schedule 3: LND, 0.5 mg/day; DON, 0.08 mg/day 1, 5 and 9; orlistat, 360 mg/kg/day) to assess tolerability. To determine the antitumor efficacy, a syngeneic tumor model in BALB/c mice was created using colon cancer CT26.WT cells, and a xenogeneic tumor model was created in nude mice using the human colon cancer SW480 cell line. Mice were treated with schedule 1. Animals were weighed, clinically inspected during the experiment and the tumor volume was measured at day 21. The 3 schedules assessed in the tolerability experiments were well tolerated, as mice maintained their weight and no evident clinical signs of toxicity were observed. Combination treatment with schedule 1 significantly decreased tumor growth in each mouse model. No evident signs of toxicity were observed and mice maintained their weight during treatment. The triple metabolic blockade of the malignant phenotype appears feasible and promising for cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL