Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.140
Filter
1.
Neurosurg Focus Video ; 11(1): V18, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957429

ABSTRACT

The centromedian (CM) nucleus of the thalamus is a promising target for a range of brain diseases including drug-resistant generalized and multifocal epilepsy. CM is highly connected to cortical and subcortical regions including frontoparietal/sensorimotor cortex, striatum, brainstem, and cerebellum, which are involved in some generalized epilepsy syndromes like Lennox-Gastaut syndrome (LGS). In this video, the authors describe their methodology for targeting CM for deep brain stimulation (DBS). Delineation of an optimal and consistent target will expand the efficacy of neuromodulation of CM in intractable epilepsy. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID245.

2.
Parkinsonism Relat Disord ; 125: 107048, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959686

ABSTRACT

INTRODUCTION: Huntington's disease (HD) is a hereditary condition caused by the expansion of the CAG trinucleotide in the huntingtin gene on chromosome 4, resulting in motor, cognitive, and psychiatric disorders that significantly impact patients' quality of life. Despite the lack of effective treatments for the disease, various surgical strategies have been explored to alleviate symptoms and slow its progression. METHODOLOGY: A comprehensive systematic literature review was conducted, including MeSH terms, yielding only 38 articles that were categorized based on the surgical procedure. The study aimed to describe the types of surgeries performed and their efficacy in HD patients. RESULTS: Deep brain stimulation (DBS) involved 41 predominantly male patients with bilateral implantation in the globus pallidus, showing a preoperative Unified Huntington's Disease Rating Scale (UHDRS) score of 60.25 ± 16.13 and a marked postoperative value of 48.54 ± 13.93 with a p < 0.018 at one year and p < 0.040 at three years. Patients experienced improvement in hyperkinesia but worsening of bradykinesia. Additionally, cell transplantation in 119 patients resulted in a lower preoperative UHDRS score of 34.61 ± 14.61 and a significant postoperative difference of 32.93 ± 15.87 (p < 0.016), respectively, in the first to third years of following. Some now, less used procedures were crucial for understanding brain function, such as pallidotomies in 3 patients, showing only a 25 % difference from their baseline. CONCLUSION: Despite advancements in technology, there is still no curative treatment, only palliative options. Promising treatments like trophic factor implantation offer new prospects for the future.

3.
Front Neurosci ; 18: 1389096, 2024.
Article in English | MEDLINE | ID: mdl-38966758

ABSTRACT

Introduction: Both ketamine (KET) and medial prefrontal cortex (mPFC) deep brain stimulation (DBS) are emerging therapies for treatment-resistant depression, yet our understanding of their electrophysiological mechanisms and biomarkers is incomplete. This study investigates aperiodic and periodic spectral parameters, and the signal complexity measure sample entropy, within mPFC local field potentials (LFP) in a chronic corticosterone (CORT) depression model after ketamine and/or mPFC DBS. Methods: Male rats were intraperitoneally administered CORT or vehicle for 21 days. Over the last 7 days, animals receiving CORT were treated with mPFC DBS, KET, both, or neither; then tested across an array of behavioral tasks for 9 days. Results: We found that the depression-like behavioral and weight effects of CORT correlated with a decrease in aperiodic-adjusted theta power (5-10 Hz) and an increase in sample entropy during the administration phase, and an increase in theta peak frequency and a decrease in the aperiodic exponent once the depression-like phenotype had been induced. The remission-like behavioral effects of ketamine alone correlated with a post-treatment increase in the offset and exponent, and decrease in sample entropy, both immediately and up to eight days post-treatment. The remission-like behavioral effects of mPFC DBS alone correlated with an immediate decrease in sample entropy, an immediate and sustained increase in low gamma (20-50 Hz) peak width and aperiodic offset, and sustained improvements in cognitive function. Failure to fully induce remission-like behavior in the combinatorial treatment group correlated with a failure to suppress an increase in sample entropy immediately after treatment. Conclusion: Our findings therefore support the potential of periodic theta parameters as biomarkers of depression-severity; and periodic low gamma parameters and cognitive measures as biomarkers of mPFC DBS treatment efficacy. They also support sample entropy and the aperiodic spectral parameters as potential cross-modal biomarkers of depression severity and the therapeutic efficacy of mPFC DBS and/or ketamine. Study of these biomarkers is important as objective measures of disease severity and predictive measures of therapeutic efficacy can be used to personalize care and promote the translatability of research across studies, modalities, and species.

4.
J Neurosurg ; : 1-11, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968618

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) targeting the globus pallidus interna (GPi) has been shown to significantly improve motor symptoms for the treatment of medication-refractory Parkinson's disease. Yet, heterogeneity in clinical outcomes persists, possibly due to suboptimal target identification within the GPi. By leveraging robust sampling of the GPi and 6-month postsurgical outcomes, this study aims to determine optimal symptom-specific GPi DBS targets. METHODS: In this study, the authors analyzed the anatomical lead location and 6-month postsurgical, double-blinded outcome measures of 86 patients who underwent bilateral GPi DBS. These patients were selected from the multicenter Veterans Affairs (VA)/National Institutes of Neurological Disorders and Stroke (NINDS) Cooperative Studies Program (CSP) 468 study to identify the optimal target zones ("sweet spots") for the control of overall motor (United Parkinson's Disease Rating Scale [UPDRS]-III), axial, tremor, rigidity, and bradykinesia symptoms. Lead coordinates were normalized to Montreal Neurological Institute space and the optimal target zones were identified and validated using a leave-one-patient-out approach. RESULTS: The authors' findings revealed statistically significant optimal target zones for UPDRS-III (R = 0.37, p < 0.001), axial (R = 0.22, p = 0.042), rigidity (R = 0.20, p = 0.021), and bradykinesia (R = 0.23, p = 0.004) symptoms. These zones were localized within the primary motor and premotor subdivisions of the GPi. Interestingly, these zones extended beyond the GPi lateral border into the GPi-globus pallidus externa (GPe) lamina and into the GPe, but they did not reach the GPi ventral border, challenging traditional surgical approaches based on pallidotomies. CONCLUSIONS: Drawing upon a robust dataset, this research effectively delineates specific optimal target zones for not only overall motor improvement but also symptom subscores. These insights hold the potential to enhance the precision of targeting in subsequent bilateral GPi DBS surgical procedures.

5.
Neuromodulation ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39001725

ABSTRACT

INTRODUCTION: One of the most common questions patients ask when they are contemplating deep brain stimulation (DBS) is how long it will last. To guide physicians in answering this query, we performed a scoping review to assess the current state of the literature and to identify the gaps that need to be addressed. MATERIALS AND METHODS: The authors performed a MEDLINE search inclusive of articles from January 1987 (advent of DBS literature) to June 2023 including human and modeling studies written in English. For longevity of therapy data, only studies with a mean follow-up of ≥three years were included. Using the Rayyan platform, two reviewers (JP and RM) performed a title screen. Of the 734 articles, 205 were selected by title screen and 109 from abstract review. Ultimately, a total of 122 articles were reviewed. The research questions we explored were 1) how long can the different components of the DBS system maintain functionality? and 2) how long can DBS remain efficacious in treating Parkinson's disease (PD), essential tremor (ET), dystonia, and other disorders? RESULTS: We showed that patients with PD, ET, and dystonia maintain a considerable long-term benefit in motor scores seven to ten years after implant, although the percentage improvement decreases over time. Stimulation off scores in PD and ET show worsening, consistent with disease progression. Battery life varies by the disease treated and the programming settings used. There remains a paucity of literature after ten years, and the impact of new device technology has not been classified to date. CONCLUSION: We reviewed existing data on DBS longevity. Overall, outcomes data after ten years of therapy are substantially limited in the current literature. We recommend that physicians who have data for patients with DBS exceeding this duration publish their results.

6.
Article in English | MEDLINE | ID: mdl-38973819

ABSTRACT

Clinical Vignette: A 63-year-old man with severe essential tremor underwent staged bilateral ventralis intermedius (Vim) deep brain stimulation (DBS). Left Vim DBS resulted in improved right upper extremity tremor control. Months later, the addition of right Vim DBS to the other brain hemisphere was associated with acute worsening of the right upper extremity tremor. Clinical Dilemma: In staged bilateral Vim DBS, second lead implantation may possibly alter ipsilateral tremor control. While ipsilateral improvement is common, rarely, it can disrupt previously achieved benefit. Clinical Solution: DBS programming, including an increase in left Vim DBS amplitude, re-established and enhanced bilateral tremor control. Gap in Knowledge: The mechanisms underlying changes in ipsilateral tremor control following a second lead implantation are unknown. In this case, worsening and subsequent improvement after optimization highlight the potential impact of DBS implantation on the ipsilateral side. Expert Commentary: After staged bilateral Vim DBS, clinicians should keep an eye on the first or original DBS side and carefully monitor for emergent side effects or worsening in tremor. Ipsilateral effects resulting from DBS implantation present a reprogramming opportunity with a potential to further optimize clinical outcomes. Highlights: This case report highlights the potential for ipsilateral tremor worsening following staged bilateral DBS and provides valuable insights into troubleshooting and reprogramming strategies. The report emphasizes the importance of vigilant monitoring and individualized management in optimizing clinical outcomes for patients undergoing staged bilateral DBS for essential tremor.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/methods , Male , Middle Aged , Essential Tremor/therapy , Essential Tremor/surgery , Essential Tremor/physiopathology , Ventral Thalamic Nuclei/surgery
7.
Sensors (Basel) ; 24(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39001075

ABSTRACT

INTRODUCTION: The current approach to assessing bradykinesia in Parkinson's Disease relies on the Unified Parkinson's Disease Rating Scale (UPDRS), which is a numeric scale. Inertial sensors offer the ability to probe subcomponents of bradykinesia: motor speed, amplitude, and rhythm. Thus, we sought to investigate the differential effects of high-frequency compared to low-frequency subthalamic nucleus (STN) deep brain stimulation (DBS) on these quantified facets of bradykinesia. METHODS: We recruited advanced Parkinson's Disease subjects with a chronic bilateral subthalamic nucleus (STN) DBS implantation to a single-blind stimulation trial where each combination of medication state (OFF/ON), electrode contacts, and stimulation frequency (60 Hz/180 Hz) was assessed. The Kinesia One sensor system was used to measure upper limb bradykinesia. For each stimulation trial, subjects performed extremity motor tasks. Sensor data were recorded continuously. We identified STN DBS parameters that were associated with improved upper extremity bradykinesia symptoms using a mixed linear regression model. RESULTS: We recruited 22 subjects (6 females) for this study. The 180 Hz STN DBS (compared to the 60 Hz STN DBS) and dopaminergic medications improved all subcomponents of upper extremity bradykinesia (motor speed, amplitude, and rhythm). For the motor rhythm subcomponent of bradykinesia, ventral contacts yielded improved symptom improvement compared to dorsal contacts. CONCLUSION: The differential impact of high- and low-frequency STN DBS on the symptoms of bradykinesia may advise programming for these patients but warrants further investigation. Wearable sensors represent a valuable addition to the armamentarium that furthers our ability to conduct objective, quantitative clinical assessments.


Subject(s)
Deep Brain Stimulation , Hypokinesia , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Deep Brain Stimulation/methods , Deep Brain Stimulation/instrumentation , Hypokinesia/therapy , Hypokinesia/physiopathology , Subthalamic Nucleus/physiopathology , Female , Male , Middle Aged , Aged
8.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000288

ABSTRACT

Parkinson's disease (PD) is a gradually worsening neurodegenerative disorder affecting the nervous system, marked by a slow progression and varied symptoms. It is the second most common neurodegenerative disease, affecting over six million people in the world. Its multifactorial etiology includes environmental, genomic, and epigenetic factors. Clinical symptoms consist of non-motor and motor symptoms, with motor symptoms being the classic presentation. Therapeutic approaches encompass pharmacological, non-pharmacological, and surgical interventions. Traditional pharmacological treatment consists of administering drugs (MAOIs, DA, and levodopa), while emerging evidence explores the potential of antidiabetic agents for neuroprotection and gene therapy for attenuating parkinsonian symptoms. Non-pharmacological treatments, such as exercise, a calcium-rich diet, and adequate vitamin D supplementation, aim to slow disease progression and prevent complications. For those patients who have medically induced side effects and/or refractory symptoms, surgery is a therapeutic option. Deep brain stimulation is the primary surgical option, associated with motor symptom improvement. Levodopa/carbidopa intestinal gel infusion through percutaneous endoscopic gastrojejunostomy and a portable infusion pump succeeded in reducing "off" time, where non-motor and motor symptoms occur, and increasing "on" time. This article aims to address the general aspects of PD and to provide a comparative comprehensive review of the conventional and the latest therapeutic advancements and emerging treatments for PD. Nevertheless, further studies are required to optimize treatment and provide suitable alternatives.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Levodopa/therapeutic use , Deep Brain Stimulation/methods , Antiparkinson Agents/therapeutic use , Genetic Therapy/methods , Animals
9.
Mov Disord ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007445

ABSTRACT

BACKGROUND: Burst-patterned pallidal deep brain stimulation (DBS) in an animal model of Parkinson's disease (PD) yields significantly prolonged therapeutic benefit compared to conventional continuous DBS, but its value in patients remains unclear. OBJECTIVES: The aims were to evaluate the safety and tolerability of acute (<2 hours) burst DBS in PD patients and to evaluate preliminary clinical effectiveness relative to conventional DBS. METHODS: Six PD patients were studied with DBS OFF, conventional DBS, and burst DBS. Unified Parkinson's Disease Rating Scale III (UPDRS-III) and proactive inhibition (using stop-signal task) were evaluated for each condition. RESULTS: Burst and conventional DBS were equally tolerated without significant adverse events. Both stimulation patterns provided equivalent significant UPDRS-III reduction and increased proactive inhibition relative to DBS OFF. CONCLUSIONS: This pilot study supports the safety and tolerability of burst DBS, with acute effects similar to conventional DBS. Further larger-scale studies are warranted given the potential benefits of burst DBS due to decreased total energy delivery. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

10.
Article in English | MEDLINE | ID: mdl-39005242

ABSTRACT

Background: Deep brain stimulation (DBS) can be an effective therapy to control motor signs in patients with Parkinson's disease (PD). However, subthalamic nucleus (STN) DBS can induce undesirable psychiatric adverse effects, including elevated mood. Case report: We reported a video case of a 73-year-old male implanted with bilateral STN DBS who experienced stimulation-induced elevated mood. A correlation between mood changes and enhanced activation of the ventromedial region in the left STN was observed. Discussion: This video case report illustrates STN DBS-induced elevated mood and enhances early symptom recognition for patients and diagnostic awareness for professionals.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/adverse effects , Male , Subthalamic Nucleus/physiopathology , Aged , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Video Recording
11.
Clin Case Rep ; 12(7): e9147, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005577

ABSTRACT

We present the case of a 54-year-old male with severe Parkinson's disease and chronic, non-reversible pulmonary artery hypertension who had seizures and a cardiorespiratory arrest during surgery for deep brain stimulation, a minimally invasive procedure usually associated with a low risk of complications. This case illustrates how perioperative changes in antiparkinsonian therapy in patient with multiple comorbidities may significantly affect the risk profile.

12.
Front Aging Neurosci ; 16: 1431280, 2024.
Article in English | MEDLINE | ID: mdl-39006221

ABSTRACT

Introduction: Freezing of gait (FOG) is a paroxysmal motor phenomenon that increases in prevalence as Parkinson's disease (PD) progresses. It is associated with a reduced quality of life and an increased risk of falls in this population. Precision-based detection and classification of freezers are critical to developing tailored treatments rooted in kinematic assessments. Methods: This study analyzed instrumented stand-and-walk (SAW) trials from advanced PD patients with STN-DBS. Each patient performed two SAW trials in their OFF Medication-OFF DBS state. For each trial, gait summary statistics from wearable sensors were analyzed by machine learning classification algorithms. These algorithms include k-nearest neighbors, logistic regression, naïve Bayes, random forest, and support vector machines (SVM). Each of these models were selected for their high interpretability. Each algorithm was tasked with classifying patients whose SAW trials MDS-UPDRS FOG subscore was non-zero as assessed by a trained movement disorder specialist. These algorithms' performance was evaluated using stratified five-fold cross-validation. Results: A total of 21 PD subjects were evaluated (average age 64.24 years, 16 males, mean disease duration of 14 years). Fourteen subjects had freezing of gait in the OFF MED/OFF DBS. All machine learning models achieved statistically similar predictive performance (p < 0.05) with high accuracy. Analysis of random forests' feature estimation revealed the top-ten spatiotemporal predictive features utilized in the model: foot strike angle, coronal range of motion [trunk and lumbar], stride length, gait speed, lateral step variability, and toe-off angle. Conclusion: These results indicate that machine learning effectively classifies advanced PD patients as freezers or nonfreezers based on SAW trials in their non-medicated/non-stimulated condition. The machine learning models, specifically random forests, not only rely on but utilize salient spatial and temporal gait features for FOG classification.

13.
Stereotact Funct Neurosurg ; : 1, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008968

ABSTRACT

INTRODUCTION: Anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) is an increasingly promising treatment option for refractory epilepsy. Optimal therapeutic benefit has been associated with stimulation at the junction of ANT and the mammillothalamic tract (mtt), but electrophysiologic markers of this target are lacking. The present study examined microelectrode recordings (MER) during DBS to identify unique electrophysiologic characteristics of ANT and the ANT-mtt junction. METHODS: Ten patients with medically refractory epilepsy underwent MER during ANT-DBS implantation under general anesthesia. MER locations were determined based on coregistration of preoperative MRI, postoperative CT, and a stereotactic atlas of the thalamus (Morel atlas). Several neurophysiological parameters including single unit spiking rate, bursting properties, theta and alpha power and cerebrospinal fluid (CSF)-normalized root mean square (NRMS) of multiunit activity were characterized at recording depths and compared to anatomic boundaries. RESULTS: From sixteen hemispheres, 485 recordings locations were collected from a mean of 30.3 (15.64 ± 5.0 mm) recording spans. Three-hundred and ninety-four of these recording locations were utilized further for analysis of spiking and bursting rates, after excluding recordings that were more than 8 mm above the putative ventral ANT border. The ANT region exhibited discernible features including: (1) mean spiking rate (7.52 Hz ± 6.9 Hz; one-way analysis of variance test, p = 0.014 when compared to mediodorsal nucleus of the thalamus [MD], mtt, and CSF), (2) the presence of bursting activity with 40% of ANT locations (N = 59) exhibited bursting versus 24% the mtt (χ2; p < 0.001), and 32% in the MD (p = 0.38), (3) CSF-NRMS, a proxy for neuronal density, exhibited well demarcated changes near the entry and exit of ANT (linear regression, R = -0.33, p < 0.001). Finally, in the ANT, both theta (4-8 Hz) and alpha band power (9-12 Hz) were negatively correlated with distance to the ventral ANT border (linear regression, p < 0.001 for both). The proportion of recordings with spiking and bursting activity was consistently highest 0-2 mm above the ventral ANT border with the mtt. CONCLUSION: We observed several electrophysiological markers demarcating the ANT superior and inferior borders including multiple single cell and local field potential features. A local maximum in neural activity just above the ANT-mtt junction was consistent with the previously described optimal target for seizure reduction. These features may be useful for successful targeting of ANT-DBS for epilepsy.

14.
Biomed Phys Eng Express ; 10(5)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959873

ABSTRACT

Objective. Recent innovative neurostimulators allow recording local field potentials (LFPs) while performing motor tasks monitored by wearable sensors. Inertial sensors can provide quantitative measures of motor impairment in people with subthalamic nucleus deep brain stimulation. To the best of our knowledge, there is no validated method to synchronize inertial sensors and neurostimulators without an additional device. This study aims to define a new synchronization method to analyze disease-related brain activity patterns during specific motor tasks and evaluate how LFPs are affected by stimulation and medication.Approach. Fourteen male subjects treated with subthalamic nucleus deep brain stimulation were recruited to perform motor tasks in four different medication and stimulation conditions. In each condition, a synchronization protocol was performed consisting of taps on the implanted neurostimulator, which produces artifacts in the LFPs that a nearby inertial sensor can simultaneously record.Main results. In 64% of the recruited subjects, induced artifacts were detected at least in one condition. Among those subjects, 83% of the recordings could be synchronized offline analyzing LFPs and wearables data. The remaining recordings were synchronized by video analysis.Significance. The proposed synchronization method does not require an external system (e.g., TENS electrodes) and can be easily integrated into clinical practice. The procedure is simple and can be carried out in a short time. A proper and simple synchronization will also be useful to analyze subthalamic neural activity in the presence of specific events (e.g., freezing of gait events) to identify predictive biomarkers.


Subject(s)
Deep Brain Stimulation , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Deep Brain Stimulation/instrumentation , Male , Middle Aged , Artifacts , Signal Processing, Computer-Assisted , Adult , Wearable Electronic Devices , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Brain , Aged
15.
Heliyon ; 10(12): e32535, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994109

ABSTRACT

The characterization of neural signatures within the somatosensory pathway is essential for elucidating the pathogenic mechanisms of central post-stroke pain (CPSP) and developing more effective treatments such as deep brain stimulation (DBS). We explored the characteristics of thalamic neural oscillations in response to varying pain levels under multi-day local field potential (LFP) recordings and examined the influences of continuous DBS on these thalamic activities. We recorded LFPs from the left ventral posterolateral thalamus (VPL) of a patient with CPSP in the resting state under both off- and on-stimulation conditions. We observed significant differences in the power spectral density (PSD) of different pain levels in the delta, theta and gamma frequency bands of the left VPL; 75Hz DBS significantly increased the PSD of delta and decreased the PSD of low-beta, while 130Hz DBS significantly reduced the PSD of theta and low-beta. Thalamic stimulation modulated the neural oscillations related to pain, and the changes in neural activities in response to stimulation could serve as quantitative indicators for pain relief.

16.
Neurobiol Dis ; 199: 106589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969232

ABSTRACT

BACKGROUND: Despite the large body of work on local field potentials (LFPs), a measure of oscillatory activity in patients with Parkinson's disease (PD), the longitudinal evolution of LFPs is less explored. OBJECTIVE: To determine LFP fluctuations collected in clinical settings in patients with PD and STN deep brain stimulation (DBS). METHODS: Twenty-two STN-DBS patients (age: 67.6 ± 8.3 years; 9 females; disease duration: 10.3 ± 4.5 years) completed bilateral LFP recordings over three visits in the OFF-stimulation setting. Peak and band power measures were calculated from each recording. RESULTS: After bilateral LFP recordings, at least one peak was detected in 18 (81.8%), 20 (90.9%), and 22 (100%) patients at visit 1, 2, and 3, respectively. No significant differences were seen in primary peak amplitude (F = 2.91, p = 0.060) over time. Amplitude of the second largest peak (F = 5.49, p = 0.006) and low-beta (F = 6.89, p = 0.002), high-beta (F = 13.23, p < 0.001), and gamma (F = 12.71, p < 0.001) band power demonstrated a significant effect of time. Post hoc comparisons determined low-beta power (Visit 1-Visit 2: t = 3.59, p = 0.002; Visit 1-Visit 3: t = 2.61, p = 0.031), high-beta (Visit 1-Visit 2: t = 4.64, p < 0.001; Visit 1-Visit 3: t = 4.23, p < 0.001) and gamma band power (Visit 1-Visit 2: t = 4.65, p < 0.001; Visit 1-Visit 3: t = 4.00, p < 0.001) were significantly increased from visit 1 recordings to both follow-up visits. CONCLUSION: Our results provide substantial evidence that LFP can reliably be detected across multiple real-world clinical visits in patients with STN-DBS for PD. Moreover, it provides insights on the evolution of these LFPs.

17.
Cureus ; 16(5): e61469, 2024 May.
Article in English | MEDLINE | ID: mdl-38953093

ABSTRACT

Deep brain stimulation (DBS) has emerged as an important therapeutic option for several movement disorders; however, the management of acute complications, such as acute subdural hematoma (ASDH), remains challenging. This is the case of a 71-year-old woman with Parkinson's disease who developed ASDH 12 years after bilateral DBS placement. On admission with altered consciousness, imaging revealed significant displacement of the DBS electrodes because of the hematoma. Emergent craniotomy with endoscopic evacuation was performed with preservation of the DBS system. Postoperatively, complete evacuation of the hematoma was confirmed, and the patient experienced significant clinical improvement. ASDH causes significant electrode displacement in patients undergoing DBS. After hematoma evacuation, the electrodes were observed to return to their proper position, and the patient exhibited a favorable clinical response to stimulation. To preserve the DBS electrodes, endoscopic hematoma evacuation via a small craniotomy may be useful.

18.
Front Hum Neurosci ; 18: 1429223, 2024.
Article in English | MEDLINE | ID: mdl-38962148

ABSTRACT

Objective: Neuromodulation has been proven to be a promising alternative treatment for adult patients with drug-resistant epilepsy (DRE). Deep brain stimulation (DBS) and responsive neurostimulation (RNS) were approved by many countries for the treatment of DRE. However, there is a lack of systematic studies illustrating the differences between them. This meta-analysis is performed to assess the efficacy and clinical characteristics of DBS and RNS in adult patients with DRE. Methods: PubMed, Web of Science, and Embase were retrieved to obtain related studies including adult DRE patients who accepted DBS or RNS. The clinical characteristics of these patients were compiled for the following statistical analysis. Results: A total of 55 studies (32 of DBS and 23 of RNS) involving 1,568 adult patients with DRE were included in this meta-analysis. There was no significant difference in seizure reduction and responder rate between DBS and RNS for DRE. The seizure reduction of DBS and RNS were 56% (95% CI 50-62%, p > 0.05) and 61% (95% CI 54-68%, p > 0.05). The responder rate of DBS and RNS were 67% (95% CI 58-76%, p > 0.05) and 71% (95% CI 64-78%, p > 0.05). Different targets of DBS did not show significant effect on seizure reduction (p > 0.05). Patients with DRE who accepted DBS were younger than those of RNS (32.9 years old vs. 37.8 years old, p < 0.01). The mean follow-up time was 47.3 months for DBS and 39.5 months for RNS (p > 0.05). Conclusion: Both DBS and RNS are beneficial and alternative therapies for adult DRE patients who are not eligible to accept resection surgery. Further and larger studies are needed to clarify the characteristics of different targets and provide tailored treatment for patients with DRE.

19.
Front Neurol ; 15: 1419835, 2024.
Article in English | MEDLINE | ID: mdl-38962474

ABSTRACT

Objective: To analyze the local field potentials (LFPs) in patients with focal drug-resistant epilepsy (DRE) from the anterior nucleus of the thalamus (ANT) during inter-ictal state and seizure state. Method: ANT stereotactic EEG (SEEG) recordings were studied in four patients with focal temporal lobe epilepsy. SEEG data was classified as inter-ictal and ictal state and sub-categorized into electrographic (ESz), focal aware seizure (FAS), focal with impaired awareness (FIA), or focal to bilateral tonic-clonic seizure (FBTC). LFP was analyzed at 4 Hz, 8 Hz, 16 Hz, 32 Hz, high gamma (100 Hz), and ripples (200 Hz) using spectrogram analysis and a statistical comparison of normalized power spectral density (PSD) averaged during seizures versus pre-ictal baseline segments. Result: The LFP recordings were analyzed for 162 seizures (127 ESz, 23 FAS, 6 FIA, and 6 FBTC). Based on time-frequency data (spectrogram), a broad band of activity, occurring between 2 and 6 Hz and centered at 4 Hz, and thin-band activity occurring specifically at 8 Hz on the frequency spectrogram were observed during the inter-ictal state. Statistically significant changes in LFP-PSD were seen for FAS, FIA, and FBTC. We observed a significant gain in LFP at the lower frequency band during FAS at 4 Hz, FIA, and FBTC at 4, 8, and 16 Hz while also observing increases at higher frequencies during FBTC at 100 and 200 Hz and a decrease during FAS seizures at 32 Hz. In contrast, no significant change in LFP power was seen for electrographic seizures. Interpretation: Our observations from a limited dataset indicate that all clinical seizure types, but not electrographic seizures, caused a change in ANT-LFP based on the magnitude of the associated power spectral density (PSD). Future work will be needed to validate the use of ANT-LFP at these frequencies as accurate measurements of seizure occurrence and severity. This work represents a first step toward understanding ANT thalamic LFP patterns during focal seizures and developing adaptive DBS strategies.

20.
Front Neurol ; 15: 1398929, 2024.
Article in English | MEDLINE | ID: mdl-38962477

ABSTRACT

Background: Remote programming (RP) is an emerging technology that enables the adjustment of implantable pulse generators (IPGs) via the Internet for people with Parkinson's disease (PwPD) who have undergone deep brain stimulation (DBS). Previous studies have not comprehensively explored the effectiveness of RP in managing motor symptoms, often omitting assessments such as the rigidity and retropulsion tests during the follow-up. This study evaluates the comprehensive improvements in motor performance and the potential cost benefits of RP for PwPD with DBS. Methods: A retrospective analysis was conducted on two groups of patients-those who received RP and those who received standard programming (SP). Clinical outcomes including motor improvement, quality of life, and daily levodopa dosage were compared between the groups during a 12 (± 3)-month in-clinic follow-up. Results: A total of 44 patients were included in the study, with 18 in the RP group and 26 in the SP group. No significant differences were observed in the frequency of programming sessions or clinical outcomes between the groups (p > 0.05). However, the RP group experienced significantly lower costs per programming session than the SP group (p < 0.05), despite patients in the former group living further from our center (p < 0.05). Conclusions: Our findings suggest that RP could significantly reduce the costs of programming for PwPD with DBS, especially without compromising the effectiveness of treatment across all motor symptoms in the short term.

SELECTION OF CITATIONS
SEARCH DETAIL
...