Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
MethodsX ; 12: 102793, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38957375

ABSTRACT

In a recent paper by Sajindra et al. [1], the soil nutrient levels, specifically nitrogen, phosphorus, and potassium, in organic cabbage cultivation were predicted using a deep learning model. This model was designed with a total of four hidden layers, excluding the input and output layers, with each hidden layer meticulously crafted to contain ten nodes. The selection of the tangent sigmoid transfer function as the optimal activation function for the dataset was based on considerations such as the coefficient of correlation, mean squared error, and the accuracy of the predicted results. Throughout this study, the objective is to justify the tangent sigmoid transfer function and provide mathematical justification for the obtained results.•This paper presents the comprehensive methodology for the development of deep neural network for predict the soil nutrient levels.•Tangent Sigmoid transfer function usage is justified in predictions.•Methodology can be adapted to any similar real-world scenarios.

2.
Entropy (Basel) ; 26(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785632

ABSTRACT

Finding the most interesting areas of an image is the aim of saliency detection. Conventional methods based on low-level features rely on biological cues like texture and color. These methods, however, have trouble with processing complicated or low-contrast images. In this paper, we introduce a deep neural network-based saliency detection method. First, using semantic segmentation, we construct a pixel-level model that gives each pixel a saliency value depending on its semantic category. Next, we create a region feature model by combining both hand-crafted and deep features, which extracts and fuses the local and global information of each superpixel region. Third, we combine the results from the previous two steps, along with the over-segmented superpixel images and the original images, to construct a multi-level feature model. We feed the model into a deep convolutional network, which generates the final saliency map by learning to integrate the macro and micro information based on the pixels and superpixels. We assess our method on five benchmark datasets and contrast it against 14 state-of-the-art saliency detection algorithms. According to the experimental results, our method performs better than the other methods in terms of F-measure, precision, recall, and runtime. Additionally, we analyze the limitations of our method and propose potential future developments.

3.
Network ; : 1-37, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804548

ABSTRACT

Automated diagnosis of cancer from skin lesion data has been the focus of numerous research. Despite that it can be challenging to interpret these images because of features like colour illumination changes, variation in the sizes and forms of the lesions. To tackle these problems, the proposed model develops an ensemble of deep learning techniques for skin cancer diagnosis. Initially, skin imaging data are collected and preprocessed using resizing and anisotropic diffusion to enhance the quality of the image. Preprocessed images are fed into the Fuzzy-C-Means clustering technique to segment the region of diseases. Stacking-based ensemble deep learning approach is used for classification and the LSTM acts as a meta-classifier. Deep Neural Network (DNN) and Convolutional Neural Network (CNN) are used as input for LSTM. This segmented images are utilized to be input into the CNN, and the local binary pattern (LBP) technique is employed to extract DNN features from the segments of the image. The output from these two classifiers will be fed into the LSTM Meta classifier. This LSTM classifies the input data and predicts the skin cancer disease. The proposed approach had a greater accuracy of 97%. Hence, the developed model accurately predicts skin cancer disease.

4.
Sensors (Basel) ; 24(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38610356

ABSTRACT

The rapid advancement in AI requires efficient accelerators for training on edge devices, which often face challenges related to the high hardware costs of floating-point arithmetic operations. To tackle these problems, efficient floating-point formats inspired by block floating-point (BFP), such as Microsoft Floating Point (MSFP) and FlexBlock (FB), are emerging. However, they have limited dynamic range and precision for the smaller magnitude values within a block due to the shared exponent. This limits the BFP's ability to train deep neural networks (DNNs) with diverse datasets. This paper introduces the hybrid precision (HPFP) selection algorithms, designed to systematically reduce precision and implement hybrid precision strategies, thereby balancing layer-wise arithmetic operations and data path precision to address the shortcomings of traditional floating-point formats. Reducing the data bit width with HPFP allows more read/write operations from memory per cycle, thereby decreasing off-chip data access and the size of on-chip memories. Unlike traditional reduced precision formats that use BFP for calculating partial sums and accumulating those partial sums in 32-bit Floating Point (FP32), HPFP leads to significant hardware savings by performing all multiply and accumulate operations in reduced floating-point format. For evaluation, two training accelerators for the YOLOv2-Tiny model were developed, employing distinct mixed precision strategies, and their performance was benchmarked against an accelerator utilizing a conventional brain floating point of 16 bits (Bfloat16). The HPFP selection, employing 10 bits for the data path of all layers and for the arithmetic of layers requiring low precision, along with 12 bits for layers requiring higher precision, results in a 49.4% reduction in energy consumption and a 37.5% decrease in memory access. This is achieved with only a marginal mean Average Precision (mAP) degradation of 0.8% when compared to an accelerator based on Bfloat16. This comparison demonstrates that the proposed accelerator based on HPFP can be an efficient approach to designing compact and low-power accelerators without sacrificing accuracy.

5.
Sensors (Basel) ; 24(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38544256

ABSTRACT

Energy efficiency and security issues are the main concerns in wireless sensor networks (WSNs) because of limited energy resources and the broadcast nature of wireless communication. Therefore, how to improve the energy efficiency of WSNs while enhancing security performance has attracted widespread attention. In order to solve this problem, this paper proposes a new deep reinforcement learning (DRL)-based strategy, i.e., DeepNR strategy, to enhance the energy efficiency and security performance of WSN. Specifically, the proposed DeepNR strategy approximates the Q-value by designing a deep neural network (DNN) to adaptively learn the state information. It also designs DRL-based multi-level decision-making to learn and optimize the data transmission paths in real time, which eventually achieves accurate prediction and decision-making of the network. To further enhance security performance, the DeepNR strategy includes a defense mechanism that responds to detected attacks in real time to ensure the normal operation of the network. In addition, DeepNR adaptively adjusts its strategy to cope with changing network environments and attack patterns through deep learning models. Experimental results show that the proposed DeepNR outperforms the conventional methods, demonstrating a remarkable 30% improvement in network lifespan, a 25% increase in network data throughput, and a 20% enhancement in security measures.

6.
Heliyon ; 10(4): e25999, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38380013

ABSTRACT

Improving system security can be achieved through people identification. Among various methods, electroencephalography-based (EEG-based) identification is a dependable way to prevent identity theft and impersonation. Due to the distractions present in the identification environment, such as lack of focus, mental engagement, small body movements, blinking, and other noises, it is essential to analyze data that reflects these conditions. The present research aims to advance practical EEG-based identification by studying data with mental preoccupation and developing a suitable algorithm. In this article, data from a study conducted on a group of 109 individuals has been analyzed. The data is categorized into two groups: focused data and waiting data. The article describes preprocessing the data and extracting three types of features, including Statistical, Frequency, and Wavelet. Then, a deep neural network (DNN) is used to classify the data. The DNN utilizes a multilayer, fully-connected neural network, with the number of layers and neurons varying based on the data type. Optimization and regularization methods are employed to improve the accuracy of the results. The DNN achieved an average accuracy of 99.19% for frequency features over all subjects in the focused data category, while the waiting data category showed an accuracy of 97.81%.

7.
Plant Methods ; 19(1): 142, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38062468

ABSTRACT

BACKGROUND: Plant defense activators offer advantages over pesticides by avoiding the emergence of drug-resistant pathogens. However, only a limited number of compounds have been reported. Reactive oxygen species (ROS) act as not only antimicrobial agents but also signaling molecules that trigger immune responses. They also affect various cellular processes, highlighting the potential ROS modulators as plant defense activators. Establishing a high-throughput screening system for ROS modulators holds great promise for identifying lead chemical compounds with novel modes of action (MoAs). RESULTS: We established a novel in silico screening system for plant defense activators using deep learning-based predictions of ROS accumulation combined with the chemical properties of the compounds as explanatory variables. Our screening strategy comprised four phases: (1) development of a ROS inference system based on a deep neural network that combines ROS production data in plant cells and multidimensional chemical features of chemical compounds; (2) in silico extensive-scale screening of seven million commercially available compounds using the ROS inference model; (3) secondary screening by visualization of the chemical space of compounds using the generative topographic mapping; and (4) confirmation and validation of the identified compounds as potential ROS modulators within plant cells. We further characterized the effects of selected chemical compounds on plant cells using molecular biology methods, including pathogenic signal-triggered enzymatic ROS induction and programmed cell death as immune responses. Our results indicate that deep learning-based screening systems can rapidly and effectively identify potential immune signal-inducible ROS modulators with distinct chemical characteristics compared with the actual ROS measurement system in plant cells. CONCLUSIONS: We developed a model system capable of inferring a diverse range of ROS activity control agents that activate immune responses through the assimilation of chemical features of candidate pesticide compounds. By employing this system in the prescreening phase of actual ROS measurement in plant cells, we anticipate enhanced efficiency and reduced pesticide discovery costs. The in-silico screening methods for identifying plant ROS modulators hold the potential to facilitate the development of diverse plant defense activators with novel MoAs.

8.
Mol Divers ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910346

ABSTRACT

Tropomyosin receptor kinases (TRKs) are important broad-spectrum anticancer targets. The oncogenic rearrangement of the NTRK gene disrupts the extracellular structural domain and epitopes for therapeutic antibodies, making small-molecule inhibitors essential for treating NTRK fusion-driven tumors. In this work, several algorithms were used to construct descriptor-based and nondescriptor-based models, and the models were evaluated by outer 10-fold cross-validation. To find a model with good generalization ability, the dataset was partitioned by random and cluster-splitting methods to construct in- and cross-domain models, respectively. Among the 48 models built, the model with the combination of the deep neural network (DNN) algorithm and extended connectivity fingerprints 4 (ECFP4) descriptors achieved excellent performance in both dataset divisions. The results indicate that the DNN algorithm has a strong generalization prediction ability, and the richness of features plays a vital role in predicting unknown spatial molecules. Additionally, we combined the clustering results and decision tree models of fingerprint descriptors to perform structure-activity relationship analysis. It was found that nitrogen-containing aromatic heterocyclic and benzo heterocyclic structures play a crucial role in enhancing the activity of TRK inhibitors. Workflow for generating predictive models for TRK inhibitors.

9.
Article in English | MEDLINE | ID: mdl-37842810

ABSTRACT

High-throughput technologies and machine learning (ML), when applied to a huge pool of medical data such as omics data, result in efficient analysis. Recent research aims to apply and develop ML models to predict a disease well in time using available omics datasets. The present work proposed a framework, 'OmicPredict', deploying a hybrid feature selection method and deep neural network (DNN) model to predict multiple diseases using omics data. The hybrid feature selection method is developed using the Analysis of Variance (ANOVA) technique and firefly algorithm. The OmicPredict framework is applied to three case studies, Alzheimer's disease, Breast cancer, and Coronavirus disease 2019 (COVID-19). In the case study of Alzheimer's disease, the framework predicts patients using GSE33000 and GSE44770 dataset. In the case study of Breast cancer, the framework predicts human epidermal growth factor receptor 2 (HER2) subtype status using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. In the case study of COVID-19, the framework performs patients' classification using GSE157103 dataset. The experimental results show that DNN model achieved an Area Under Curve (AUC) score of 0.949 for the Alzheimer's (GSE33000 and GSE44770) dataset. Furthermore, it achieved an AUC score of 0.987 and 0.989 for breast cancer (METABRIC) and COVID-19 (GSE157103) datasets, respectively, outperforming Random Forest, Naïve Bayes models, and the existing research.

10.
Math Biosci Eng ; 20(8): 15456-15475, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37679187

ABSTRACT

The goal of this study is to present an automatic vocalization recognition system of giant pandas (GPs). Over 12800 vocal samples of GPs were recorded at Chengdu Research Base of Giant Panda Breeding (CRBGPB) and labeled by CRBGPB animal husbandry staff. These vocal samples were divided into 16 categories, each with 800 samples. A novel deep neural network (DNN) named 3Fbank-GRU was proposed to automatically give labels to GP's vocalizations. Unlike existing human vocalization recognition frameworks based on Mel filter bank (Fbank) which used low-frequency features of voice only, we extracted the high, medium and low frequency features by Fbank and two self-deduced filter banks, named Medium Mel Filter bank (MFbank) and Reversed Mel Filter bank (RFbank). The three frequency features were sent into the 3Fbank-GRU to train and test. By training models using datasets labeled by CRBGPB animal husbandry staff and subsequent testing of trained models on recognizing tasks, the proposed method achieved recognition accuracy over 95%, which means that the automatic system can be used to accurately label large data sets of GP vocalizations collected by camera traps or other recording methods.


Subject(s)
Ursidae , Animals , Humans , Animal Husbandry , Neural Networks, Computer
11.
Quant Imaging Med Surg ; 13(9): 5483-5501, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37711811

ABSTRACT

Background: Abdominal lymph node partition is highly relevant to colorectal cancer (CRC) metastasis, which may further affect patient prognosis and survival quality. In the traditional diagnostic process, medical radiologists must partition all lymph nodes from the computed tomography (CT) images for further diagnostics. The manual interpretation of abdominal nodes is experience-dependent and time-consuming, especially for node partition. Therefore, automated partition methods are desirable to make the diagnostic process more accessible. Automatic abdominal lymph node partition is a challenging task due to the subtle morphological features of the nodes and the complex relative position information of the abdominal structure. Methods: In this paper, a node-oriented dataset containing 6,880 nodes with partition labels was constructed by seasoned professionals through 2-round annotation due to there being no dataset with node-oriented labels to perform the partition task. In addition, specific masking strategies and attention mechanisms were proposed for the primary deep neural networks (DNNs). The specific masking strategy could utilize the positional and morphological information more substantially, which intensively exploits prior knowledge and hones the relative positional information in the lower abdomen. The comprehensive attention mechanism could introduce direction-aware information to enhance the inter-channel relationship of features and capture rich contextual relationships with multi-scale kernels. Results: The experiments were based on the node-oriented dataset. The proposed method achieved superior performance [accuracy (ACC): 89.74%; F1 score (F1): 85.95%; area under the curve (AUC): 88.23%], which is significantly higher than the baseline model with several masking strategies (ACC: 62.05-86.16%; F1: 51.77-80.86%; AUC: 60.44-83.94%). For exploration of attention, the proposed method also outperformed the state-of-the-art convolutional block attention module (CBAM; ACC: 88.90%; F1: 84.09%; AUC: 86.86%) with the same proposed input form. Conclusions: Experimental results indicate that the innovative method performs better in experimental metrics than other prevalent methods. The proposed method is expected to be introduced in future medical scenarios, which will help doctors to optimize the diagnosis workflow and improve partition sensitivity.

12.
Sensors (Basel) ; 23(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37448018

ABSTRACT

This study investigated the squeal mechanism induced by friction in a lead screw system. The dynamic instability in the friction noise model of the lead screw was derived through a complex eigenvalue analysis via a finite element model. A two degree of freedom model was described to analyze the closed solutions generated in the lead screw, and the friction noise sensitivity was examined. The analysis showed that the main source of friction noise in the lead screw was the bending mode pair, and friction-induced instability occurred when the ratio of the stiffness of the bending pair modes was 0.9-1. We also built an architecture to predict multiple outputs from a single model using deep neural networks and demonstrated that friction-induced instability can be predicted by deep neural networks. In particular, instability with nonlinearity was predicted very accurately by deep neural networks with a maximum absolute difference of about 0.035.


Subject(s)
Autonomous Vehicles , Neural Networks, Computer , Friction , Bone Screws , Finite Element Analysis
13.
Environ Sci Pollut Res Int ; 30(41): 94097-94111, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37525080

ABSTRACT

Due to the water and energy crises, wastewater treatment systems that are more energy efficient and capable of large volume degradation are a priority. Photochemical decomposition methods have a significant impact on pollutant treatment. The use of these methods in conjunction with a novel designed reactor and hybridization processes can result in considerable treatment results. This research used a fountain system in a UV/H2O2 process to generate a belt-type liquid film with a low thickness and high mixing to remove methyl orange as a model pollutant. The flow rate, H2O2 concentration, temperature, and UV intensity were the parameters evaluated in this series of tests. After 90 minutes under optimum conditions, the maximum degradation of methyl orange was 99.73 percent. The efficiency of the purification process was increased to 99 percent in 75 minutes by using the optimum state of hybridization of UV/US/H2O2 processes. Two deep neural network models and a pseudo-first-order kinetic model were created to fit the experimental data. The results reveal a good fit between the experimental data and the model prediction. The discovered synergistic factor (1.168) and energy yield (2.65 g/kWh) demonstrated the high efficiency of the hybridization process and the outstanding function of the designed system, respectively.


Subject(s)
Water Pollutants, Chemical , Water Purification , Hydrogen Peroxide/chemistry , Ultraviolet Rays , Azo Compounds , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Kinetics
14.
J Biomol Struct Dyn ; : 1-9, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37493402

ABSTRACT

Androgen receptor (AR), a steroid receptor, plays a pivotal role in the pathogenesis of prostate cancer (PCa). AR controls the transcription of genes that help cells avoid apoptosis and proliferate, thereby contributing to the development of PCa. Understanding AR molecular mechanisms has led to the development of newer drugs that inhibit androgen production enzymes or block ARs. The FDA has approved a small number of AR-inhibiting drugs for use in PCa thus far, as the identification of novel AR inhibitors is difficult, expensive, time-consuming, and labor-intensive. To accelerate the process, artificial intelligence (AI) algorithms were employed to predict AR inhibitors using a dataset of 2242 compounds. Four machine learning (ML) and deep learning (DL) algorithms were used to train different prediction models based on molecular descriptors (1D, 2D, and molecular fingerprints). The DL-based prediction model outperformed the other trained models with accuracies of 92.18% and 93.05% on the training and test datasets, respectively. Our findings highlight the potential of DL, particularly the DNN model, as an effective approach for predicting AR inhibitors, which could significantly streamline the process of identifying novel AR inhibitors in PCa drug discovery. Further validation of these models using experimental assays and prospective testing of newly designed compounds would be valuable to confirm their predictive power and applicability in practical drug discovery settings.Communicated by Ramaswamy H. Sarma.

15.
Front Neurosci ; 17: 1145526, 2023.
Article in English | MEDLINE | ID: mdl-37284662

ABSTRACT

Introduction: In the clinical setting, it becomes increasingly important to detect epileptic seizures automatically since it could significantly reduce the burden for the care of patients suffering from intractable epilepsy. Electroencephalography (EEG) signals record the brain's electrical activity and contain rich information about brain dysfunction. As a non-invasive and inexpensive tool for detecting epileptic seizures, visual evaluation of EEG recordings is labor-intensive and subjective and requires significant improvement. Methods: This study aims to develop a new approach to recognize seizures automatically using EEG recordings. During feature extraction of EEG input from raw data, we construct a new deep neural network (DNN) model. Deep feature maps derived from layers placed hierarchically in a convolution neural network are put into different kinds of shallow classifiers to detect the anomaly. Feature maps are reduced in dimensionality using Principal Component Analysis (PCA). Results: By analyzing the EEG Epilepsy dataset and the Bonn dataset for epilepsy, we conclude that our proposed method is both effective and robust. These datasets vary significantly in the acquisition of data, the formulation of clinical protocols, and the storage of digital information, making processing and analysis challenging. On both datasets, extensive experiments are performed using a cross-validation by 10 folds strategy to demonstrate approximately 100% accuracy for binary and multi-category classification. Discussion: In addition to demonstrating that our methodology outperforms other up-to-date approaches, the results of this study also suggest that it can be applied in clinical practice as well.

16.
Entropy (Basel) ; 25(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37372196

ABSTRACT

This paper is concerned with mobile coded orthogonal frequency division multiplexing (OFDM) systems. In the high-speed railway wireless communication system, an equalizer or detector should be used to mitigate the intercarrier interference (ICI) and deliver the soft message to the decoder with the soft demapper. In this paper, a Transformer-based detector/demapper is proposed to improve the error performance of the mobile coded OFDM system. The soft modulated symbol probabilities are computed by the Transformer network, and are then used to calculate the mutual information to allocate the code rate. Then, the network computes the codeword soft bit probabilities, which are delivered to the classical belief propagation (BP) decoder. For comparison, a deep neural network (DNN)-based system is also presented. Numerical results show that the Transformer-based coded OFDM system outperforms both the DNN-based and the conventional system.

17.
Multimed Tools Appl ; : 1-31, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-37362674

ABSTRACT

Fake news on social media, has spread for personal or societal gain. Detecting fake news is a multi-step procedure that entails analysing the content of the news to assess its trustworthiness. The article has proposed a new solution for fake news detection which incorporates sentiment as an important feature to improve the accuracy with two different data sets of ISOT and LIAR. The key feature words with content's propensity scores of the opinions are developed based on sentiment analysis using a lexicon-based scoring algorithm. Further, the study proposed a multiple imputation strategy which integrated Multiple Imputation Chain Equation (MICE) to handle multivariate missing variables in social media or news data from the collected dataset. Consequently, to extract the effective features from the text, Term Frequency and Inverse Document Frequency (TF-IDF) are introduced to determine the long-term features with the weighted matrix. The correlation of missing data variables and useful data features are classified based on Naïve Bayes, passive-aggressive and Deep Neural Network (DNN) classifiers. The findings of this research described that the overall calculation of the proposed method was obtained with an accuracy of 99.8% for the detection of fake news with the evaluation of various statements such as barely true, half true, true, mostly true and false from the dataset. Finally, the performance of the proposed method is compared with the existing methods in which the proposed method results in better efficiency.

18.
J Mol Cell Biol ; 15(4)2023 08 03.
Article in English | MEDLINE | ID: mdl-37037781

ABSTRACT

DNA methylation analysis has been applied to determine the primary site of cancer; however, robust and accurate prediction of cancer types with a minimum number of sites is still a significant scientific challenge. To build an accurate and robust cancer type prediction tool with a minimum number of DNA methylation sites, we internally benchmarked different DNA methylation site selection and ranking procedures, as well as different classification models. We used The Cancer Genome Atlas dataset (26 cancer types with 8296 samples) to train and test models and used an independent dataset (17 cancer types with 2738 samples) for model validation. A deep neural network model using a combined feature selection procedure (named MethyDeep) can predict 26 cancer types using 30 methylation sites with superior performance compared with the known methods for both primary and metastatic cancers in independent validation datasets. In conclusion, MethyDeep is an accurate and robust cancer type predictor with the minimum number of DNA methylation sites; it could help the cost-effective clarification of cancer of unknown primary patients and the liquid biopsy-based early screening of cancers.


Subject(s)
DNA Methylation , Neoplasms , Humans , DNA Methylation/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Machine Learning , Base Sequence
19.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36984911

ABSTRACT

Single-event effects (SEE) are an important index of radiation resistance for fully depleted silicon on insulator (FDSOI) devices. The research into traditional FDSOI devices is based on simulation software, which is time consuming, requires a large amount of calculation, and has complex operations. In this paper, a prediction method for the SEE of FDSOI devices based on deep learning is proposed. The characterization parameters of SEE can be obtained quickly and accurately by inputting different particle incident conditions. The goodness of fit of the network curve for predicting drain transient current pulses can reach 0.996, and the accuracy of predicting the peak value of drain transient current and total collected charge can reach 94.00% and 96.95%, respectively. Compared with TCAD Sentaurus software, the simulation speed is increased by 5.10 × 102 and 1.38 × 103 times, respectively. This method can significantly reduce the computational cost, improve the simulation speed, and provide a new feasible method for the study of the single-event effect in FDSOI devices.

20.
Sensors (Basel) ; 23(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36991727

ABSTRACT

The cooperative aerial and device-to-device (D2D) networks employing non-orthogonal multiple access (NOMA) are expected to play an essential role in next-generation wireless networks. Moreover, machine learning (ML) techniques, such as artificial neural networks (ANN), can significantly enhance network performance and efficiency in fifth-generation (5G) wireless networks and beyond. This paper studies an ANN-based unmanned aerial vehicle (UAV) placement scheme to enhance an integrated UAV-D2D NOMA cooperative network.The proposed placement scheme selection (PSS) method for integrating the UAV into the cooperative network combines supervised and unsupervised ML techniques. Specifically, a supervised classification approach is employed utilizing a two-hidden layered ANN with 63 neurons evenly distributed among the layers. The output class of the ANN is utilized to determine the appropriate unsupervised learning method-either k-means or k-medoids-to be employed. This specific ANN layout has been observed to exhibit an accuracy of 94.12%, the highest accuracy among the ANN models evaluated, making it highly recommended for accurate PSS predictions in urban locations. Furthermore, the proposed cooperative scheme allows pairs of users to be simultaneously served through NOMA from the UAV, which acts as an aerial base station. At the same time, the D2D cooperative transmission for each NOMA pair is activated to improve the overall communication quality. Comparisons with conventional orthogonal multiple access (OMA) and alternative unsupervised machine-learning based-UAV-D2D NOMA cooperative networks show that significant sum rate and spectral efficiency gains can be harvested through the proposed method under varying D2D bandwidth allocations.

SELECTION OF CITATIONS
SEARCH DETAIL
...