Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.451
Filter
1.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39007295

ABSTRACT

This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.


Subject(s)
Genome, Bacterial , Hydrothermal Vents , Phylogeny , Vibrio , Vibrio/genetics , Hydrothermal Vents/microbiology , Evolution, Molecular , Adaptation, Physiological/genetics , Pacific Ocean
2.
Biol Trace Elem Res ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970712

ABSTRACT

The determination of metal(loid) (As, Fe, Al, Sr, Zn, Pb, Mn, Cu, Cr, and Cd) levels in the muscle tissue of 23 different deep-sea bony fish sampled off Mersin Bay (NE Levantine Basin) and the assessment of health risks for human consumption were aimed. Tissue metal(loid) concentrations were determined as dry weight and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The tissue metal(loid) concentrations (µg g dw) were converted to wet weight prior to health risk assessment calculations. Standard mathematical formulas were used to determine the health risk assessment. There was a statistically significant difference between the fish species in terms of tissue metal(loid) levels (p < 0.05). The highest metal(loid) level was found in C. sloani among other species. As and Fe had the highest and Cd the lowest tissue concentrations in the examined species (p < 0.05). The relationships between the metal(loid)s analyzed in the tissue were significant (p < 0.01;0.05). Fe had an antagonistic effect with Cd, while other metal(loid)s had a synergetic effect with each other. Risk assessment analyses were performed for the consumable species, and it was found that the estimated daily and weekly intakes were below the tolerable limits established by the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). The target hazard quotient (THQ) values exceeded the threshold of 1 (THQ > 1) only for As. The target cancer risk (TCR) was below the tolerable limits (> 10-5) except for As, Cd, and Al.

3.
Article in English | MEDLINE | ID: mdl-38967634

ABSTRACT

An anaerobic, mesophilic, syntrophic, archaeon strain MK-D1T, was isolated as a pure co-culture with Methanogenium sp. strain MK-MG from deep-sea methane seep sediment. This organism is, to our knowledge, the first cultured representative of 'Asgard' archaea, an archaeal group closely related to eukaryotes. Here, we describe the detailed physiology and phylogeny of MK-D1T and propose Promethearchaeum syntrophicum gen. nov., sp. nov. to accommodate this strain. Cells were non-motile, small cocci, approximately 300-750 nm in diameter and produced membrane vesicles, chains of blebs and membrane-based protrusions. MK-D1T grew at 4-30 °C with optimum growth at 20 °C. The strain grew chemoorganotrophically with amino acids, peptides and yeast extract with obligate dependence on syntrophy with H2-/formate-utilizing organisms. MK-D1T showed the fastest growth and highest maximum cell yield when grown with yeast extract as the substrate: approximately 3 months to full growth, reaching up to 6.7×106 16S rRNA gene copies ml-1. MK-D1T had a circular 4.32 Mb chromosome with a DNA G+C content of 31.1 mol%. The results of phylogenetic analyses of the 16S rRNA gene and conserved marker proteins indicated that the strain is affiliated with 'Asgard' archaea and more specifically DHVC1/DSAG/MBG-B and 'Lokiarchaeota'/'Lokiarchaeia'. On the basis of the results of 16S rRNA gene sequence analysis, the most closely related isolated relatives were Infirmifilum lucidum 3507LTT (76.09 %) and Methanothermobacter tenebrarum RMAST (77.45 %) and the closest relative in enrichment culture was Candidatus 'Lokiarchaeum ossiferum' (95.39 %). The type strain of the type species is MK-D1T (JCM 39240T and JAMSTEC no. 115508). We propose the associated family, order, class, phylum, and kingdom as Promethearchaeaceae fam. nov., Promethearchaeales ord. nov., Promethearchaeia class. nov., Promethearchaeota phyl. nov., and Promethearchaeati regn. nov., respectively. These are in accordance with ICNP Rules 8 and 22 for nomenclature, Rule 30(3)(b) for validation and maintenance of the type strain, and Rule 31a for description as a member of an unambiguous syntrophic association.


Subject(s)
Base Composition , DNA, Archaeal , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Archaeal/genetics , Geologic Sediments/microbiology , Anaerobiosis , Seawater/microbiology , Vitamin K 2/analogs & derivatives
4.
Mar Genomics ; 76: 101113, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009494

ABSTRACT

Biosurfactants are amphipathic molecules with high industrial values owing to their chemical properties and stability under several environmental conditions. They have become attractive microbial products in the emerging biotechnology industry, offering a potential environmentally-friendly alternative to synthetic surfactants. Nowadays, several types of biosurfactants are commercially available for a wide range of applications in healthcare, agriculture, oil extraction and environmental remediation. In this study, a marine bacterium Bacillus velezensis L2D39 with the capability of producing biosurfactants was successfully isolated and characterized. The complete genome sequence of the bacterium B. velezensis L2D39 was obtained using PacBio Sequel HGAP.4, resulting in a sequence consisting of 4,140,042 base pairs with a 46.2 mol% G + C content and containing 4071 protein-coding genes. The presence of gene clusters associated with biosurfactants was confirmed through antiSMASH detection. The analysis of complete genome sequence will provide insight into the potential applications of this bacterium in biotechnological and natural product biosynthesis.


Subject(s)
Bacillus , Genome, Bacterial , Surface-Active Agents , Whole Genome Sequencing , Bacillus/genetics , Bacillus/metabolism , Surface-Active Agents/metabolism
5.
Mar Genomics ; 76: 101125, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009496

ABSTRACT

Salinimicrobium sp. 3283s is an aerobic, golden-yellow pigment-producing, Flavobacteriaceae bacterium isolated from the sediments at the depth of 1751 m in the South China Sea. In this study, we present the complete genome sequence of strain 3283s, which only have a single circular chromosome comprising 3,702,683 bp with 41.41% G + C content and no circular plasmid. In total, 3257 protein coding genes, 45 tRNA, 9 rRNA, and 13 sRNA genes were obtained. In terms of the function of gene annotation, strain 3283s was more different from Salinimicrobium oceani J15B91, which was isolated from the South China Sea at a similar depth, and more similar to a Mariana Trench-derived strain Salinimicrobium profundisediminis MT39, which was closer in phylogenetic taxonomic status, suggesting that strain 3283s possesses a stronger potential to adapt to the deep-sea environment. Furthermore, the high- pressure simulations also confirmed that strain 3283s can grow in both 30 MPa and 60 MPa hydrostatic pressure environments, and that it grows better in 30 MPa hydrostatic pressure environments than in 60 MPa hydrostatic pressure environments. In addition, we found a large number of genes in strain 3283s that can promote better adaptation of the bacteria to the low oxygen and high hydrostatic pressure (HHP) environment of the deep sea, such as biosynthetic enzymes of antioxidant pigments, genes encoding cytochromes with enhanced affinity for oxygen, proteins for adaptation to HHP, and genes encoding TonB-dependent transporters in the absence of flagella.


Subject(s)
Flavobacteriaceae , Genome, Bacterial , Geologic Sediments , Geologic Sediments/microbiology , China , Flavobacteriaceae/genetics , Phylogeny , Whole Genome Sequencing , Seawater/microbiology
6.
ISME Commun ; 4(1): ycae084, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39021441

ABSTRACT

Deep-sea brine pools represent rare, extreme environments, providing unique insight into the limits of life on Earth, and by analogy, the plausibility of life beyond it. A distinguishing feature of many brine pools is presence of thick microbial mats that develop at the brine-seawater interface. While these bacterial and archaeal communities have received moderate attention, viruses and their host interactions in these environments remain underexplored. To bridge this knowledge gap, we leveraged metagenomic and metatranscriptomic data from three distinct zones within the NEOM brine pool system (Gulf of Aqaba) to reveal the active viral ecology around the pools. We report a remarkable diversity and activity of viruses infecting microbial hosts in this environment, including giant viruses, RNA viruses, jumbo phages, and Polinton-like viruses. Many of these form distinct clades-suggesting presence of untapped viral diversity in this ecosystem. Brine pool viral communities exhibit zone-specific differences in infection strategy-with lysogeny dominating the bacterial mat further away from the pool's center. We linked viruses to metabolically important prokaryotes-including association between a jumbo phage and a key manganese-oxidizing and arsenic-metabolizing bacterium. These foundational results illuminate the role of viruses in modulating brine pool microbial communities and biogeochemistry through revealing novel viral diversity, host associations, and spatial heterogeneity in viral dynamics.

7.
Heliyon ; 10(12): e32793, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022035

ABSTRACT

In light of the low dissolved oxygen concentration in the deep sea, the corrosion mechanisms of the high entropy alloy (HEA) AlCoCrFeNi in artificial seawater with varying oxygen concentrations (2.0, 4.0, 7.0 mg/L) were studied. As the oxygen concentration decreases, the alloy's free corrosion potential decreases, and at 2.0 mg/L, the corrosion rate is 421 times higher than that at 7.0 mg/L. The corrosion form transforms from pitting to uniform corrosion. The primary reasons for this are the passivation film is thin under low oxygen concentration conditions, as well as the preferential dissolution of the alloy elements Al and Ni due to their high activity and "local acidizing" properties, respectively. In designing a super corrosion-resistant high entropy alloy for use in the deep sea, it is advisable to avoid the use of element Al and to add Ni with caution.

8.
Sci Total Environ ; : 174833, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025143

ABSTRACT

Deep-sea mining can remobilize large amounts of inert metals from hydrothermal seafloor massive sulfides (SMSs) into bioavailable toxic forms that are dissolved in the water column, potentially impacting marine ecosystems. It is thus critical to assess the impacts of deep-sea mining on the reactivities and behaviors of crucial elements (e.g., Zn and Cu) and their isotopes during mineral leaching processes. To this end, we conducted leaching experiments using different SMS mineral types (CuFe rich, Fe rich, and ZnFe rich) to assess metal releases and the isotope fractionations of Zn and Cu. Significant correlations were observed between Ni, Cu, Zn, Cd, and Pb concentrations in leachates and the SMSs, suggesting that metal leaching into seawater depended on individual SMS metal content. The Zn and Cu concentrations in leachates varied greatly by both SMS type and the leaching time. Zn concentrations from ZnFe rich SMSs exceeded the recommended effluent limits set by the IFC World Bank and the USEPA. SMS ore leachates exhibited Cu and Zn isotope ratios distinct from those of Indian Ocean deep seawater. The isotope fractionation magnitude (Δore-seawater) of Cu was more pronounced than that of Zn, likely due to the redox process involved in the leaching processes. In contrast, the Zn isotope signatures in leachates conserve those of minerals, although slight isotope fractionations occurred in solution following the adsorption and precipitation processes of Fe-oxyhydroxides. Our findings confirm that leveraging the chemical and isotope signatures of toxic metals offers a valuable approach for assessing the extent of metal contamination of leachates and mine tailings stemming from deep-sea mining operations, concerning their influence on the surrounding water columns.

9.
J Environ Sci (China) ; 146: 283-297, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969457

ABSTRACT

The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet. Here we combined geochemical analyses, incubation experiments, and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea. The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere, such as Chloroflexi, Atribacteria, and Bathyarcheaota. The topmost benthic communities were spatially structured by sedimentary organic carbon, lacking a clear distinction among geographic regions. With increasing sediment depth, the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments. The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways. Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere. These include Alkalimarinus and Halioglobus, previously unrecognized as hydrocarbon-degrading genera, both harboring the full genetic potential for aerobic alkane oxidation. These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.


Subject(s)
Biodegradation, Environmental , Geologic Sediments , Microbiota , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Arctic Regions , Petroleum/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Archaea/metabolism , Archaea/classification , Archaea/genetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Biodiversity
10.
Zookeys ; 1203: 355-375, 2024.
Article in English | MEDLINE | ID: mdl-38855792

ABSTRACT

A new family of antipatharian corals, Ameripathidae (Cnidaria: Anthozoa: Antipatharia), is established for Ameripathespseudomyriophylla Opresko & Horowitz, gen. et sp. nov. The new family resembles Myriopathidae and Stylopathidae in terms of the morphology of the polyps and tentacles and the pinnulate branching of the corallum. Phylogenetic analysis using a genomic data set of 741 conserved element loci indicates that the new family is sister to a clade containing the Myriopathidae, Stylopathidae, Antipathidae, and Aphanipathidae.

11.
Mar Pollut Bull ; 204: 116531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823373

ABSTRACT

This study investigates the presence of plastic and non-plastic microparticles in the gastrointestinal tracts of two deep-sea sharks, Etmopterus molleri (n = 118) and Squalus mitsukurii (n = 6), bycatch from the East China Sea continental shelf. We found a total of 117 microparticles, predominantly fibres (67.52 %), with blue (31.62 %) and black (23.94 %) being the most prevalent colours. E. molleri contained 70 microparticles (0.63 ± 0.93 items/shark), 61.42 % non-plastics like viscose and cotton, while plastics included polyethylene, polyethylene terephthalate, and acrylic. Despite S. mitsukurii's limited sample size, the results show that it takes in a lot of microparticles (47 microparticles, 7.83 ± 2.64 items/shark), 57.44 % non-plastics (viscose, cotton, and ethyl cellulose), and 42.56 % plastics. A positive correlation between microparticle presence and total length was observed for E. molleri. These results provide initial data on microparticle ingestion by these species, highlighting potential ecological risks and trophic transfer implications in deep-sea ecosystems.


Subject(s)
Environmental Monitoring , Plastics , Sharks , Animals , China , Stomach , Oceans and Seas
12.
Mol Ecol ; 33(13): e17423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825968

ABSTRACT

If similar evolutionary forces maintain intra- and interspecific diversity, patterns of diversity at both levels of biological organization can be expected to covary across space. Although this prediction of a positive species-genetic diversity correlation (SGDC) has been tested for several taxa in natural landscapes, no study has yet evaluated the influence of the community delineation on these SGDCs. In this study, we focused on tropical fishes of the Indo-Pacific Ocean, using range-wide single nucleotide polymorphism data for a deep-sea fish (Etelis coruscans) and species presence data of 4878 Teleostei species. We investigated whether a diversity continuum occurred, for different community delineations (subfamily, family, order and class) and spatial extents, and which processes explained these diversity patterns. We found no association between genetic diversity and species richness (α-SGDC), regardless of the community and spatial extent. In contrast, we evidenced a positive relationship between genetic and species dissimilarities (ß-SGDC) when the community was defined at the subfamily or family level of the species of interest, and when the Western Indian Ocean was excluded. This relationship was related to the imprint of dispersal processes across levels of biological organization in Lutjanidae. However, this positive ß-SGDC was lost when considering higher taxonomic communities and at the scale of the entire Indo-Pacific, suggesting different responses of populations and communities to evolutionary processes at these scales. This study provides evidence that the taxonomic scale at which communities are defined and the spatial extent are pivotal to better understand the processes shaping diversity across levels of biological organization.


Subject(s)
Coral Reefs , Fishes , Genetic Variation , Polymorphism, Single Nucleotide , Animals , Fishes/genetics , Fishes/classification , Pacific Ocean , Polymorphism, Single Nucleotide/genetics , Indian Ocean , Biodiversity , Genetics, Population
13.
Microbes Environ ; 39(5)2024.
Article in English | MEDLINE | ID: mdl-38839370

ABSTRACT

Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.


Subject(s)
Bacteria , Hydrothermal Vents , Iron , Microbial Consortia , RNA, Ribosomal, 16S , Seawater , Corrosion , Iron/metabolism , Iron/chemistry , Seawater/microbiology , Seawater/chemistry , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Hydrothermal Vents/microbiology , Phylogeny
14.
Environ Microbiome ; 19(1): 38, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858739

ABSTRACT

BACKGROUND: Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral's genotype using RAD-sequencing. RESULTS: Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location. CONCLUSIONS: Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.

15.
Materials (Basel) ; 17(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893824

ABSTRACT

Unbonded flexible risers consist of several helical and cylindrical layers, which can undergo large bending deformation and can be installed in different configurations to adapt to harsh marine environments; thus, they can be applied to transport oil and gas resources from ultra-deep waters (UDW). Due to their special geometric characteristics, they can ensure sufficient axial tensile stiffness while having small bending stiffness, which can undergo large deflection bending deformation. In recent years, the development of unbonded flexible risers has been moving in an intelligent, integrated direction. This paper presents a review of unbonded flexible risers. Firstly, the form and properties of each interlayer of an unbonded flexible riser are introduced, as well as the corresponding performance and configuration characteristics. In recent years, the development of unbonded flexible risers has been evolving, and the development of machine learning on unbonded flexible risers is discussed. Finally, with emphasis on exploring the design characteristics and working principles, three new types of unbonded flexible risers, an integrated production bundle, an unbonded flexible riser with an anti-H2S layer, and an unbonded flexible riser with a composite armor layer, are presented. The research results show that: (1) the analytical methods of cross-sectional properties of unbonded flexible risers are solved based on ideal assumptions, and the computational accuracy needs to be improved. (2) Numerical methods have evolved from equivalent simplified models to models that account for detailed geometric properties. (3) Compared with ordinary steel risers, the unbonded flexible riser is more suitable for deep-sea resource development, and the structure of each layer can be designed according to the requirements of the actual environment.

16.
Life (Basel) ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38929660

ABSTRACT

Life on our planet likely evolved in the ocean, and thus exo-oceans are key habitats to search for extraterrestrial life. We conducted a data-driven bibliographic survey on the astrobiology literature to identify emerging research trends with marine science for future synergies in the exploration for extraterrestrial life in exo-oceans. Based on search queries, we identified 2592 published items since 1963. The current literature falls into three major groups of terms focusing on (1) the search for life on Mars, (2) astrobiology within our Solar System with reference to icy moons and their exo-oceans, and (3) astronomical and biological parameters for planetary habitability. We also identified that the most prominent research keywords form three key-groups focusing on (1) using terrestrial environments as proxies for Martian environments, centred on extremophiles and biosignatures, (2) habitable zones outside of "Goldilocks" orbital ranges, centred on ice planets, and (3) the atmosphere, magnetic field, and geology in relation to planets' habitable conditions, centred on water-based oceans.

17.
Mar Drugs ; 22(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921587

ABSTRACT

Deep-sea environments, as relatively unexplored extremes within the Earth's biosphere, exhibit notable distinctions from terrestrial habitats. To thrive in these extreme conditions, deep-sea actinomycetes have evolved unique biochemical metabolisms and physiological capabilities to ensure their survival in this niche. In this study, five actinomycetes strains were isolated and identified from the Mariana Trench via the culture-dependent method and 16S rRNA sequencing approach. The antimicrobial activity of Microbacterium sp. B1075 was found to be the most potent, and therefore, it was selected as the target strain. Molecular networking analysis via the Global Natural Products Social Molecular Networking (GNPS) platform identified 25 flavonoid compounds as flavonoid secondary metabolites. Among these, genistein was purified and identified as a bioactive compound with significant antibacterial activity. The complete synthesis pathway for genistein was proposed within strain B1075 based on whole-genome sequencing data, with the key gene being CHS (encoding chalcone synthase). The expression of the gene CHS was significantly regulated by high hydrostatic pressure, with a consequent impact on the production of flavonoid compounds in strain B1075, revealing the relationship between actinomycetes' synthesis of flavonoid-like secondary metabolites and their adaptation to high-pressure environments at the molecular level. These results not only expand our understanding of deep-sea microorganisms but also hold promise for providing valuable insights into the development of novel pharmaceuticals in the field of biopharmaceuticals.


Subject(s)
Anti-Bacterial Agents , Genistein , Genistein/pharmacology , Genistein/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Microbacterium , RNA, Ribosomal, 16S/genetics , Actinobacteria/metabolism , Actinobacteria/genetics , Secondary Metabolism , Phylogeny , Acyltransferases
18.
Mar Environ Res ; 199: 106610, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879901

ABSTRACT

Deep-sea mussels, one of the dominant species in most deep-sea ecosystems, have long been used as model organisms to investigate the adaptations and symbiotic relationships of deep-sea macrofauna under laboratory conditions due to their ability to survive under atmospheric pressure. However, the impact of additional abiotic conditions beyond pressure, such as temperature and light, on their physiological characteristics remains unknown. In this study, deep-sea mussels (Gigantidas platifrons) from cold seep of the South China Sea, along with nearshore mussels (Mytilus coruscus) from the East China Sea, were reared in unfavorable abiotic conditions for up to 8 days. Integrated biochemical indexes including antioxidant defense, immune ability and energy metabolism were investigated in the gill and digestive gland, while cytotoxicity was determined in hemocytes of both types of mussels. The results revealed mild bio-responses in two types of mussels in the laboratory, represented by the effective antioxidant defense with constant total antioxidant capability level and malondialdehyde content. There were also disparate adaptations in deep-sea and nearshore mussels. In deep-sea mussels, significantly increased immune response and energy reservation were observed in gills, together with the elevated cytotoxicity in hemocytes, implying the more severe biological adaptation was required, mainly due to the symbiotic bacteria loss under laboratory conditions. On the contrary, insignificant biological responses were exhibited in nearshore mussels except for the increased energy consumption, indicating the trade-off strategy to use more energy to deal with potential stress. Overall, this comparative study highlights the basal bio-responses of deep-sea and nearshore mussels out of their native environments, providing evidence that short-term culture of both mussels under easily achievable laboratory conditions would not dramatically alter their biological status. This finding will assist in broadening the application of deep-sea mussels as model organism in future research regardless of the specialized research equipment.


Subject(s)
Bivalvia , Animals , Bivalvia/physiology , Adaptation, Physiological , Gills/metabolism , Antioxidants/metabolism , Energy Metabolism , China , Ecosystem , Mytilus/physiology
19.
Environ Sci Pollut Res Int ; 31(30): 43405-43416, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38886271

ABSTRACT

This study provides new insights onto spatial and temporal trends of seafloor macro-litter in the abyssal seafloor of Sardinian channel, in central western Mediterranean (Italy). Trawl surveys were conducted at depths between 884 and 1528 m, thus focusing on one of the least investigated marine environments. None of the considered sites was litter free, with plastics being numerically dominant (57% of items), followed by metal (11%) and glass (16%). Recorded densities and weight ranged between 49.9 and 499 items km-2 and 1.4 and 1052 kg km-2. In the most contaminated sites, the weight of the litter collected in nets represented up to nine times the biomass of benthic megafauna, and, overall, in 60% of hauls macro-litter mass outweighed the biomass collected. Moreover, we report that megafauna was observed to be more abundant in sites where macro-litter presence was more severe. More studies are needed to elucidate the nature of this correlation, with biota being more abundant in hotspots of accumulation of seafloor macro-litter.


Subject(s)
Biomass , Environmental Monitoring , Italy , Animals , Plastics , Mediterranean Sea , Metals/analysis , Glass , Fisheries
20.
Sci Total Environ ; 945: 173914, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885715

ABSTRACT

As anthropogenic disturbance on deep-sea seamount ecosystems grows, there is an urgent need for a better understanding of the biodiversity and community structure in benthic ecosystems, which can vary at local and regional scales. A survey of the benthic megafauna on two adjacent deep-water seamounts in the northwestern Pacific Ocean was conducted, which are covered by cobalt-rich crusts, to assess the biodiversity patterns and dissimilarity of assemblage composition. Based on a multidisciplinary dataset generated from video recordings, multibeam bathymetry data, and near-bottom currents, environmental and spatial factors impacting the megabenthic communities were explored. Results showed that these two deep-water seamounts were dominated by hexactinellids, crinoids, and octocorals. The seamounts were able to support diverse and moderately abundant megafauna, with a total of 6436 individuals classified into 94 morphospecies. The survey covered a distance of 52.2 km across a depth range of 1421-3335 m, revealing multiple distinct megabenthic assemblages. The megabenthic communities of the two deep-water seamounts, with comparable environmental conditions, exhibited similarities in overall density, richness, and faunal lists, while dissimilarities in the relative abundance of taxa and assemblage composition. No gradual depth-related change in terms of abundance, richness, or species turnover was observed across the two seamounts, despite the statistical significance of depth in structuring the overall communities. The spatial distribution of megabenthic communities displayed a discontinuous and patchy pattern throughout the two deep-water seamounts. This patchiness was driven by the interactive effects of multiple environmental factors. Near-bottom currents and microhabitat features were the primary drivers influencing their dissimilarities in megabenthic community structure. This case study on the megabenthic community structure of two adjacent seamounts with cobalt-rich crusts can serve as an environmental baseline, providing a reference status for the conservation and management of seamount ecosystems, particularly valuable for areas being considered for deep-sea mining.


Subject(s)
Biodiversity , Cobalt , Environmental Monitoring , Pacific Ocean , Cobalt/analysis , Animals , Ecosystem , Aquatic Organisms , Invertebrates
SELECTION OF CITATIONS
SEARCH DETAIL
...