Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Comput Biol Med ; 182: 109185, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39341114

ABSTRACT

OBJECTIVE: Develop a time-dependent deep learning model to accurately predict the prognosis of pediatric glioma patients, which can assist clinicians in making precise treatment decisions and reducing patient risk. STUDY DESIGN: The study involved pediatric glioma patients from the Surveillance, Epidemiology, and End Results (SEER) Registry (2000-2018) and Tangdu Hospital in China (2010-2018) within specific time frames. For training, we selected two neural network-based algorithms (DeepSurv, neural multi-task logistic regression [N-MTLR]) and one ensemble learning-based algorithm (random survival forest [RSF]). Additionally, a multivariable Cox proportional hazard (CoxPH) model was developed for comparison purposes. The SEER dataset was randomly divided into 80 % for training and 20 % for testing, while the Tangdu Hospital dataset served as an external validation cohort. Super-parameters were fine-tuned through 1000 repeated random searches and 5-fold cross-validation on the training cohort. Model performance was assessed using the concordance index (C-index), Brier score, and Integrated Brier Score (IBS). Furthermore, the accuracy of predicting survival at 1, 3, and 5 years was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and the area under the ROC curves (AUC). The generalization ability of the model was assessed using the C-index of the Tangdu Hospital data, ROC curves for 1, 3, and 5 years, and AUC values. Lastly, decision curve analysis (DCA) curves for 1, 3, and 5-year time frames are provided to assess the net benefits across different models. RESULTS: A total of 9532 patients with pediatric glioma were included in this study, comprising 9274 patients from the SEER database and 258 patients from Tangdu Hospital in China. The average age at diagnosis was 9.4 ± 6.2 years, and the average survival time was 96 ± 66 months. Through comprehensive performance comparison, the DeepSurv model demonstrated the highest effectiveness, with a C-index of 0.881 on the training cohort. Furthermore, it exhibited excellent accuracy in predicting the 1-year, 3-year, and 5-year survival rates (AUC: 0.903-0.939). Notably, the DeepSurv model also achieved remarkable performance and accuracy on the Chinese dataset (C-index: 0.782, AUC: 0.761-0.852). Comprehensive analysis of DeepSurv, N-MTLR, and RSF revealed that tumor stage, radiotherapy, histological type, tumor size, chemotherapy, age, and surgical method are all significant factors influencing the prognosis of pediatric glioma. Finally, an online version of the pediatric glioma survival predictor based on the DeepSurv model has been established and can be accessed through https://pediatricglioma-tangdu.streamlit.app. CONCLUSIONS: The DeepSurv model exhibits exceptional efficacy in predicting the survival of pediatric glioma patients, demonstrating strong performance in discrimination, calibration, stability, and generalization. By utilizing the online version of the pediatric glioma survival predictor, which is based on the DeepSurv model, clinicians can accurately predict patient survival and offer personalized treatment options.

2.
J Transl Med ; 22(1): 743, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107765

ABSTRACT

BACKGROUND: Severe heart failure (HF) has a higher mortality during vulnerable period while targeted predictive tools, especially based on drug exposures, to accurately assess its prognoses remain largely unexplored. Therefore, this study aimed to utilize drug information as the main predictor to develop and validate survival models for severe HF patients during this period. METHODS: We extracted severe HF patients from the MIMIC-IV database (as training and internal validation cohorts) as well as from the MIMIC-III database and local hospital (as external validation cohorts). Three algorithms, including Cox proportional hazards model (CoxPH), random survival forest (RSF), and deep learning survival prediction (DeepSurv), were applied to incorporate the parameters (partial hospitalization information and exposure durations of drugs) for constructing survival prediction models. The model performance was assessed mainly using area under the receiver operator characteristic curve (AUC), brier score (BS), and decision curve analysis (DCA). The model interpretability was determined by the permutation importance and Shapley additive explanations values. RESULTS: A total of 11,590 patients were included in this study. Among the 3 models, the CoxPH model ultimately included 10 variables, while RSF and DeepSurv models incorporated 24 variables, respectively. All of the 3 models achieved respectable performance metrics while the DeepSurv model exhibited the highest AUC values and relatively lower BS among these models. The DCA also verified that the DeepSurv model had the best clinical practicality. CONCLUSIONS: The survival prediction tools established in this study can be applied to severe HF patients during vulnerable period by mainly inputting drug treatment duration, thus contributing to optimal clinical decisions prospectively.


Subject(s)
Heart Failure , Proportional Hazards Models , Humans , Heart Failure/mortality , Heart Failure/drug therapy , Female , Male , Aged , Reproducibility of Results , Prognosis , Survival Analysis , Middle Aged , ROC Curve , Algorithms , Area Under Curve , Databases, Factual , Deep Learning , Severity of Illness Index
3.
Sci Rep ; 14(1): 14490, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914641

ABSTRACT

Medulloblastoma is a malignant neuroepithelial tumor of the central nervous system. Accurate prediction of prognosis is essential for therapeutic decisions in medulloblastoma patients. We analyzed data from 2,322 medulloblastoma patients using the SEER database and randomly divided the dataset into training and testing datasets in a 7:3 ratio. We chose three models to build, one based on neural networks (DeepSurv), one based on ensemble learning that Random Survival Forest (RSF), and a typical Cox Proportional-hazards (CoxPH) model. The DeepSurv model outperformed the RSF and classic CoxPH models with C-indexes of 0.751 and 0.763 for the training and test datasets. Additionally, the DeepSurv model showed better accuracy in predicting 1-, 3-, and 5-year survival rates (AUC: 0.767-0.793). Therefore, our prediction model based on deep learning algorithms can more accurately predict the survival rate and survival period of medulloblastoma compared to other models.


Subject(s)
Deep Learning , Medulloblastoma , SEER Program , Medulloblastoma/mortality , Humans , Female , Male , Child , Prognosis , Cerebellar Neoplasms/mortality , Adolescent , Child, Preschool , Proportional Hazards Models , Survival Rate , Adult , Young Adult , Middle Aged , Neural Networks, Computer , Infant
4.
Front Oncol ; 14: 1329983, 2024.
Article in English | MEDLINE | ID: mdl-38628668

ABSTRACT

Background: Prognostic prediction for surgical treatment of gastric cancer remains valuable in clinical practice. This study aimed to develop survival models for postoperative gastric cancer patients. Methods: Eleven thousand seventy-five patients from the Surveillance, Epidemiology, and End Results (SEER) database were included, and 122 patients from the Chinese database were used for external validation. The training cohort was created to create three separate models, including Cox regression, RSF, and DeepSurv, using data from the SEER database split into training and test cohorts with a 7:3 ratio. Test cohort was used to evaluate model performance using c-index, Brier scores, calibration, and the area under the curve (AUC). The new risk stratification based on the best model will be compared with the AJCC stage on the test and Chinese cohorts using decision curve analysis (DCA), the net reclassification index (NRI), and integrated discrimination improvement (IDI). Results: It was discovered that the DeepSurv model predicted postoperative gastric cancer patients' overall survival (OS) with a c-index of 0.787; the area under the curve reached 0.781, 0.798, 0.868 at 1-, 3- and 5- years, respectively; the Brier score was below 0.25 at different time points; showing an advantage over the Cox and RSF models. The results are also validated in the China cohort. The calibration plots demonstrated good agreement between the DeepSurv model's forecast and actual results. The NRI values (test cohort: 0.399, 0.288, 0.267 for 1-, 3- and 5-year OS prediction; China cohort:0.399, 0.288 for 1- and 3-year OS prediction) and IDI (test cohort: 0.188, 0.169, 0.157 for 1-, 3- and 5-year OS prediction; China cohort: 0.189, 0.169 for 1- and 3-year OS prediction) indicated that the risk score stratification performed significantly better than the AJCC staging alone (P < 0.05). DCA showed that the risk score stratification was clinically useful and had better discriminative ability than the AJCC staging. Finally, an interactive native web-based prediction tool was constructed for the survival prediction of patients with postoperative gastric cancer. Conclusion: In this study, a high-performance prediction model for the postoperative prognosis of gastric cancer was developed using DeepSurv, which offers essential benefits for risk stratification and prognosis prediction for each patient.

5.
Clin. transl. oncol. (Print) ; 26(3): 709-719, mar. 2024.
Article in English | IBECS | ID: ibc-230800

ABSTRACT

Purpose Primary bone and joint sarcomas of the long bone are relatively rare neoplasms with poor prognosis. An efficient clinical tool that can accurately predict patient prognosis is not available. The current study aimed to use deep learning algorithms to develop a prediction model for the prognosis of patients with long bone sarcoma. Methods Data of patients with long bone sarcoma in the extremities was collected from the Surveillance, Epidemiology, and End Results Program database from 2004 to 2014. Univariate and multivariate analyses were performed to select possible prediction features. DeepSurv, a deep learning model, was constructed for predicting cancer-specific survival rates. In addition, the classical cox proportional hazards model was established for comparison. The predictive accuracy of our models was assessed using the C-index, Integrated Brier Score, receiver operating characteristic curve, and calibration curve. Results Age, tumor extension, histological grade, tumor size, surgery, and distant metastasis were associated with cancer-specific survival in patients with long bone sarcoma. According to loss function values, our models converged successfully and effectively learned the survival data of the training cohort. Based on the C-index, area under the curve, calibration curve, and Integrated Brier Score, the deep learning model was more accurate and flexible in predicting survival rates than the cox proportional hazards model. Conclusion A deep learning model for predicting the survival probability of patients with long bone sarcoma was constructed and validated. It is more accurate and flexible in predicting prognosis than the classical CoxPH model (AU)


Subject(s)
Humans , Neoplasms, Bone Tissue/secondary , Deep Learning , Nomograms , Osteosarcoma/pathology , Osteosarcoma/therapy , Sarcoma/pathology , Extremities , Prognosis
6.
Sci Rep ; 14(1): 6609, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38504089

ABSTRACT

Accurately predicting the prognosis of Gastrointestinal stromal tumor (GIST) patients is an important task. The goal of this study was to create and assess models for GIST patients' survival patients using the Surveillance, Epidemiology, and End Results Program (SEER) database based on the three different deep learning models. Four thousand five hundred thirty-eight patients were enrolled in this study and divided into training and test cohorts with a 7:3 ratio; the training cohort was used to develop three different models, including Cox regression, RSF, and DeepSurv model. Test cohort was used to evaluate model performance using c-index, Brier scores, calibration, and the area under the curve (AUC). The net benefits at risk score stratification of GIST patients based on the optimal model was compared with the traditional AJCC staging system using decision curve analysis (DCA). The clinical usefulness of risk score stratification compared to AJCC tumor staging was further assessed using the Net Reclassification Index (NRI) and Integrated Discrimination Improvement (IDI). The DeepSurv model predicted cancer-specific survival (CSS) in GIST patients showed a higher c-index (0.825), lower Brier scores (0.142), and greater AUC of receiver operating characteristic (ROC) analysis (1-year ROC:0.898; 3-year:0.853, and 5-year ROC: 0.856). The calibration plots demonstrated good agreement between the DeepSurv model's forecast and actual results. The NRI values ( training cohort: 0.425 for 1-year, 0.329 for 3-year and 0.264 for 5-year CSS prediction; test cohort:0.552 for 1-year,0.309 for 3-year and 0.255 for 5-year CSS prediction) and IDI (training cohort: 0.130 for 1-year,0.141 for 5-year and 0.155 for 10-year CSS prediction; test cohort: 0.154 for 1-year,0.159 for 3-year and 0.159 for 5-year CSS prediction) indicated that the risk score stratification performed significantly better than the AJCC staging alone (P < 0.001). DCA demonstrated the risk score stratification as more clinically beneficial and discriminatory than AJCC staging. Finally, an interactive native web-based prediction tool was constructed for the survival prediction of GIST patients. This study established a high-performance prediction model for projecting GIST patients based on deep learning, which has advantages in predicting each person's prognosis and risk stratification.


Subject(s)
Deep Learning , Gastrointestinal Stromal Tumors , Humans , Prognosis , Area Under Curve , Calibration , Nomograms , SEER Program
7.
Clin Transl Oncol ; 26(3): 709-719, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37552409

ABSTRACT

PURPOSE: Primary bone and joint sarcomas of the long bone are relatively rare neoplasms with poor prognosis. An efficient clinical tool that can accurately predict patient prognosis is not available. The current study aimed to use deep learning algorithms to develop a prediction model for the prognosis of patients with long bone sarcoma. METHODS: Data of patients with long bone sarcoma in the extremities was collected from the Surveillance, Epidemiology, and End Results Program database from 2004 to 2014. Univariate and multivariate analyses were performed to select possible prediction features. DeepSurv, a deep learning model, was constructed for predicting cancer-specific survival rates. In addition, the classical cox proportional hazards model was established for comparison. The predictive accuracy of our models was assessed using the C-index, Integrated Brier Score, receiver operating characteristic curve, and calibration curve. RESULTS: Age, tumor extension, histological grade, tumor size, surgery, and distant metastasis were associated with cancer-specific survival in patients with long bone sarcoma. According to loss function values, our models converged successfully and effectively learned the survival data of the training cohort. Based on the C-index, area under the curve, calibration curve, and Integrated Brier Score, the deep learning model was more accurate and flexible in predicting survival rates than the cox proportional hazards model. CONCLUSION: A deep learning model for predicting the survival probability of patients with long bone sarcoma was constructed and validated. It is more accurate and flexible in predicting prognosis than the classical CoxPH model.


Subject(s)
Bone Neoplasms , Deep Learning , Osteosarcoma , Sarcoma , Humans , Sarcoma/pathology , Bone Neoplasms/secondary , Prognosis , Osteosarcoma/therapy , Osteosarcoma/pathology , Extremities/pathology , Nomograms
8.
Journal of Preventive Medicine ; (12): 496-500,505, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1038981

ABSTRACT

Abstract@#Survival analysis has been widely used in the field of medical research. The Cox proportional hazard model is commonly used, but its practical application is limited. Machine learning method can compensate for the shortcomings of the Cox proportional hazard model in terms of nonlinear data processing and prediction accuracy. This article reviewed the advance of machine learning methods represented by neural networks, within the field of survival analysis, and highlighted the principles and benefits of three machine learning methods that DeepSurv, Deep-Hit and random survival forest, providing methodological insights for the analysis of complex survival data.

9.
Discov Oncol ; 14(1): 218, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38030951

ABSTRACT

BACKGROUND: For the purpose to examine lower limb melanoma (LLM) and its long-term survival rate, we used data from the Surveillance, Epidemiology and End Results (SEER) database. To estimate the prognosis of LLM patients and assess its efficacy, we used a powerful deep learning and neural network approach called DeepSurv. METHODS: We gathered data on those who had an LLM diagnosis between 2000 and 2019 from the SEER database. We divided the people into training and testing cohorts at a 7:3 ratio using a random selection technique. To assess the likelihood that LLM patients would survive, we compared the results of the DeepSurv model with those of the Cox proportional-hazards (CoxPH) model. Calibration curves, the time-dependent area under the receiver operating characteristic curve (AUC), and the concordance index (C-index) were all used to assess how accurate the predictions were. RESULTS: In this study, a total of 26,243 LLM patients were enrolled, with 7873 serving as the testing cohort and 18,370 as the training cohort. Significant correlations with age, gender, AJCC stage, chemotherapy status, surgery status, regional lymph node removal and the survival outcomes of LLM patients were found by the CoxPH model. The CoxPH model's C-index was 0.766, which signifies a good degree of predicted accuracy. Additionally, we created the DeepSurv model using the training cohort data, which had a higher C-index of 0.852. In addition to calculating the 3-, 5-, and 8-year AUC values, the predictive performance of both models was evaluated. The equivalent AUC values for the CoxPH model were 0.795, 0.767, and 0.847, respectively. The DeepSurv model, in comparison, had better AUC values of 0.872, 0.858, and 0.847. In comparison to the CoxPH model, the DeepSurv model demonstrated greater prediction performance for LLM patients, as shown by the AUC values and the calibration curve. CONCLUSION: We created the DeepSurv model using LLM patient data from the SEER database, which performed better than the CoxPH model in predicting the survival time of LLM patients.

10.
Brain Sci ; 13(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37891850

ABSTRACT

BACKGROUND: The prognosis of diffuse midline glioma (DMG) patients with H3K27M (H3K27M-DMG) alterations is poor; however, a model that encourages accurate prediction of prognosis for such lesions on an individual basis remains elusive. We aimed to construct an H3K27M-DMG survival model based on DeepSurv to predict patient prognosis. METHODS: Patients recruited from a single center were used for model training, and patients recruited from another center were used for external validation. Univariate and multivariate Cox regression analyses were used to select features. Four machine learning models were constructed, and the consistency index (C-index) and integrated Brier score (IBS) were calculated. We used the receiver operating characteristic curve (ROC) and area under the receiver operating characteristic (AUC) curve to assess the accuracy of predicting 6-month, 12-month, 18-month and 24-month survival rates. A heatmap of feature importance was used to explain the results of the four models. RESULTS: We recruited 113 patients in the training set and 23 patients in the test set. We included tumor size, tumor location, Karnofsky Performance Scale (KPS) score, enhancement, radiotherapy, and chemotherapy for model training. The accuracy of DeepSurv prediction is highest among the four models, with C-indexes of 0.862 and 0.811 in the training and external test sets, respectively. The DeepSurv model had the highest AUC values at 6 months, 12 months, 18 months and 24 months, which were 0.970 (0.919-1), 0.950 (0.877-1), 0.939 (0.845-1), and 0.875 (0.690-1), respectively. We designed an interactive interface to more intuitively display the survival probability prediction results provided by the DeepSurv model. CONCLUSION: The DeepSurv model outperforms traditional machine learning models in terms of prediction accuracy and robustness, and it can also provide personalized treatment recommendations for patients. The DeepSurv model may provide decision-making assistance for patients in formulating treatment plans in the future.

11.
J Orthop Surg Res ; 18(1): 652, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660044

ABSTRACT

OBJECTIVE: The goal of this study was to evaluate the efficacy of machine learning (ML) techniques in predicting survival for chordoma patients in comparison with the standard Cox proportional hazards (CoxPH) model. METHODS: Using a Surveillance, Epidemiology, and End Results database of consecutive newly diagnosed chordoma cases between January 2000 and December 2018, we created and validated three ML survival models as well as a traditional CoxPH model in this population-based cohort study. Randomly, the dataset was divided into training and validation datasets. Tuning hyperparameters on the training dataset involved a 1000-iteration random search with fivefold cross-validation. Concordance index (C-index), Brier score, and integrated Brier score were used to evaluate the performance of the model. The receiver operating characteristic (ROC) curves, calibration curves, and area under the ROC curves (AUC) were used to assess the reliability of the models by predicting 5- and 10-year survival probabilities. RESULTS: A total of 724 chordoma patients were divided into training (n = 508) and validation (n = 216) cohorts. Cox regression identified nine significant prognostic factors (p < 0.05). ML models showed superior performance over CoxPH model, with DeepSurv having the highest C-index (0.795) and the best discrimination for 5- and 10-year survival (AUC 0.84 and 0.88). Calibration curves revealed strong correlation between DeepSurv predictions and actual survival. Risk stratification by DeepSurv model effectively discriminated high- and low-risk groups (p < 0.01). The optimized DeepSurv model was implemented into a web application for clinical use that can be found at https://hust-chengp-ml-chordoma-app-19rjyr.streamlitapp.com/ . CONCLUSION: ML algorithms based on time-to-event results are effective in chordoma prediction, with DeepSurv having the best discrimination performance and calibration.


Subject(s)
Chordoma , Mobile Applications , Humans , Chordoma/diagnosis , Cohort Studies , Reproducibility of Results , Machine Learning
12.
Cancer Med ; 12(18): 19272-19278, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37644818

ABSTRACT

BACKGROUND: The curative treatment for Stage I non-small cell lung cancer (NSCLC) is surgical resection. Even for Stage I patients, the probability of recurrence after curative treatment is around 20%. METHODS: In this retrospective study, we included 268 operated Stage I NSCLC patients between January 2008 and June 2018 to analyze the prognostic factors (pathological stage, histological type, number of sampled mediastinal lymph node stations, type of resection, SUVmax of the lesion) that may affect relapse with three different methods, Cox proportional hazard (CoxPH), random survival forest (RSF), DeepSurv, and to compare the performance of these methods with Harrell's C-index. The dataset was randomly split into two sets, training and test sets. RESULTS: In the training set, DeepSurv showed the best performance among the three models, the C-index of the training set was 0.832, followed by RSF (0.675) and CoxPH (0.672). In the test set, RSF showed the best performance among the three models, followed by DeepSurv with 0.677 and CoxPH methods with 0.625. CONCLUSION: In conclusion, machine-learning techniques can be useful in predicting recurrence for lung cancer and guide clinicians both in choosing the adjuvant treatment options and best follow-up programs.

13.
World Neurosurg ; 178: e835-e845, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586553

ABSTRACT

OBJECTIVE: Spinal chordomas are locally aggressive and frequently recurrent tumors with a poor prognosis. Previous studies focused on a Cox regression model to predict the survival of patients with spinal chordoma. We aimed to develop a more effective model based on deep learning for prognosis prediction in spinal chordoma. METHODS: Patients with spinal chordoma were gathered from the SEER database. Cox regression analysis was conducted to compare the influence of different clinical characteristics on cancer-specific survival. Two deep learning models, namely, DeepSurv and NMTLR, were developed, alongside 2 classic models, for the purpose of comparison. Performance of these models was evaluated by concordance index, Integrated Brier Score, receiver operating characteristic curves, Kaplan-Meier curves, and calibration curves. RESULTS: A total of 258 spinal chordoma patients were included in the current study. The median follow-up time was 94 ± 52 months. Variables used for prognosis prediction consisted of age, primary site, tumor size, histologic grade, extension of surgery, tumor invasion, and metastasis. Comparing with conventional models, each deep learning model showed superior predictive performance, the C-index on the test cohort is 0.830 for DeepSurv and 0.804 for NMTLR, respectively. The DeepSurv model represented the best performance, with area under the curve of 0.843 in predicting 5-year survival and 0.880 in predicting 10-year survival. CONCLUSIONS: We successfully constructed a deep learning model to predict the CSS of spinal chordoma patients and proved that it was more accurate and practical than conventional prediction model. Our deep learning model has the potential to guide clinicians in better care planning and decision-making.


Subject(s)
Chordoma , Deep Learning , Spinal Neoplasms , Humans , Chordoma/pathology , SEER Program , Neoplasm Recurrence, Local , Spinal Neoplasms/pathology
14.
Patterns (N Y) ; 4(8): 100777, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37602223

ABSTRACT

Survival models exist to study relationships between biomarkers and treatment effects. Deep learning-powered survival models supersede the classical Cox proportional hazards (CoxPH) model, but substantial performance drops were observed on high-dimensional features because of irrelevant/redundant information. To fill this gap, we proposed SwarmDeepSurv by integrating swarm intelligence algorithms with the deep survival model. Furthermore, four objective functions were designed to optimize prognostic prediction while regularizing selected feature numbers. When testing on multicenter sets (n = 1,058) of four different cancer types, SwarmDeepSurv was less prone to overfitting and achieved optimal patient risk stratification compared with popular survival modeling algorithms. Strikingly, SwarmDeepSurv selected different features compared with classical feature selection algorithms, including the least absolute shrinkage and selection operator (LASSO), with nearly no feature overlapping across these models. Taken together, SwarmDeepSurv offers an alternative approach to model relationships between radiomics features and survival endpoints, which can further extend to study other input data types including genomics.

15.
J Cancer Res Clin Oncol ; 149(13): 12177-12189, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37428248

ABSTRACT

PURPOSE: Due to the rarity of primary gastrointestinal lymphoma (PGIL), the prognostic factors and optimal management of PGIL have not been clearly defined. We aimed to establish prognostic models using a deep learning algorithm for survival prediction. METHODS: We collected 11,168 PGIL patients from the Surveillance, Epidemiology, and End Results (SEER) database to form the training and test cohorts. At the same time, we collected 82 PGIL patients from three medical centres to form the external validation cohort. We constructed a Cox proportional hazards (CoxPH) model, random survival forest (RSF) model, and neural multitask logistic regression (DeepSurv) model to predict PGIL patients' overall survival (OS). RESULTS: The 1-, 3-, 5-, and 10-year OS rates of PGIL patients in the SEER database were 77.1%, 69.4%, 63.7%, and 50.3%, respectively. The RSF model based on all variables showed that the top three most important variables for predicting OS were age, histological type, and chemotherapy. The independent risk factors for PGIL patient prognosis included sex, age, race, primary site, Ann Arbor stage, histological type, symptom, radiotherapy, and chemotherapy, according to the Lasso regression analysis. Using these factors, we built the CoxPH and DeepSurv models. The DeepSurv model's C-index values were 0.760 in the training cohort, 0.742 in the test cohort, and 0.707 in the external validation cohort, which demonstrated that the DeepSurv model performed better compared to the RSF model (0.728) and the CoxPH model (0.724). The DeepSurv model accurately predicted 1-, 3-, 5- and 10-year OS. Both calibration curves and decision curve analysis curves demonstrated the superior performance of the DeepSurv model. We developed the DeepSurv model as an online web calculator for survival prediction, which can be accessed at http://124.222.228.112:8501/ . CONCLUSIONS: This DeepSurv model with external validation is superior to previous studies in predicting short-term and long-term survival and can help us make better-individualized decisions for PGIL patients.


Subject(s)
Deep Learning , Gastrointestinal Neoplasms , Lymphoma , Survival Analysis , Humans , Gastrointestinal Neoplasms/mortality , Lymphoma/mortality , SEER Program , Prognosis , Proportional Hazards Models , Random Forest , Logistic Models , Male , Female , Middle Aged , Aged
16.
BMC Cancer ; 23(1): 496, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264319

ABSTRACT

BACKGROUND: Numerous studies have demonstrated that the high-order features (HOFs) of blood test data can be used to predict the prognosis of patients with different types of cancer. Although the majority of blood HOFs can be divided into inflammatory or nutritional markers, there are still numerous that have not been classified correctly, with the same feature being named differently. It is an urgent need to reclassify the blood HOFs and comprehensively assess their potential for cancer prognosis. METHODS: Initially, a review of existing literature was conducted to identify the high-order features (HOFs) and classify them based on their calculation method. Subsequently, a cohort of patients diagnosed with non-small cell lung cancer (NSCLC) was established, and their clinical information prior to treatment was collected, including low-order features (LOFs) obtained from routine blood tests. The HOFs were then computed and their associations with clinical features were examined. Using the LOF and HOF data sets, a deep learning algorithm called DeepSurv was utilized to predict the prognostic risk values. The effectiveness of each data set's prediction was evaluated using the decision curve analysis (DCA). Finally, a prognostic model in the form of a nomogram was developed, and its accuracy was assessed using the calibration curve. RESULTS: From 1210 documents, over 160 blood HOFs were obtained, arranged into 110, and divided into three distinct categories: 76 proportional features, 6 composition features, and 28 scoring features. Correlation analysis did not reveal a strong association between blood features and clinical features; however, the risk value predicted by the DeepSurv LOF- and HOF-models is significantly linked to the stage. Results from DCA showed that the HOF model was superior to the LOF model in terms of prediction, and that the risk value predicted by the blood data model could be employed as a complementary factor to enhance the prognosis of patients. A nomograph was created with a C-index value of 0.74, which is capable of providing a reasonably accurate prediction of 1-year and 3-year overall survival for patients. CONCLUSIONS: This research initially explored the categorization and nomenclature of blood HOF, and proved its potential in lung cancer prognosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Prognosis , Nomograms , Hematologic Tests
17.
Cancer Med ; 12(11): 12413-12424, 2023 06.
Article in English | MEDLINE | ID: mdl-37165971

ABSTRACT

BACKGROUND: The study aims to evaluate the performance of three advanced machine learning algorithms and a traditional Cox proportional hazard (CoxPH) model in predicting the overall survival (OS) of patients with pancreatic neuroendocrine neoplasms (PNENs). METHOD: The clinicopathological dataset obtained from the Surveillance, Epidemiology, and End Results database was randomly assigned to the training set and testing set at a ratio of 7:3. The concordance index (C-index) and integrated Brier score (IBS) were used to compare the predictive performance of the models. The accuracy of the model in predicting the 5-year and 10-year survival rates was compared using the receiver operating characteristic curve, decision curve analysis (DCA) and calibration curve. RESULTS: This study included 3239 patients with PNENs in total. The DeepSurv model had the highest C-index of 0.7882 in the testing set and training set and the lowest IBS of 0.1278 in the testing set compared with the CoxPH, neural multitask logistic and random survival forest models (C-index = 0.7501, 0.7616, and 0.7612, respectively; IBS = 0.1397, 0.1418, and 0.1432, respectively). Moreover, the DeepSurv model had the highest accuracy in predicting 5- and 10-year OS rates (area under the curve: 0.87 and 0.90). DCA showed that the DeepSurv model had high potential for clinical decisions in 5- and 10-year OS models. Finally, we developed an online application based on the DeepSurv model for clinical use (https://whuh-ml-neuroendocrinetumor-app-predict-oyw5km.streamlit.app/). CONCLUSIONS: All four models analyzed above can predict the prognosis of PNENs well, among which the DeepSurv model has the best prediction performance.


Subject(s)
Deep Learning , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Algorithms , Calibration , Neuroendocrine Tumors/epidemiology , Pancreatic Neoplasms/epidemiology
18.
Front Med (Lausanne) ; 10: 1165865, 2023.
Article in English | MEDLINE | ID: mdl-37051218

ABSTRACT

Background: This study obtained data on patients with cutaneous malignant melanoma (CMM) from the Surveillance, Epidemiology, and End Results (SEER) database, and used a deep learning and neural network (DeepSurv) model to predict the survival rate of patients with CMM and evaluate its effectiveness. Methods: We collected information on patients with CMM between 2004 and 2015 from the SEER database. We then randomly divided the patients into training and testing cohorts at a 7:3 ratio. The likelihood that patients with CMM will survive was forecasted using the DeepSurv model, and its results were compared with those of the Cox proportional-hazards (CoxPH) model. The calibration curves, time-dependent area under the receiver operating characteristic curve (AUC), and concordance index (C-index) were used to assess the prediction abilities of the model. Results: This study comprised 37,758 patients with CMM: 26,430 in the training cohort and 11,329 in the testing cohort. The CoxPH model demonstrated that the survival of patients with CMM was significantly influenced by age, sex, marital status, summary stage, surgery, radiotherapy, chemotherapy, postoperative lymph node dissection, tumor size, and tumor extension. The C-index of the CoxPH model was 0.875. We also constructed the DeepSurv model using the data from the training cohort, and its C-index was 0.910. We examined how well the aforementioned two models predicted outcomes. The 1-, 3-, and 5-year AUCs were 0.928, 0.837, and 0.855, respectively, for the CoxPH model, and 0.971, 0.947, and 0.942 for the DeepSurv model. The DeepSurv model presented a greater predictive effect on patients with CMM, and its reliability was better than that of the CoxPH model according to both the AUC value and the calibration curve. Conclusion: The DeepSurv model, which we developed based on the data of patients with CMM in the SEER database, was found to be more effective than the CoxPH model in predicting the survival time of patients with CMM.

19.
Front Oncol ; 13: 1106029, 2023.
Article in English | MEDLINE | ID: mdl-37007095

ABSTRACT

Background: Distal cholangiocarcinoma (dCCA), originating from the common bile duct, is greatly associated with a dismal prognosis. A series of different studies based on cancer classification have been developed, aimed to optimize therapy and predict and improve prognosis. In this study, we explored and compared several novel machine learning models that might lead to an improvement in prediction accuracy and treatment options for patients with dCCA. Methods: In this study, 169 patients with dCCA were recruited and randomly divided into the training cohort (n = 118) and the validation cohort (n = 51), and their medical records were reviewed, including survival outcomes, laboratory values, treatment strategies, pathological results, and demographic information. Variables identified as independently associated with the primary outcome by least absolute shrinkage and selection operator (LASSO) regression, the random survival forest (RSF) algorithm, and univariate and multivariate Cox regression analyses were introduced to establish the following different machine learning models and canonical regression model: support vector machine (SVM), SurvivalTree, Coxboost, RSF, DeepSurv, and Cox proportional hazards (CoxPH). We measured and compared the performance of models using the receiver operating characteristic (ROC) curve, integrated Brier score (IBS), and concordance index (C-index) following cross-validation. The machine learning model with the best performance was screened out and compared with the TNM Classification using ROC, IBS, and C-index. Finally, patients were stratified based on the model with the best performance to assess whether they benefited from postoperative chemotherapy through the log-rank test. Results: Among medical features, five variables, including tumor differentiation, T-stage, lymph node metastasis (LNM), albumin-to-fibrinogen ratio (AFR), and carbohydrate antigen 19-9 (CA19-9), were used to develop machine learning models. In the training cohort and the validation cohort, C-index achieved 0.763 vs. 0.686 (SVM), 0.749 vs. 0.692 (SurvivalTree), 0.747 vs. 0.690 (Coxboost), 0.745 vs. 0.690 (RSF), 0.746 vs. 0.711 (DeepSurv), and 0.724 vs. 0.701 (CoxPH), respectively. The DeepSurv model (0.823 vs. 0.754) had the highest mean area under the ROC curve (AUC) than other models, including SVM (0.819 vs. 0.736), SurvivalTree (0.814 vs. 0.737), Coxboost (0.816 vs. 0.734), RSF (0.813 vs. 0.730), and CoxPH (0.788 vs. 0.753). The IBS of the DeepSurv model (0.132 vs. 0.147) was lower than that of SurvivalTree (0.135 vs. 0.236), Coxboost (0.141 vs. 0.207), RSF (0.140 vs. 0.225), and CoxPH (0.145 vs. 0.196). Results of the calibration chart and decision curve analysis (DCA) also demonstrated that DeepSurv had a satisfactory predictive performance. In addition, the performance of the DeepSurv model was better than that of the TNM Classification in C-index, mean AUC, and IBS (0.746 vs. 0.598, 0.823 vs. 0.613, and 0.132 vs. 0.186, respectively) in the training cohort. Patients were stratified and divided into high- and low-risk groups based on the DeepSurv model. In the training cohort, patients in the high-risk group would not benefit from postoperative chemotherapy (p = 0.519). In the low-risk group, patients receiving postoperative chemotherapy might have a better prognosis (p = 0.035). Conclusions: In this study, the DeepSurv model was good at predicting prognosis and risk stratification to guide treatment options. AFR level might be a potential prognostic factor for dCCA. For the low-risk group in the DeepSurv model, patients might benefit from postoperative chemotherapy.

20.
Front Oncol ; 13: 1131859, 2023.
Article in English | MEDLINE | ID: mdl-36959782

ABSTRACT

Background: The currently available prediction models, such as the Cox model, were too simplistic to correctly predict the outcome of gastric adenocarcinoma patients. This study aimed to develop and validate survival prediction models for gastric adenocarcinoma patients using the deep learning survival neural network. Methods: A total of 14,177 patients with gastric adenocarcinoma from the Surveillance, Epidemiology, and End Results (SEER) database were included in the study and randomly divided into the training and testing group with a 7:3 ratio. Two algorithms were chosen to build the prediction models, and both algorithms include random survival forest (RSF) and a deep learning based-survival prediction algorithm (DeepSurv). Also, a traditional Cox proportional hazard (CoxPH) model was constructed for comparison. The consistency index (C-index), Brier score, and integrated Brier score (IBS) were used to evaluate the model's predictive performance. The accuracy of predicting survival at 1, 3, 5, and 10 years was also assessed using receiver operating characteristic curves (ROC), calibration curves, and area under the ROC curve (AUC). Results: Gastric adenocarcinoma patients were randomized into a training group (n = 9923) and a testing group (n = 4254). DeepSurv showed the best performance among the three models (c-index: 0.772, IBS: 0.1421), which was superior to that of the traditional CoxPH model (c-index: 0.755, IBS: 0.1506) and the RSF with 3-year survival prediction model (c-index: 0.766, IBS: 0.1502). The DeepSurv model produced superior accuracy and calibrated survival estimates predicting 1-, 3- 5- and 10-year survival (AUC: 0.825-0.871). Conclusions: A deep learning algorithm was developed to predict more accurate prognostic information for gastric cancer patients. The DeepSurv model has advantages over the CoxPH and RSF models and performs well in discriminative performance and calibration.

SELECTION OF CITATIONS
SEARCH DETAIL