Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Antimicrob Agents Chemother ; 68(7): e0042824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38899925

ABSTRACT

Delafloxacin, a fluoroquinolone antibiotic to treat skin infections, exhibits a broad-spectrum antimicrobial activity. The first randomized, open-label phase I clinical trial was conducted to assess the safety and pharmacokinetics (PK) of intravenous delafloxacin in the Chinese population. A population pharmacokinetic (PopPK) model based on the clinical trial was conducted by NONMEM software. Monte Carlo simulation was performed to evaluate the antibacterial effects of delafloxacin at different doses in different Chinese populations. The PK characteristics of delafloxacin were best described by a three-compartment model with mixed linear and nonlinear clearance. Body weight was included as a covariate in the model. We simulated the AUC0-24h in a steady state at five doses in patient groups of various weights. The results indicated that for patients weighing 70 kg and treated with methicillin-resistant Staphylococcus aureus (MRSA) infections, a minimum dose of 300 mg achieved a PTA > 90% at MIC90 of 0.25 µg/mL, suggesting an ideal bactericidal effect. For patients weighing less than 60 kg, a dose of 200 mg achieved a PTA > 90% at MIC90 of 0.25 µg/mL, also suggesting an ideal bactericidal effect. Additionally, this trial demonstrated the high safety of delafloxacin in single-dose and multiple-dose groups of Chinese. Delafloxacin (300 mg, q12h, iv) was recommended for achieving optimal efficacy in Chinese bacterial skin infections patients. To ensure optimal efficacy, an individualized dose of 200 mg (q12h, iv) could be advised for patients weighing less than 60 kg, and 300 mg (q12h, iv) for those weighing more than 60 kg.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Healthy Volunteers , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Monte Carlo Method , Humans , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/pharmacology , Fluoroquinolones/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Adult , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Female , Middle Aged , Administration, Intravenous , Young Adult , Area Under Curve , Body Weight/drug effects
2.
Rev. esp. quimioter ; 37(2): 158-162, abr. 2024. tab, graf
Article in English | IBECS | ID: ibc-231649

ABSTRACT

Objectives. We assessed the in vitro activity of delafloxacin and the synergy between cefotaxime and delafloxacin among cefotaxime non-susceptible invasive isolates of Streptococcus pneumoniae (CNSSP). Material and methods. A total of 30 CNSSP (cefotaxime MIC > 0.5 mg/L) were studied. Serotyping was performed by the Pneumotest-Latex and Quellung reaction. Minimum inhibitory concentrations (MICs) of delafloxacin, levofloxacin, penicillin, cefotaxime, erythromycin and vancomycin were determined by gradient diffusion strips (GDS). Synergistic activity of delafloxacin plus cefotaxime against clinical S. pneumoniae isolates was evaluated by the GDS cross method. Results. Delafloxacin showed a higher pneumococcal activity than its comparator levofloxacin (MIC50, 0.004 versus 0.75 mg/L and MIC90, 0.047 versus >32 mg/L). Resistance to delafloxacin was identified in 7/30 (23.3%) isolates, belonging to serotypes 14 and 9V. Synergy between delafloxacin and cefotaxime was detected in 2 strains (serotypes 19A and 9V). Antagonism was not observed. Addition of delafloxacin increased the activity of cefotaxime in all isolates. Delafloxacin susceptibility was restored in 5/7 (71.4%) strains. Conclusions. CNSSP showed a susceptibility to delafloxacin of 76.7%. Synergistic interactions between delafloxacin and cefotaxime were observed in vitro among CNSSP by GDS cross method. (AU)


Objetivos. Evaluamos la actividad in vitro de delafloxacino y la sinergia entre cefotaxima y delafloxacino entre aislados invasivos de Streptococcus pneumoniae no sensibles a cefotaxima (SPNSC). Material y métodos. Se estudiaron un total de 30 SPNSC (CIM de cefotaxima > 0,5 mg/L). El serotipado se realizó mediante la reacción Pneumotest-Latex y Quellung. Las concentraciones mínimas inhibitorias (CMI) de delafloxacino, levofloxacino, penicilina, cefotaxima, eritromicina y vancomicina se determinaron mediante tiras de difusión en gradiente (GDS). La actividad sinérgica de delafloxacino y cefotaxima frente aislados clínicos de S. pneumoniae se evaluó mediante el método cruzado GDS. Resultados. Delafloxacino mostró una mayor actividad neumocócica que su comparador levofloxacino (CIM50, 0,004 versus 0,75 mg/L y MIC90, 0,047 versus > 32 mg/L). Se identificó resistencia a delafloxacino en 7/30 (23,3%) aislados, pertenecientes a los serotipos 14 y 9V. Se detectó sinergia entre delafloxacino y cefotaxima en 2 cepas (serotipos 19A y 9V). No se observó antagonismo. La adición de delafloxacino aumentó la actividad de cefotaxima en todos los aislados. La sensibilidad a delafloxacino se restableció en 5/7 (71,4%) cepas. Conclusiones. SPNSC mostraron una susceptibilidad a delafloxacino del 76,7%. Se observaron interacciones sinérgicas in vitro entre delafloxacino y cefotaxima entre SPNSC mediante el método cruzado GDS. (AU)


Subject(s)
Humans , Streptococcus pneumoniae , Drug Synergism , Cefotaxime , Levofloxacin , Penicillins , Erythromycin , Vancomycin
3.
Rev Esp Quimioter ; 37(2): 158-162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38226580

ABSTRACT

OBJECTIVE: We assessed the in vitro activity of delafloxacin and the synergy between cefotaxime and delafloxacin among cefotaxime non-susceptible invasive isolates of Streptococcus pneumoniae (CNSSP). METHODS: A total of 30 CNSSP (cefotaxime MIC > 0.5 mg/L) were studied. Serotyping was performed by the Pneumotest-Latex and Quellung reaction. Minimum inhibitory concentrations (MICs) of delafloxacin, levofloxacin, penicillin, cefotaxime, erythromycin and vancomycin were determined by gradient diffusion strips (GDS). Synergistic activity of delafloxacin plus cefotaxime against clinical S. pneumoniae isolates was evaluated by the GDS cross method. RESULTS: Delafloxacin showed a higher pneumococcal activity than its comparator levofloxacin (MIC50, 0.004 versus 0.75 mg/L and MIC90, 0.047 versus >32 mg/L). Resistance to delafloxacin was identified in 7/30 (23.3%) isolates, belonging to serotypes 14 and 9V. Synergy between delafloxacin and cefotaxime was detected in 2 strains (serotypes 19A and 9V). Antagonism was not observed. Addition of delafloxacin increased the activity of cefotaxime in all isolates. Delafloxacin susceptibility was restored in 5/7 (71.4%) strains. CONCLUSIONS: CNSSP showed a susceptibility to delafloxacin of 76.7%. Synergistic interactions between delafloxacin and cefotaxime were observed in vitro among CNSSP by GDS cross method.


Subject(s)
Cefotaxime , Fluoroquinolones , Pneumococcal Infections , Humans , Cefotaxime/pharmacology , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Levofloxacin/pharmacology , Microbial Sensitivity Tests , Serotyping
4.
Anaerobe ; 85: 102816, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145709

ABSTRACT

The aim of this study was to describe the in vitro activity of delafloxacin against 230 anaerobic isolates and compare it with the activity of other antimicrobials used against infections caused by anaerobic microorganisms. Minimal inhibitory concentrations (MICs) were lower for delafloxacin than for all other antibiotics tested with the exception of piperacillin-tazobactam and meropenem against Gram-positive anaerobic cocci. Only two (0.8 %) isolates of Bacteroides spp. showed a MIC ≥4 µg/mL. With some exceptions, the present results show lower MICs for delafloxacin in comparison to the other antibiotics used against anaerobes.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Fluoroquinolones , Gram-Positive Cocci , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Infections/microbiology , Bacteria, Anaerobic , Microbial Sensitivity Tests
7.
Heliyon ; 9(11): e21216, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954372

ABSTRACT

Objective: The resistance of Mycobacterium tuberculosis (Mtb) to currently available fluoroquinolones (FQs), namely ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), renders the treatment of TB infections less successful. In this study, we aimed to evaluate the susceptibility and intracellular killing assay of Mtb to next-generation FQs in vitro and determine the correlation of FQs resistance and newly detected mutations in gyrB by molecular docking. Methods: Antimicrobial susceptibility test was performed to determine the minimum inhibitory concentrations (MICs) of six FQs, including currently available FQs (OFX, LFX, and MFX) and next-generation FQs, i.e., sitafloxacin (SFX), finafloxacin (FIN) and delafloxacin (DFX) against Mtb clinical isolates obtained in 2015 and 2022, respectively. Quinolone-resistance-determining regions of gyrA and gyrB were subjected to DNA sequencing and the correlation of FQs resistance and new mutations in gyrB were determined by molecular docking. Furthermore, the intracellular antibacterial activity of the six FQs against Mtb H37Rv in THP-1 cells was evaluated. Results: SFX exhibited the highest antibacterial activity against Mtb isolates (MIC90 = 0.25 µg/mL), whereas DFX and OFX exhibited comparable activity (MIC90 = 8 µg/mL). A statistically significant difference was observed among the MICs of the new generation FQs (SFX, P = 0.002; DFX, P = 0.008). Additionally, a marked increase in MICs was found in strains isolated in 2022 compared with those isolated in 2015. There might be correlation between FQs resistance and mutations in gyrB G520T and G520A. Cross-resistance rate between SFX and MFX was 40.6 % (26/64). At a concentration of 1 µg/mL, SFX exhibited high intracellular antibacterial activity (96.6 % ± 1.5 %) against the Mtb H37Rv, comparable with that of MFX at a concentration of 2 µg/mL. Conclusion: SFX exhibits the highest inhibitory activity against Mtb in vitro and THP-1 cell lines, which exhibits partial-cross resistance with MFX. There might be correlation between FQs resistance and mutations in gyrB G520T and G520A.Our findings provide crucial insights into the potential clinical application of SFX and DFX in the treatment of Mtb infections.

8.
Antimicrob Agents Chemother ; 67(11): e0162522, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37882542

ABSTRACT

Understanding the resistance mechanisms of antibiotics in the micro-environment of the infection is important to assess their clinical applicability and potentially prevent resistance development. We compared the laboratory resistance evolution of Escherichia coli to delafloxacin (DLX) compared to ciprofloxacin (CIP), the co-resistance evolution, and underlying resistance mechanisms at different pHs. Three clones from each of the eight clinical E. coli isolates were subjected to subinhibitory concentrations of DLX or CIP in parallel at either pH 7.3 or 6.0. Minimum inhibitory concentrations (MICs) were regularly tested (at respective pHs), and the antibiotic concentration was adjusted accordingly. After 30 passages, MICs were determined in the presence of the efflux pump inhibitor phenylalanine-arginine-ß-naphthylamide. Whole genome sequencing of the parental isolates and their resistant derivatives (n = 54) was performed. Complementation assays were carried out for selected mutations. Quantitative PCR and efflux experiments were carried out for selected derivatives. For DLX-challenged strains, resistance to DLX evolved much slower in acidic than in neutral pH, whereas for CIP-challenged strains, the opposite was the case. Mutations in the quinolone resistance-determining region were mainly seen in CIP-challenged E. coli, whereas a multifactorial mechanism including mutations in efflux-related genes played a role in DLX resistance evolution (predominantly at pH 6.0). This work provides novel insights into the resistance mechanisms of E. coli to delafloxacin and highlights the importance of understanding micro-environmental conditions at the infection site that might affect the true clinical efficacy of antibiotics and challenges our current antibiotic susceptibility-testing paradigm.


Subject(s)
Ciprofloxacin , Escherichia coli , Ciprofloxacin/pharmacology , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
9.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765112

ABSTRACT

Antibiotic resistance is a public health problem with increasingly alarming data being reported. Gram-positive bacteria are among the protagonists of severe nosocomial and community infections. The objective of this review is to conduct an extensive examination of emerging treatments for Gram-positive infections including ceftobiprole, ceftaroline, dalbavancin, oritavancin, omadacycline, tedizolid, and delafloxacin. From a methodological standpoint, a comprehensive analysis on clinical trials, molecular structure, mechanism of action, microbiological targeting, clinical use, pharmacokinetic/pharmacodynamic features, and potential for therapeutic drug monitoring will be addressed. Each antibiotic paragraph is divided into specialized microbiological, clinical, and pharmacological sections, including detailed and appropriate tables. A better understanding of the latest promising advances in the field of therapeutic options could lead to the development of a better approach in managing antimicrobial therapy for multidrug-resistant Gram-positive pathogens, which increasingly needs to be better stratified and targeted.

10.
Inn Med (Heidelb) ; 64(11): 1123-1128, 2023 Nov.
Article in German | MEDLINE | ID: mdl-37644177

ABSTRACT

Infections caused by pathogens with antimicrobial resistance (AMR) pose a threat to modern healthcare and have triggered the development of comprehensive national and global action plans against the spread of AMR. These include an increasing global network with the focus on rational antibiotic use, innovative strategies on antibiotic research and development, and new therapeutic approaches in antibacterial drug research. In Europe 671,689 infections associated with AMR pathogens and 33,110 deaths directly related to AMR were counted in just 1 year. Globally, resistant Staphylococcus aureus, Escherichia coli, pneumococci, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the most common pathogens in the context of these deaths. Resistance to antibiotics in major drug classes such as beta-lactams and fluoroquinolones is particularly common. Strategies for overcoming the global AMR crisis address research on AMR emergence and spread, promoting campaigns for responsible antibiotic use, and improving infection prevention. The identification of new antibiotics and treatment approaches and the development of new strategies to contain the spread of AMR are essential. Newly approved substances include delafloxacin, lefamulin, and meropenem-vaborbactam. New antibiotics that are well advanced in clinical trials are aztreonam-avibactam, sulbactam-durlobactam, omadacycline, and type II topoisomerase inhibitors. Much interest is also being shown in the development of new therapeutic approaches such as bacteriophage treatment.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Drug Resistance, Bacterial , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , beta-Lactams
11.
Antibiotics (Basel) ; 12(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37370396

ABSTRACT

Delafloxacin (DLX) is a recently approved fluoroquinolone with broad activity against common cystic fibrosis (CF) pathogens, including multidrug-resistant Pseudomonas aeruginosa (MDR-Psa). Delafloxacin has been previously shown to have excellent lung and biofilm penetration and enhanced activity at lower pH environments, such as those that would be observed in the CF lung. We analyzed six Psa strains isolated from CF sputum and compared DLX to ciprofloxacin (CPX) and levofloxacin (LVX). Minimum inhibitory concentrations (MICs) were determined for DLX using standard culture media (pH 7.3) and artificial sputum media (ASM), a physiologic media recapitulating the CF lung microenvironment (pH 6.9). Delafloxacin activity was further compared to CPX and LVX in an in vitro CF sputum time-kill model at physiologically relevant drug concentrations (Cmax, Cmed, Cmin). Delafloxacin exhibited 2- to 4-fold MIC reductions in ASM, which corresponded with significant improvements in bacterial killing in the CF sputum time-kill model between DLX and LVX at Cmed (p = 0.033) and Cmin (p = 0.004). Compared to CPX, DLX demonstrated significantly greater killing at Cmin (p = 0.024). Overall, DLX demonstrated favorable in vitro activity compared to alternative fluoroquinolones against MDR-Psa. Delafloxacin may be considered as an option against MDR-Psa pulmonary infections in CF.

12.
Microorganisms ; 11(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375104

ABSTRACT

Delafloxacin is a novel fluoroquinolone agent that is approved for clinical application. In this study, we analyzed the antibacterial efficacy of delafloxacin in a collection of 47 Escherichia coli strains. Antimicrobial susceptibility testing was performed by the broth microdilution method and minimum inhibitory concentration (MIC) values were determined for delafloxacin, ciprofloxacin, levofloxacin, moxifloxacin, ceftazidime, cefotaxime, and imipenem. Two multidrug-resistant E. coli strains, which exhibited delafloxacin and ciprofloxacin resistance as well as extended-spectrum beta-lactamase (ESBL) phenotype, were selected for whole-genome sequencing (WGS). In our study, delafloxacin and ciprofloxacin resistance rates were 47% (22/47) and 51% (24/47), respectively. In the strain collection, 46 E. coli were associated with ESBL production. The MIC50 value for delafloxacin was 0.125 mg/L, while all other fluoroquinolones had an MIC50 value of 0.25 mg/L in our collection. Delafloxacin susceptibility was detected in 20 ESBL positive and ciprofloxacin resistant E. coli strains; by contrast, E. coli strains that exhibited a ciprofloxacin MIC value above 1 mg/L were delafloxacin-resistant. WGS analysis on the two selected E. coli strains (920/1 and 951/2) demonstrated that delafloxacin resistance is mediated by multiple chromosomal mutations, namely, five mutations in E. coli 920/1 (gyrA S83L, D87N, parC S80I, E84V, and parE I529L) and four mutations in E. coli 951/2 (gyrA S83L, D87N, parC S80I, and E84V). Both strains carried an ESBL gene, blaCTX-M-1 in E. coli 920/1 and blaCTX-M-15 in E. coli 951/2. Based on multilocus sequence typing, both strains belong to the E. coli sequence type 43 (ST43). In this paper, we report a remarkable high rate (47%) of delafloxacin resistance among multidrug-resistant E. coli as well as the E. coli ST43 international high-risk clone in Hungary.

14.
Pharmaceutics ; 15(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36986665

ABSTRACT

Antibacterial fluoroquinolones (FQs) are frequently used in treating infections. However, the value of FQs is debatable due to their association with severe adverse effects (AEs). The Food and Drug Administration (FDA) issued safety warnings concerning their side-effects in 2008, followed by the European Medicine Agency (EMA) and regulatory authorities from other countries. Severe AEs associated with some FQs have been reported, leading to their withdrawal from the market. New systemic FQs have been recently approved. The FDA and EMA approved delafloxacin. Additionally, lascufloxacin, levonadifloxacin, nemonoxacin, sitafloxacin, and zabofloxacin were approved in their origin countries. The relevant AEs of FQs and their mechanisms of occurrence have been approached. New systemic FQs present potent antibacterial activity against many resistant bacteria (including resistance to FQs). Generally, in clinical studies, the new FQs were well-tolerated with mild or moderate AEs. All the new FQs approved in the origin countries require more clinical studies to meet FDA or EMA requirements. Post-marketing surveillance will confirm or infirm the known safety profile of these new antibacterial drugs. The main AEs of the FQs class were addressed, highlighting the existing data for the recently approved ones. In addition, the general management of AEs when they occur and the rational use and caution of modern FQs were outlined.

15.
Int J Antimicrob Agents ; 61(6): 106795, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965675

ABSTRACT

Delafloxacin is a new fluoroquinolone indicated for the treatment of complicated bacterial skin infections caused by Staphylococcus aureus. Despite its recent approval by the US Food and Drug Administration, the emergence of S. aureus-resistant strains has been reported. As such, this study aimed to investigate the activity of delafloxacin against a collection of S. aureus, and to determine the mechanisms of resistance. The activity of delafloxacin was measured in 59 S. aureus clinical isolates [40 methicillin-resistant S. aureus (MRSA) and 19 methicillin-susceptible S. aureus (MSSA)]. Whole-genome sequencing (WGS) was performed in the isolates resistant to delafloxacin. The minimum inhibitory concentrations required to inactivate 50% and 90% of the isolates (MIC50 and MIC90, respectively) were higher in MRSA (0.19 mg/L and 0.75 mg/L, respectively) than in MSSA (0.008 mg/L and 0.25 mg/L, respectively). Furthermore, 10 S. aureus clinical isolates (16.9%) were categorized as resistant to delafloxacin. Regarding the WGS data, several mutations were found in the quinolone resistance-determining region. Nevertheless, a mutation in the same position (E84K and E84V) of topoisomerase IV (ParC) was found exclusively in the four high-level delafloxacin-resistant isolates. Interestingly, a plasmid-encoded qacC gene (efflux pump) was found to be harboured by the isolate with the highest delafloxacin MIC value (32 mg/L). The use of a wide-spectrum efflux pump inhibitor revealed an important contribution of this system to the acquisition of delafloxacin resistance. In conclusion, delafloxacin has activity against S. aureus, including MRSA. However, this study showed that mutations in position 84 of ParC and the acquisition of a QacC efflux pump are key factors for the development of delafloxacin resistance in S. aureus.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Methicillin-Resistant Staphylococcus aureus/genetics , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests
16.
Future Microbiol ; 18: 117-126, 2023 01.
Article in English | MEDLINE | ID: mdl-36722304

ABSTRACT

Aim: Meropenem-vaborbactam and delafloxacin activities were not assessed against Achromobacter spp. (Achr), Burkholderia cepacia complex (Bcc) and Stenotrophomonas maltophilia (Smal). Methodology: A total of 106 Achr, 57 Bcc and 100 Smal were tested with gradient diffusion test of meropenem-vaborbactam, delafloxacin and comparators. Results: Meropenem-vaborbactam MIC50 were 4 µg/ml for Achr, 1 µg/ml for B. cepacia, 2 µg/ml for B. cenocepacia and B. multivorans, and 32 µg/ml for Smal. Delafloxacin MIC50 were 4 µg/ml for Achr, 0.25 µg/ml for B. cepacia and B. multivorans, 2 µg/ml for B. cenocepacia, and 0.5 µg/m for Smal. meropenem-vaborbactam MICs were fourfold lower than meropenem for 28.3% Achr, 77.2% B. cepacia, 53.8% B. cenocepacia and 77.2% B. multivorans. Conclusion: Meropenem-vaborbactam and delafloxacin are in vitro active against Bcc and Achr.


We assess the efficacy of two new antibiotics, meropenem­vaborbactam and delafloxacin, to kill rarely encountered bacteria. These bacteria, Achromobacter, Burkholderia and Stenotrophomonas maltophilia, mainly cause respiratory tract infections. Both antibiotics are found active against Achromobacter and Burkholderia, but not S. maltophilia.


Subject(s)
Burkholderia cepacia complex , Stenotrophomonas maltophilia , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Microbial Sensitivity Tests
17.
Front Pharmacol ; 13: 975578, 2022.
Article in English | MEDLINE | ID: mdl-36249780

ABSTRACT

Background: This study aims to assess the clinical efficacy and adverse events of delafloxacin for the treatment of acute bacterial infections in adult patients through meta-analysis. Methods: The PubMed, Embase, Cochrane library, Web of Science, and Clinical trails databases were searched up to 26 March 2022. Only randomized controlled trials (RCTs) that evaluated delafloxacin and comparator antibiotics for treating acute bacterial infections in adult patients were included. The clinical cure rate and microbiological eradication rate at the posttreatment evaluation, while the secondary outcomes included the risk of adverse events (AEs). Results: In total, six randomized controlled trials (RCTs) involving 3,019 patients with acute bacterial infection were included. There were no significant differences in the clinical cure rate between delafloxacin and comparators (OR = 1.06%, 95% CI = 0.89-1.26, I2 = 0%). Overall, the results showed that delafloxacin had a microbiological eradication rate (documented and presumed) similar to the comparators (OR = 1.33%, 95% CI = 0.94-1.88, I2 = 0%) in the pooled analysis of the six studies. Any treatment-emergent adverse events (TEAEs) did not show significant differences between delafloxacin and the comparators (OR = 0.93%, 95% CI = 0.80-1.08, I2 = 75%). Serious adverse events (SAEs) did not differ between the delafloxacin and comparators (OR = 0.94%, 95% CI = 0.67-1.32, I2 = 0%). The results of gastrointestinal disorders were (OR = 1.26%, 95% CI = 1.01-1.56, I2 = 89%), and nausea, vomiting, and diarrhea were (OR = 0.77%, 95% CI = 0.45-1.34, I2 = 79%), (OR = 1.00%, 95% CI = 0.74-1.36, I2 = 72%), and (OR = 2.10%, 95% CI = 1.70-2.96, I2 = 0%), respectively. The results showed that there was no significant difference in the incidence of nausea and vomiting between delafloxacin and the comparator, but the incidence of diarrhea was higher. The analysis of neurological disorders indicated that the incidence of nervous system disorders was lower in the delafloxacin group (OR = 0.71%, 95% CI = 0.50-1.01, I2 = 52%). Conclusion: The clinical efficacy, microbiological eradication rate and the incidence of AEs of delafloxacin in the treatment of acute bacterial infections were similar to those of the comparators, as an alternative therapeutic agent.

18.
Materials (Basel) ; 15(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36013845

ABSTRACT

New antibiotics are seen as 'drugs of last resort' against virulent bacteria. However, development of resistance towards new antibiotics with time is a universal fact. Delafloxacin (DFX) is a new fluoroquinolone antibiotic that differs from existing fluoroquinolones by the lack of a protonatable substituent, which gives the molecule a weakly acidic nature, affording it higher antibacterial activity under an acidic environment. Furthermore, antibiotic-functionalized metallic nanoparticles have been recently emerged as a feasible platform for conquering bacterial resistance. In the present study, therefore, we aimed at preparing DFX-gold nano-formulations to increase the antibacterial potential of DFX. To synthesize DFX-capped gold nanoparticles (DFX-AuNPs), DFX was used as a reducing and stabilizing/encapsulating agent. Various analytical techniques such as UV-visible spectroscopy, TEM, DLS, FTIR and zeta potential analysis were applied to determine the properties of the synthesized DFX-AuNPs. The synthesized DFX-AuNPs revealed a distinct surface plasmon resonance (SPR) band at 530 nm and an average size of 16 nm as manifested by TEM analysis. In addition, Zeta potential results (-19 mV) confirmed the stability of the synthesized DFX-AuNPs. Furthermore, FTIR analysis demonstrated that DFX was adsorbed onto the surface of AuNPs via strong interaction between AuNPs and DFX. Most importantly, comparative antibacterial analysis of DFX alone and DFX-AuNPs against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) verified the superior antibacterial activity of DFX-AuNPs against the tested microorganisms. To sum up, DFX gold nano-formulations can offer a promising possible solution, even at a lower antibiotic dose, to combat pathogenic bacteria.

19.
Microbiol Spectr ; 10(5): e0090322, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35972245

ABSTRACT

In vitro activities of delafloxacin and ciprofloxacin were evaluated against Burkholderia pseudomallei mutants expressing or lacking defined resistance-nodulation-cell division (RND) efflux pumps using CLSI methodology at pHs of 5.8 and 7.2. Delafloxacin MIC values were as much as 8-fold lower at pH 5.8 than those at pH 7.2, while ciprofloxacin MICs increased as much as 8-fold. The data from this study suggest that compared to ciprofloxacin, delafloxacin may have improved efflux avoidance, notably at acidic pH. In contrast to ciprofloxacin, delafloxacin may thus retain its therapeutic potential, even in BpeEF-OprC efflux-pump-expressing B. pseudomallei strains that compromise the use of fluoroquinolones, such as ciprofloxacin. IMPORTANCE Resistance-nodulation-cell division (RND) efflux pumps play a major role in intrinsic and acquired antibiotic resistance in Burkholderia pseudomallei, and these pumps are its only known multidrug resistance determinants. Fluoroquinolones have performed poorly in clinical settings and are currently not recommended for treatment of B. pseudomallei infections. While the reasons for the poor clinical performance of this pathogen remain unclear, efflux may be partially responsible since fluoroquinolones like ciprofloxacin are prone to efflux by RND pumps, notably BpeEF-OprC. In vitro efficacy testing using a panel of efflux-proficient and efflux-deficient strains allows identification of fluoroquinolones that compared to ciprofloxacin are less prone to efflux.


Subject(s)
Burkholderia pseudomallei , Burkholderia pseudomallei/genetics , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology
20.
Expert Rev Clin Pharmacol ; 15(6): 671-688, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35838033

ABSTRACT

INTRODUCTION: Community-acquired bacterial pneumonia (CABP) is the most common infectious cause of hospital admission in adults, and poses a significant clinical and economic burden. At the same time, antimicrobial resistance is increasing worldwide with only a few new antibiotics developed in recent years. Delafloxacin is an anionic fluoroquinolone available in intravenous and oral formulations and with a broad spectrum of activity targeting Gram-positives, including methicillin-resistant Staphylococcus aureus (MRSA), gram-negative organisms, and atypical and anaerobic organisms. It also has a better adverse event profile compared to other fluoroquinolones. AREAS COVERED: This article reviews the current epidemiology of CABP, etiologic agents and current resistance rates, current treatment guidelines, characteristics of delafloxacin (chemistry, microbiology, PK/PD), clinical efficacy and safety in pneumonia and other indications, and regulatory affairs. EXPERT OPINION: Delafloxacin's susceptibility profile against respiratory pathogens, bioequivalent intravenous and oral formulations and favorable safety profile, support its use for the treatment of CABP. It could be useful as empirical treatment in countries with high rates of penicillin-resistant S. pneumoniae and in patients with suspected or documented pneumonia due to MRSA. In post-influenza staphylococcal bacterial pneumonia, MRSA could be also considered an important pathogen.


Subject(s)
Community-Acquired Infections , Methicillin-Resistant Staphylococcus aureus , Pneumonia, Bacterial , Adult , Anti-Bacterial Agents/adverse effects , Community-Acquired Infections/drug therapy , Community-Acquired Infections/microbiology , Fluoroquinolones/adverse effects , Humans , Pneumonia, Bacterial/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...