Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Molecules ; 29(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38893476

ABSTRACT

Saffron (Crocus sativus) floral by-products are a source of phenolic compounds that can be recovered and used in the nutraceutical, pharmaceutical, or cosmetic industries. This study aimed to evaluate the phenolic compounds' extraction using green extraction techniques (GETs) in saffron floral by-products and to explore the influence of selected extraction techniques on the phytochemical composition of the extracts. Specifically, ultrasound-assisted extraction (UAE), subcritical water extraction (SWE), and deep eutectic solvents extraction (DESE) were used. Phenolic compounds were identified with (HR) LC-ESI-QTOF MS/MS analysis, and the quantitative analysis was performed with HPLC-PDA. Concerning the extraction techniques, UAE showed the highest amount for both anthocyanins and flavonoids with 50:50% v/v ethanol/water as solvent (93.43 ± 4.67 mg/g of dry plant, dp). Among SWE, extraction with 96% ethanol and t = 125 °C gave the best quantitative results. The 16 different solvent mixtures used for the DESE showed the highest amount of flavonoids (110.95 ± 5.55-73.25 ± 3.66 mg/g dp), while anthocyanins were better extracted with choline chloride:butane-1,4-diol (16.0 ± 0.80 mg/g dp). Consequently, GETs can be employed to extract the bioactive compounds from saffron floral by-products, implementing recycling and reduction of waste and fitting into the broader circular economy discussion.


Subject(s)
Crocus , Flowers , Phenols , Plant Extracts , Water , Crocus/chemistry , Phenols/chemistry , Phenols/isolation & purification , Phenols/analysis , Plant Extracts/chemistry , Water/chemistry , Flowers/chemistry , Deep Eutectic Solvents/chemistry , Solvents/chemistry , Chromatography, High Pressure Liquid/methods , Flavonoids/isolation & purification , Flavonoids/chemistry , Flavonoids/analysis , Anthocyanins/isolation & purification , Anthocyanins/chemistry , Anthocyanins/analysis , Tandem Mass Spectrometry , Ultrasonic Waves
2.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893578

ABSTRACT

BACKGROUND: The viral main protease (Mpro) of SARS-CoV-2 has been recently proposed as a key target to inhibit virus replication in the host. Therefore, molecules that can bind the catalytic site of Mpro could be considered as potential drug candidates in the treatment of SARS-CoV-2 infections. Here we proposed the application of a state-of-the-art analytical platform which combines metabolomics and protein structure analysis to fish-out potential active compounds deriving from a natural matrix, i.e., a blueberry extract. METHODS: The experiments focus on finding MS covalent inhibitors of Mpro that contain in their structure a catechol/pyrogallol moiety capable of binding to the nucleophilic amino acids of the enzyme's catalytic site. RESULTS: Among the potential candidates identified, the delphinidin-3-glucoside showed the most promising results. Its antiviral activity has been confirmed in vitro on Vero E6 cells infected with SARS-CoV-2, showing a dose-dependent inhibitory effect almost comparable to the known Mpro inhibitor baicalin. The interaction of delphinidin-3-glucoside with the Mpro pocket observed was also evaluated by computational studies. CONCLUSIONS: The HRMS analytical platform described proved to be effective in identifying compounds that covalently bind Mpro and are active in the inhibition of SARS-CoV-2 replication, such as delphinidin-3-glucoside.


Subject(s)
Anthocyanins , Antiviral Agents , Blueberry Plants , Coronavirus 3C Proteases , Plant Extracts , Protease Inhibitors , SARS-CoV-2 , Blueberry Plants/chemistry , Anthocyanins/pharmacology , Anthocyanins/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Vero Cells , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , COVID-19 Drug Treatment , Humans , Molecular Docking Simulation , COVID-19/virology , Glucosides
3.
Food Chem X ; 22: 101396, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38699585

ABSTRACT

With the proliferation of the consumer's awareness of wine provenance, wines with unique origin characteristics are increasingly in demand. This study aimed to investigate the influence of geographical origins and climatological characteristics on grapes and wines. A total of 94 anthocyanins and 78 non-anthocyanin phenolic compounds in grapes and wines from five Chinese viticultural vineyards (CJ, WH, QTX, WW, and XY) were identified by UHPLC-QqQ-MS/MS. Chemometric methods PCA and OPLS-DA were established to select candidate differential metabolites, including flavonols, stilbenes, hydroxycinnamic acids, peonidin derivatives, and malvidin derivatives. CCA showed that malvidin-3-O-glucoside had a positive correlation with mean temperature, and quercetin-3-O-glucoside had a negative correlation with precipitation. In addition, enrichment analysis elucidated that the metabolic diversity in different origins mainly occurred in flavonoid biosynthesis. This study would provide some new insights to understand the effect of geographical origins and climatological characteristics on phenolic compounds in grapes and wines.

4.
Food Chem ; 448: 139101, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537552

ABSTRACT

Green technologies based on microwaves have been developed by the food industry to produce organoleptically acceptable fruit juices without preliminary processing. Microwave irradiation coupled with hydrodiffusion and gravity (MHG) combines microwave heating with the earth's gravity, allowing the collection of hydrophilic substances released from the irradiated matrix. To the best of our knowledge, MHG extraction has never been experimented to produce pomegranate juice. In this work, we have evaluated it as a potential alternative to the conventional squeezing. A central composite design study (CCD) allowed the selection of the best extractive conditions (irradiation power and extraction time) to obtain a pomegranate juice with higher yield, polyphenol (e.g., catechin and delphinidin-3,5-glucoside) content, and related bioactivities (antioxidant and antidiabetic) than the one obtained by squeezing while maintaining the chemical-physical properties. Thus, this technique appears to be a functional alternative to producing high value pomegranate juice.

5.
Antioxidants (Basel) ; 13(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38539844

ABSTRACT

Soybeans rank among the top five globally produced crops. Black soybeans contain anthocyanins in their seed coat, offering strong antioxidant and anti-inflammatory benefits. This study explores the protective effects of black soybean seed coat (BSSC) against acute liver injury (ALI) in mice. Mice pretreated with BSSC crude extract showed reduced liver damage, inflammation, and apoptosis. High doses (300 mg/kg) of the extract decreased levels of proinflammatory cytokines (IL-6, IFN-γ) and increased levels of anti-inflammatory ones (IL-4, IL-10), alongside mitigating liver pathological damage. Additionally, it influenced the Nrf2/HO-1 pathway and reduced levels of apoptosis-related proteins. In vitro, the compounds delphinidin-3-O-glucoside (D3G) and cyanidin-3-O-glucoside (C3G) in BSSC were found to modulate cytokine levels, suggesting their role in ALI protection. The study concludes that BSSC extract, particularly due to D3G and C3G, effectively protects against LPS-induced ALI in mice by inhibiting inflammation, oxidative stress, and apoptosis.

6.
Food Res Int ; 178: 113873, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309895

ABSTRACT

Overweight and obesity are typical conditions of chronic low-intensity systemic inflammatory responses, and both have become more common in recent decades, which emphasizes the necessity for healthier diet intake. Fruits such as grapes are rich in anthocyanins, one of which is delphinidin, a promising chemopreventive agent with anti-inflammatory properties. Considering that polymorphonuclear cells (PMNs) are rapidly mobilized to tissues when the inflammatory process is initiated, this study aimed to understand the impact of grape juice intake and delphinidin on the migration properties of PMNs. Overweight women ingested 500 mL of grape juice for 28 days, and then lipid and inflammatory profiles, as well as the white blood cell count (WBC), were evaluated. Additionally, the gene expression of inflammatory markers and quantified migration molecules such as CD11/CD18, ICAM-1 and VCAM-1 were evaluated in PMNs. The influence of delphinidin-3-O-glucoside in vitro on some migration properties was also evaluated. Grape juice intake did not influence the lipid profile or affect the WBC. However, NFκB gene expression was reduced in PMNs, also reducing the circulating values of IL-8, sICAM-1, and sVCAM-1. The in vitro results demonstrated that delphinidin significantly reduced the migration potential of cells and reduced CD11-/CD18-positive cells, the gene expression of ICAM-1, and the phosphorylation and gene expression of NFκB. Additionally, delphinidin also reduced the production of IL-6, IL-8, and CCL2. Grape juice, after 28 days of intervention, influenced some properties related to cell migration, and delphinidin in vitro can modify the cell migration properties.


Subject(s)
Vitis , Humans , Female , Vitis/metabolism , Anthocyanins/analysis , Intercellular Adhesion Molecule-1/genetics , Overweight , Interleukin-8 , Beverages/analysis , Cell Movement , Glucosides/pharmacology , Lipids
7.
Nutrients ; 16(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398890

ABSTRACT

The utilization of food as a therapeutic measure for various ailments has been a prevalent practice throughout history and across different cultures. This is exemplified in societies where substances like Hibiscus sabdariffa have been employed to manage health conditions like hypertension and elevated blood glucose levels. The inherent bioactive compounds found in this plant, namely, delphinidin-3-sambubioside (DS3), quercetin (QRC), and hibiscus acid (HA), have been linked to various health benefits. Despite receiving individual attention, the specific molecular targets for these compounds remain unclear. In this study, computational analysis was conducted using bioinformatics tools such as Swiss Target Prediction, ShinnyGo 0.77, KEGG, and Stringdb to identify the molecular targets, pathways, and hub genes. Supplementary results were obtained through a thorough literature search in PubMed. DS3 analysis revealed potential genetic alterations related to the metabolism of nitrogen and glucose, inflammation, angiogenesis, and cell proliferation, particularly impacting the PI3K-AKT signaling pathway. QRC analysis demonstrated interconnected targets spanning multiple pathways, with some overlap with DS3 analysis and a particular focus on pathways related to cancer. HA analysis revealed distinct targets, especially those associated with pathways related to the nervous system. These findings emphasize the necessity for focused research on the molecular effects of DS3, QRC, and HA, thereby providing valuable insights into potential therapeutic pathways.


Subject(s)
Anthocyanins , Citrates , Hibiscus , Quercetin , Humans , Plant Extracts/pharmacology , Plant Extracts/analysis , Phosphatidylinositol 3-Kinases
8.
Toxicol Sci ; 198(2): 210-220, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38291899

ABSTRACT

Microplastics (MP) derived from the weathering of polymers, or synthesized in this size range, have become widespread environmental contaminants and have found their way into water supplies and the food chain. Despite this awareness, little is known about the health consequences of MP ingestion. We have previously shown that the consumption of polystyrene (PS) beads was associated with intestinal dysbiosis and diabetes and obesity in mice. To further evaluate the systemic metabolic effects of PS on the gut-liver-adipose tissue axis, we supplied C57BL/6J mice with normal water or that containing 2 sizes of PS beads (0.5 and 5 µm) at a concentration of 1 µg/ml. After 13 weeks, we evaluated indices of metabolism and liver function. As observed previously, mice drinking the PS-containing water had a potentiated weight gain and adipose expansion. Here we found that this was associated with an increased abundance of adipose F4/80+ macrophages. These exposures did not cause nonalcoholic fatty liver disease but were associated with decreased liver:body weight ratios and an enrichment in hepatic farnesoid X receptor and liver X receptor signaling. PS also increased hepatic cholesterol and altered both hepatic and cecal bile acids. Mice consuming PS beads and treated with the berry anthocyanin, delphinidin, demonstrated an attenuated weight gain compared with those mice receiving a control intervention and also exhibited a downregulation of cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. This study highlights the obesogenic role of PS in perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism. Dietary interventions may limit the adverse metabolic effects of PS consumption.


Subject(s)
Non-alcoholic Fatty Liver Disease , Plastics , Animals , Mice , Plastics/metabolism , Plastics/pharmacology , Polystyrenes/toxicity , Polystyrenes/metabolism , Microplastics/metabolism , Microplastics/pharmacology , Mice, Inbred C57BL , Liver , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/chemically induced , Obesity/metabolism , Weight Gain
9.
Food Res Int ; 176: 113820, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163723

ABSTRACT

Camu-camu (Myrciaria dubia) is a tropical fruit known for its content of bioactive compounds. This study aimed to evaluate physicochemically, morphologically, andsensorialpowders from camu-camu obtained by spray-drying at two inlet temperatures (150 °C and 180 °C) with three encapsulating agents (maltodextrin, whey protein and a 50:50 mixture of both) and by freeze-drying of whole fruit. The use of maltodextrin protected bet anthocyanins (cyanidin-3-glucoside (C3G) and delphinidin-3-glucoside (D3G)), but whey protein showed a better protective effect on ascorbic and malic acids. These facts were confirmed during the storage stability test, finding that relative humidity is a critical variable in preserving the bioactive compounds of camu-camu powders. The powders with the highest content of bioactive compounds were added to a yogurt and a white grape juice, and then sensory evaluated. The bioaccessibility studies in gastric and intestinal phases showed better recovery percentages of bioactive compounds in camu-camu powders (up to 60.8 %) and beverages (up to 90 %) for C3G, D3G, ascorbic acid, and malic acid than in the fruit juice. Dehydration of camu-camu (M. dubia) is a strategy to increase the bioactive compounds stability, modulate the fruit sensory properties, and improve their bioavailability after incorporation in food matrices.


Subject(s)
Anthocyanins , Myrtaceae , Anthocyanins/chemistry , Powders , Whey Proteins , Ascorbic Acid/analysis , Antioxidants , Myrtaceae/chemistry
10.
Food Chem X ; 20: 101030, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144762

ABSTRACT

Inheritance and mutations are important factors affecting grape phenolic composition. To investigate the inter- and intra-varietal differences in polyphenolic compounds among grapes and wines, 27 clones belonging to eight varieties of Vitis vinifera L. were studied over two consecutive years. A total of 24 polyphenols (nine anthocyanins, three flavanols, five flavonols, and seven phenolic acids) were analyzed, and the physicochemical parameters of the grapes and wines were determined. Polyphenol profiles showed significant varietal and clonal polymorphisms, and malvidin-3-O-glucoside, peonidin-3-O- glucoside, and epicatechin were identified as key biomarkers distinguishing different grapes and wines when using an orthogonal partial least squares discriminant analysis. Further multivariate analysis classified these genotypes into three subclasses, and a somatic variant of 'Malbec', MBVCR6, had the most abundant polyphenolic compounds that were related to the titratable acid content. The current results reveal that varietal and clonal variations are important for obtaining wines with high polyphenol content.

11.
Front Plant Sci ; 14: 1289120, 2023.
Article in English | MEDLINE | ID: mdl-37965026

ABSTRACT

Anthocyanins are the main pigments that affect the color and quality of purple-fruited sweet pepper (Capsicum annuum). Our previous study indicated that blue light can induce anthocyanin accumulation in purple pepper. In view of its underlying mechanism that is unclear, here, anthocyanin content was determined, and transcriptome analysis was performed on pepper fruits harvested from different light treatments. As a result, among the identified anthocyanin metabolites, the levels of delphinidin (Dp) glycosides, including Dp-3-O-rhamnoside, Dp-3-O-rutinoside, and Dp-3-O-glucoside, were highly accumulated in blue-light-treated fruit, which are mainly responsible for the appearance color of purple pepper. Correlation between anthocyanin content and transcriptomic analysis indicated a total of 1,619 upregulated genes were found, of which six structural and 12 transcription factor (TF) genes were involved in the anthocyanin biosynthetic pathway. Structural gene, for instance, CaUFGT as well as TFs such as CaMYC2-like and CaERF113, which were highly expressed under blue light and presented similar expression patterns consistent with Dp glycoside accumulation, may be candidate genes for anthocyanin synthesis in response to blue-light signal.

12.
Genes (Basel) ; 14(10)2023 10 09.
Article in English | MEDLINE | ID: mdl-37895269

ABSTRACT

Flavonoid-3',5'-hydroxylase (F3'5'H) is the key enzyme for the biosynthesis of delphinidin-based anthocyanins, which are generally required for purple or blue flowers. Previously, we isolated a full-length cDNA of PgF3'5'H from Platycodon grandiflorus, which shared the highest homology with Campanula medium F3'5'H. In this study, PgF3'5'H was subcloned into a plant over-expression vector and transformed into tobacco via Agrobacterium tumefaciens to investigate its catalytic function. Positive transgenic tobacco T0 plants were obtained by hygromycin resistance screening and PCR detection. PgF3'5'H showed a higher expression level in all PgF3'5'H transgenic tobacco plants than in control plants. Under the drive of the cauliflower mosaic virus (CaMV) 35S promoter, the over-expressed PgF3'5'H produced dihydromyricetin (DHM) and some new anthocyanin pigments (including delphinidin, petunidin, peonidin, and malvidin derivatives), and increased dihydrokaempferol (DHK), taxifolin, tridactyl, cyanidin derivatives, and pelargonidin derivatives in PgF3'5'H transgenic tobacco plants by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, resulting in a dramatic color alteration from light pink to magenta. These results indicate that PgF3'5'H products have F3'5'H enzyme activity. In addition, PgF3'5'H transfer alters flavonoid pigment synthesis and accumulation in tobacco. Thus, PgF3'5'H may be considered a candidate gene for gene engineering to enhance anthocyanin accumulation and the molecular breeding project for blue flowers.


Subject(s)
Anthocyanins , Platycodon , Anthocyanins/analysis , Nicotiana/genetics , Nicotiana/metabolism , Cytochrome P-450 Enzyme System/genetics , Platycodon/genetics , Platycodon/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Flowers/metabolism , Pigmentation/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
13.
Antioxidants (Basel) ; 12(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37627606

ABSTRACT

The fortification of dairy products with polyphenols is known to deliver additional health benefits. However, interactions between polyphenols may form complexes and cause a loss of functionality overall. This study aimed to investigate potential interactions between polyphenols, in encapsulated and non-encapsulated forms, extracted from tamarillo fruit and bovine serum albumin (BSA) from fresh milk cream. Fortification with tamarillo extract was made at 1, 2 and 3% (w/w), and the resultant changes in physicochemical, rheological and functional properties were studied. With an increase in fortification, the absorbance of protein-ligand in the protein-polyphenol complex was decreased by up to 55% and 67% in UV and fluorescent intensities, respectively. Chlorogenic acid and kaempferol-3-rutinoside were more affected than delphinidin-3-rutinoside and pelargonidin-3-rutinoside. Static quenching was the main mechanism in the fluorescence spectra. Tryptophan and tyrosine residues were the two major aromatic amino acids responsible for the interactions with BSA. There were at least three binding sites near the tryptophan residue on BSA. The rheological property remained unaffected after the addition of non-encapsulated tamarillo extracts. Antioxidant capacity was significantly decreased (p < 0.05) after the addition of encapsulated extracts. This may be explained by using a low concentration of maltodextrin (10% w/w) as an encapsulating agent and its high binding affinity to milk proteins.

14.
Front Plant Sci ; 14: 1232755, 2023.
Article in English | MEDLINE | ID: mdl-37575941

ABSTRACT

Pepper (Capsicum annuum L) is one of the most important vegetables grown worldwide. Nevertheless, the key structural and regulatory genes involved in anthocyanin accumulation in pepper have not been well understood or fine mapped yet. In this study, F1, F2, BC1P1, and BC1P2 pepper populations were analyzed and these populations were derived from a cross between line 14-Z4, which has yellow anthers and green stems, and line 14-Z5, which has purple anthers and stems. The results showed that the yellow anthers and green stems were determined by a single recessive locus called to as ayw. While, using preliminary and fine mapping techniques, ayw locus was located between markers aywSNP120 and aywSNP124, with physical distance of 0.2 Mb. The CA11g18550 gene was identified as promising candidate for the ayw locus, as it co-segregated with the yellow anthers and green stems phenotypes. CA11g18550 encodes a homolog of the F3'5'H (flavonoid 3',5'-hydroxylase) anthocyanin synthesis structure gene. The missense mutation of CA11g18550 possibly resulted in a loss-of-function. The expression analysis showed that CA11g18550 was significantly expressed in the stems, leaves, anthers and petals in 14-Z5, and it's silencing caused the stems changing from purple to green. This study provides a theoretical basis for using yellow anthers and green stems in pepper breeding and helps to advance the understanding of anthocyanin synthesis.

15.
Food Chem ; 428: 136814, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37429238

ABSTRACT

This work developed a universal UPLC-PDA method based on safe reagents to analyze anthocyanins from different foods. Nine foods were studied by the developed chromatographic method, which was constructed using a solid core C18 column and a binary mobile phase composed of (A) water (0.25 molcitric acid.Lsolvent-1), and (B) ethanol. A total running time of 6 min was obtained, the faster comprehensive method for anthocyanins analysis. Mass spectrometry analysis was employed to identify a comprehensive set of 53 anthocyanins comprising glycosylated and acylated cyanidin, pelargonidin, malvidin, peonidin, petunidin, and delphinidin derivatives. Cyanidin-3-O-glucoside (m/z+ 449) and cyanidin-3-O-rutinoside (m/z+ 595) were used as standards to validate the accuracy of the developed method. The analytical parameters were evaluated, including intra-day and inter-day precision, robustness, repeatability, retention factor (k), resolution, and peak symmetry factor. The current method demonstrated excellent chromatographic resolution, making it a powerful tool for analyzing anthocyanins pigments.


Subject(s)
Anthocyanins , Biological Products , Anthocyanins/analysis , Biological Products/analysis , Mass Spectrometry , Fruit/chemistry , Ethanol/analysis , Chromatography, High Pressure Liquid
16.
Int J Biol Macromol ; 247: 125839, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37454997

ABSTRACT

Anthocyanins are potential bioactive compounds with less bioavailability due to instability in physicochemical and physiological harsh environments. This study synthesized a "nanolipo-fibersomes (NLFS)" using Lipoid® S75 and Nutriose® FB 06 (dextrinization of wheat starch) through a self-assembly technique with probe sonication. We aimed to encapsulate delphinidin-3-O-sambubioside (D3S) successfully and evaluate physicochemical and controlled release properties with improved antioxidant activity on palmitic acid (PA)-induced colonic cells (Caco-2 cells). D3S-loaded nanolipo-fibersomes (D3S-NLFS) were nanosized (<150 nm), spherical shaped, and homogenously dispersed in solution with promising encapsulation efficiency (~ 89.31 to 97.31 %). Particles formation was further verified by FTIR. NLFS were well-stable in thermal, storage, and gastrointestinal mimic environments. NLFS exhibited better-controlled release and mucoadhesive properties compared to nanoliposomes (NL). The NLFS showed better cellular uptake than NL, which was correlated to higher mucoadhesive properties. Furthermore, D3S-NLFS exhibited promising protective effects against PA-induced cytotoxicity, O2•- radicals generation, mitochondrial dysfunctions, and GSH depletion, while the free D3S was ineffective. Among D3S-loaded nanoparticles, D3S-NLFS 3 was the most efficient nanocarrier followed by D3S-NLFS 2, D3S-NLFS 1, and D3S-NL, respectively. The above data suggest that nanolipo-fibersomes can be considered as promising nanovesicles for improving colonic delivery of hydrophilic compounds with controlled release properties and greater antioxidant activity.


Subject(s)
Anthocyanins , Antioxidants , Humans , Anthocyanins/pharmacology , Anthocyanins/chemistry , Antioxidants/pharmacology , Delayed-Action Preparations/pharmacology , Caco-2 Cells
17.
Food Res Int ; 170: 113028, 2023 08.
Article in English | MEDLINE | ID: mdl-37316089

ABSTRACT

Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.


Subject(s)
Anthocyanins , Colorectal Neoplasms , Humans , Anthocyanins/pharmacology , Fruit , Vegetables , Brazil , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/prevention & control
18.
Molecules ; 28(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375373

ABSTRACT

The interest in the consumption of edible flowers has increased since they represent a rich source of bioactive compounds, which are significantly beneficial to human health. The objective of this research was to access the bioactive compounds and antioxidant and cytotoxic properties of unconventional alternative edible flowers of Hibiscus acetosella Welw. Ex Hiern. The edible flowers presented pH value of 2.8 ± 0.00, soluble solids content of 3.4 ± 0.0 °Brix, high moisture content of about 91.8 ± 0.3%, carbohydrates (6.9 ± 1.2%), lipids (0.90 ± 0.17%), ashes (0.4 ± 0.0%), and not detectable protein. The evaluation of the scavenging activity of free radicals, such as 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), of the flower extract was better than the results observed for other edible flowers (507.8 ± 2.7 µM TE and 783.9 ± 30.8 µM TE, respectively) as well as the total phenolic composition (TPC) value (568.8 ± 0.8 mg GAE/g). These flowers are rich in organic acids and phenolic compounds, mainly myricetin, and quercetin derivatives, kaempferol, and anthocyanins. The extract showed no cytotoxicity for the cell lineages used, suggesting that the extract has no directly harmful effects to cells. The important bioactive compound identified in this study makes this flower especially relevant in the healthy food area due to its nutraceutical potential without showing cytotoxicity.


Subject(s)
Anthocyanins , Hibiscus , Humans , Anthocyanins/chemistry , Antioxidants/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Flowers/chemistry
19.
Front Plant Sci ; 14: 1128174, 2023.
Article in English | MEDLINE | ID: mdl-37229111

ABSTRACT

One of the effects of climate change in warm areas is the asynchrony between the dates of the technological and the phenolic maturity of grapes. This is important because the quality and color stability of red wines are directly related to the content and distribution of phenolic compounds. A novel alternative that has been proposed to delay grape ripening and make it coincide with a seasonal period more favorable for the formation of phenolic compounds is crop forcing. This consists of severe green pruning after flowering, when the buds of the following year have already differentiated. In this way, the buds formed during the same season are forced to sprout, initiating a new delayed cycle. The aim of the present work is to study the effect on the phenolic composition and color of wines elaborated from vines fully irrigated (C), grown using conventional non-forcing (NF) and forcing (F) techniques (C-NF and C-F), and wines from vines subjected to regulated irrigation (RI), grown using NF and F techniques (RI-NF and RI-F). The trial was carried out in an experimental vineyard of the Tempranillo variety located in a semi-arid area (Badajoz, Spain) in the 2017-2019 seasons. The wines (four by treatment) were elaborated and stabilized according to the classic methodologies for red wine. All wines had the same alcohol content, and malolactic fermentation was not carried out in any of them. Anthocyanin profiles were analyzed by HPLC, and total polyphenolic content, anthocyanin content, catechin content, the contribution to color due to co-pigmented anthocyanins, and various chromatic parameters were also determined. Although a significant effect of year was found for almost all the parameters analyzed, a general increasing trend in F wines was found for most of them. The anthocyanin profile of F wines was found to differ from that of C wines, especially in delphinidin, cyanidin, petunidin, and peonidin content. These results indicate that by using the forcing technique it was possible to increase the polyphenolic content by ensuring that the synthesis and accumulation of these substances occurred at more suitable temperatures.

20.
Foods ; 12(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37048309

ABSTRACT

Jabuticabas are wild fruits native to Brazil, and their peels, the main residue from jabuticaba processing, contain significant amounts of bioactive compounds, which are mostly phenolics. Conventional methods based on the estimation of total extractable phenolics (TEP-Folin-Ciocalteau) or total monomeric anthocyanins (TMA) have limitations and may not reflect the actual antioxidant potential of these peels. Analytical methods, such as high-performance liquid chromatography (HPLC), are more appropriate for the quantification of specific phenolics, and can be used as a reference for the construction of mathematical models in order to predict the amount of compounds using simple spectroscopic analysis, such as Fourier Transform Infrared Spectroscopy (FTIR). Therefore, the objectives of this study were (i) to evaluate the composition of specific polyphenols in flours prepared from jabuticaba peels and verify their correlation with TEP and TMA results from a previous study, and (ii) to employ FTIR coupled with chemometrics to predict the concentrations of these polyphenols in jabuticaba peel flours (JPFs) using HPLC as a reference method. Cyanidin-3-glucoside (C3G), ellagic acid (EA) and delphinidin-3-glucoside (D3G) were the main polyphenols found in the samples. The C3G contents ranged from 352.33 mg/100 g (S10) to 1008.73 mg/100 g (S22), with a strong correlation to TMA (r = 0.97; p = 0.00) and a moderate correlation to TEP (r = 0.45; p = 0.02). EA contents ranged from 163.65 mg/100 g (S23) to 334.69 mg/100 g (S11), with a moderate to strong correlation to TEP (r = 0.69; p = 0.00). The D3G values ranged from 94.99 mg/100 g (S10) to 203.36 mg/100 g (S5), with strong correlations to TMA (r = 0.91; p = 0.00) and C3G levels (r = 0.92; p = 0.00). The developed partial least squares-PLS models based on FTIR data provided satisfactory predictions of C3G and EA levels, reasonably matching those of HPLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...