Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 639
Filter
1.
World J Virol ; 13(2): 90761, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38984078

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) virus has been a world-known pandemic since February 2020. Multiple variances had been established; the most common variants in Israel were omicron and delta. AIM: To analyze and compare laboratory values in the "omicron" and "delta" variants of the coronavirus by conducting follow-up examinations and laboratory audits on COVID-19 patients admitted to our institution. METHODS: A retrospective study, two groups, 50 patients in each group. Patients examined positive for COVID-19 were divided into groups according to the common variant at the given time. We reviewed demographic data and laboratory results such as complete blood count and full chemistry, including electrolytes and coagulation parameters. RESULTS: The mean age was 52%, 66.53 ± 21.7 were female. No significance was found comparing laboratory results in the following disciplines: Blood count, hemoglobin, and lymphocytes (P = 0.41, P = 0.87, P = 0.97). Omicron and delta variants have higher neutrophil counts, though they are not significantly different (P = 0.38). Coagulation tests: Activated paritial thromoplastin test and international normalized ratio (P = 0.72, P = 0.68). We found no significance of abnormality for all electrolytes. CONCLUSION: The study compares laboratory results of blood tests between two variants of the COVID-19 virus - omicron and delta. We found no significance between the variants. Our results show the need for further research with larger data as well as the need to compare all COVID-19 variants.

2.
Article in English | MEDLINE | ID: mdl-38825749

ABSTRACT

AIMS: We conducted a One Health investigation to assess the source and transmission dynamics of SARS-CoV-2 infection in African lions (Panthera leo) at Utah's Hogle Zoo in Salt Lake City from October 2021 to February 2022. METHODS AND RESULTS: Following observation of respiratory illness in the lions, zoo staff collected pooled faecal samples and individual nasal swabs from four lions. All specimens tested positive for SARS-CoV-2 by reverse transcription-polymerase chain reaction (RT-PCR). The resulting investigation included: lion observation; RT-PCR testing of lion faeces every 1-7 days; RT-PCR testing of lion respiratory specimens every 2-3 weeks; staff interviews and RT-PCR testing; whole-genome sequencing of viruses from lions and staff; and comparison with existing SARS-CoV-2 human community surveillance sequences. In addition to all five lions, three staff displayed respiratory symptoms. All lions recovered and no hospitalizations or deaths were reported among staff. Three staff reported close contact with the lions in the 10 days before lion illness onset, one of whom developed symptoms and tested positive for SARS-CoV-2 on days 3 and 4, respectively, after lion illness onset. The other two did not report symptoms or test positive. Two staff who did not have close contact with the lions were symptomatic and tested positive on days 5 and 8, respectively, after lion illness onset. We detected SARS-CoV-2 RNA in lion faeces for 33 days and in lion respiratory specimens for 14 weeks after illness onset. The viruses from lions were genetically highly related to those from staff and two contemporaneous surveillance specimens from Salt Lake County; all were delta variants (AY.44). CONCLUSIONS: We did not determine the sources of these infections, although human-to-lion transmission likely occurred. The observed period of respiratory shedding was longer than in previously documented SARS-CoV-2 infections in large felids, indicating the need to further assess duration and potential implications of shedding.

3.
Vaccines (Basel) ; 12(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793756

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates.

4.
Curr Genomics ; 25(2): 69-87, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38751601

ABSTRACT

SARS-CoV-2 is a highly contagious and transmissible viral infection that first emerged in 2019 and since then has sparked an epidemic of severe respiratory problems identified as "coronavirus disease 2019" (COVID-19) that causes a hazard to human life and safety. The virus developed mainly from bats. The current epidemic has presented a significant warning to life across the world by showing mutation. There are different tests available for testing Coronavirus, and RT-PCR is the best, giving more accurate results, but it is also time-consuming. There are different options available for treating n-CoV-19, which include medications such as Remdesivir, corticosteroids, plasma therapy, Dexamethasone therapy, etc. The development of vaccines such as BNT126b2, ChAdOX1, mRNA-1273 and BBIBP-CorV has provided great relief in dealing with the virus as they decreased the mortality rate. BNT126b2 and ChAdOX1 are two n-CoV vaccines found to be most effective in controlling the spread of infection. In the future, nanotechnology-based vaccines and immune engineering techniques can be helpful for further research on Coronavirus and treatment of this deadly virus. The existing knowledge about the existence of SARS-CoV-2, along with its variants, is summarized in this review. This review, based on recently published findings, presents the core genetics of COVID-19, including heritable characteristics, pathogenesis, immunological biomarkers, treatment options and clinical updates on the virus, along with patents.

5.
BMC Infect Dis ; 24(1): 537, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807052

ABSTRACT

BACKGROUND: As SARS-CoV-2 continues to be relevant and cause illnesses, the effect of emerging virus variants on perinatal health remains to be elucidated. It was demonstrated that vertical transmission of SARS-CoV-2 is a relatively rare event in the original SARS-CoV-2 strain. However, very few reports describe vertical transmission related to the delta-variant. CASE PRESENTATION: We report a case of a preterm male neonate born to a mother with positive SARS-CoV-2 and mild respiratory complications. The neonate was born by cesarean section due to fetal distress. The rupture of the amniotic membrane was at delivery. The neonate had expected prematurity-related complications. His nasopharyngeal swabs for RT-PCR were positive from birth till three weeks of age. RT-ddPCR of the Placenta showed a high load of the SARS-CoV-2 virus with subgenomic viral RNA. RNAscope technique demonstrated both the positive strand of the S gene and the orf1ab negative strand. Detection of subgenomic RNA and the orf1ab negative strand indicats active viral replication in the placenta. CONCLUSIONS: Our report demonstrates active viral replication of the SARS-CoV-2 delta-variant in the placenta associated with vertical transmission in a preterm infant.


Subject(s)
COVID-19 , Infant, Premature , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/virology , Infant, Newborn , SARS-CoV-2/genetics , Female , Pregnancy , Male , Pregnancy Complications, Infectious/virology , Placenta/virology , Adult , RNA, Viral/genetics , Cesarean Section
6.
Viruses ; 16(5)2024 04 23.
Article in English | MEDLINE | ID: mdl-38793539

ABSTRACT

With the continuous spread of new SARS-CoV-2 variants of concern (VOCs), the monitoring of diagnostic test performances is mandatory. We evaluated the changes in antigen diagnostic tests' (ADTs) accuracy along the Delta to Omicron VOCs transition, exploring the N protein mutations possibly affecting ADT sensitivity and assessing the best sampling site for the diagnosis of Omicron infections. In total, 5175 subjects were enrolled from 1 October 2021 to 15 July 2022. The inclusion criteria were SARS-CoV-2 ADT combined with a same-day RT-PCR swab test. For the sampling site analysis, 61 patients were prospectively recruited during the Omicron period for nasal and oral swab analyses by RT-PCR. Next-Generation Sequencing data were obtained to evaluate the different sublineages. Using RT-PCR as a reference, 387 subjects resulted in becoming infected and the overall sensitivity of the ADT decreased from 63% in the Delta period to 33% in the Omicron period. This decrease was highly statistically significant (p < 0.001), and no decrease in viral load was detected at the RNA level. The nasal site presented a significantly higher viral load than the oral site during the Omicron wave. The reduced detection rate of Omicron infections by ADT should be considered in the global testing strategy to preserve accurate diagnoses across the changing SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Sensitivity and Specificity , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/virology , COVID-19/immunology , Male , Viral Load , Female , Antigens, Viral/immunology , COVID-19 Serological Testing/methods , Mutation , Middle Aged , Adult , Prospective Studies , RNA, Viral/genetics , Aged
7.
Gene ; 926: 148586, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38782223

ABSTRACT

This study introduces a detailed compartmental model developed to understand the complex dynamics of COVID-19 transmission, focusing on the Delta and Omicron variants in India. The model tracks disease progression through different population compartments, considering factors like vaccination, time-dependent transmission, economic burden and COVID-19 death rates, loss of vaccine-induced immunity, and the transition of asymptomatic cases to recovery. The model is validated against established epidemiological knowledge and real-world data, emphasizing dynamic parameterization and accurate representation of immunity dynamics. The basic reproduction number for both variants is calculated, and sensitivity analysis for various parameters is conducted. Time-dependent parameters are estimated using the discrete inverse method. The study also explores the economic burden, impact of different types of masks, vaccine efficacy, and vaccine-induced immunity through numerical analysis.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , India/epidemiology , SARS-CoV-2/immunology , Basic Reproduction Number , COVID-19 Vaccines/immunology , Pandemics
8.
Infect Dis Ther ; 13(5): 1037-1050, 2024 May.
Article in English | MEDLINE | ID: mdl-38607524

ABSTRACT

INTRODUCTION: Regdanvimab, a monoclonal antibody pharmaceutical, is the first Korean drug approved for treating coronavirus disease 2019 (COVID-19). We analyzed the therapeutic efficacy of regdanvimab in patients with the COVID-19 delta variant infection. METHODS: We retrospectively reviewed the electronic medical records of patients hospitalized at two Korean tertiary COVID-19 hospitals with COVID-19 delta variant infection between May 26, 2021, and January 30, 2022. To analyze the therapeutic efficacy of regdanvimab, the patients were divided into regdanvimab and non-regdanvimab groups and were 1:1 propensity-score (PS)-matched on age, severity at admission, and COVID-19 vaccination history. RESULTS: Of 492 patients, 262 (53.3%) and 230 (46.7%) were in the regdanvimab and non-regdanvimab groups, respectively. After PS matching the groups on age, severity at admission, and COVID-19 vaccination history, each group comprised 189 patients. The 30-day hospital mortality rates (0.0% vs. 1.6%, p = 0.030), proportions of patients with exacerbated conditions to severe/critical/died (9.5% vs. 16.4%, p = 0.047), proportions who received oxygen therapy because of pneumonia exacerbation (7.4% vs. 16.4%, p = 0.007), and proportions with a daily National Early Warning Score ≥ 5 from hospital day 2 were significantly lower in the regdanvimab group. CONCLUSIONS: We showed that regdanvimab reduced the exacerbation rates of conditions and mortality in patients with the COVID-19 delta variant infection. Thus, it is recommended to streamline the drug approval system during epidemics of new variant viruses to improve the availability and usage of therapeutics for patients. To facilitate this, relevant institutional support is required.

9.
Vaccine ; 42(15): 3467-3473, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38644077

ABSTRACT

COVID-19 vaccine uptake in the Federation of Bosnia and Herzegovina (FBiH) accelerated in the second half of 2021, with greater vaccine availability. In this study, we estimated the vaccine effectiveness (VE) of complete primary series BBIBP-CorV vaccine against COVID-19 in patients aged 60 years and older, during the Delta-dominant period, using a test-negative case-control design. Surveillance sites were 11 primary health care centers (PHC) collecting patient data from October 1, 2021, to January 4, 2022, retrospectively according to a common protocol. In total, we included 1711 participants in the analysis: 933 cases and 778 controls. Of the 933 cases, 508 (54.4 %) had mild and 425 (45.6 %) had moderate to severe disease presentation. We observed no effectiveness against mild COVID-19. Overall vaccine effectiveness was 65.0 % (95 %CI: 40.1-79.5) against moderate to severe COVID-19. In time since vaccination analysis, VE was 78.7 % (95 % CI: 54.8-89.9) in patients who received their last dose < 90 days before onset; 66.0 % (95 % CI: -0.5-88.5) in those 90-119 days before onset; 42.1 % (95 % CI: -88.6-82.3) in those 120-149 days before onset and 45.0 % (95 % CI: -94.0-84.4) in those ≥ 150 days before onset. In our study, two doses of BBIBP-CorV provided considerable protection against moderate to severe COVID-19 in older adults, highest within 3 months after second dose, during the Delta-dominant period. Point estimates declined thereafter, suggesting a need for additional doses.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Aged , Male , Bosnia and Herzegovina , Female , Middle Aged , Case-Control Studies , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Retrospective Studies , Aged, 80 and over , Vaccination , Vaccines, Inactivated
10.
Viruses ; 16(4)2024 04 16.
Article in English | MEDLINE | ID: mdl-38675958

ABSTRACT

Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020-2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020-2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human-animal interface and to assess their role as potential animal reservoirs.


Subject(s)
Animals, Zoo , COVID-19 , SARS-CoV-2 , Tigers , Animals , Dogs , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/classification , COVID-19/transmission , COVID-19/epidemiology , COVID-19/veterinary , COVID-19/virology , Tigers/virology , Cats , Animals, Zoo/virology , England/epidemiology , Humans , Phylogeny , Dog Diseases/virology , Dog Diseases/epidemiology , Dog Diseases/transmission , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology
11.
IJID Reg ; 11: 100348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38601946

ABSTRACT

Objectives: We investigated the genetic variations in the Alpha, Delta, and Omicron variants of SARS-CoV-2 and their association with clinical status and treatment outcomes in patients with COVID-19. Methods: MiSeq was used to sequence the Alpha, Delta, and Omicron genomes, and MEGA 6.6 was used to define the nucleotide variations. We determined the association between clinical severity and treatment outcomes for the SARS-CoV-2 variants. Results: The BA.1.1 and BA.2 lineages of the Omicron variant had 57-59 mutations, which is 2-2.7-fold higher than that of the B.1.1.7 (Alpha), B.1.617.2, and AY.57 (Delta) lineages. We found distinct mutations in SARS-CoV-2: five in Alpha (C26305T, G26558T, G7042T, C14120T, and C27509T); seven in Delta (C26408T, C1403T, C5184T, C9891T, T11418C, C11514T, and C22227T); and three in Omicron (C26408T, C8991T, and C25810T). Patients with the Delta variant had a severe rate of 23.8%, a critical rate of 53.7%, and a mortality rate of 38.9%, which were significantly higher than those with the Omicron and Alpha variants. Conclusions: The Alpha, Delta, and Omicron variants in this study had genetic diversity and differed from the strains reported in other countries, with the Delta variant producing significantly more clinical severity and mortality than the Alpha and Omicron variants.

12.
Sci Rep ; 14(1): 7729, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565881

ABSTRACT

The southernmost part of Thailand is a unique and culturally diverse region that has been greatly affected by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak during the coronavirus disease-2019 pandemic. To gain insights into this situation, we analyzed 1942 whole-genome sequences of SARS-CoV-2 obtained from the five southernmost provinces of Thailand between April 2021 and March 2022, together with those publicly available in the Global Initiative on Sharing All Influenza Data database. Our analysis revealed evidence for transboundary transmissions of the virus in and out of the five southernmost provinces during the study period, from both domestic and international sources. The most prevalent viral variant in our sequence dataset was the Delta B.1.617.2.85 variant, also known as the Delta AY.85 variant, with many samples carrying a non-synonymous mutation F306L in their spike protein. Protein-protein docking and binding interface analyses suggested that the mutation may enhance the binding between the spike protein and host cell receptor protein angiotensin-converting enzyme 2, and we found that the mutation was significantly associated with an increased fatality rate. This mutation has also been observed in other SARS-CoV-2 variants, suggesting that it is of particular interest and should be monitored.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Thailand/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Mutation
13.
J Infect Dev Ctries ; 18(3): 332-336, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38635610

ABSTRACT

INTRODUCTION: A COVID-19 outbreak occurred at the end of October 2021 among pilgrims returning from Medjugorje (Bosnia and Herzegovina). METHODOLOGY: Whole genome sequencing (WGS) of SARS-CoV-2, epidemiological data, and phylogenetic analysis were used to reconstruct outbreak dynamics. RESULTS: The results suggest that only in one case, associated with the SARS-CoV-2 sub-lineage AY.9.2, it is possible to trace back the place of contagion to Medjugorje, while the other cases were likely to be acquired in the country of origin. CONCLUSIONS: The combined use of phylogenetic data derived from WGS, and epidemiological data allowed us to study epidemic dynamics and to formulate a possible hypothesis on the place of exposure to SARS-CoV-2. The identification of different sub-lineages of the SARS-CoV-2 Delta variant also suggested that different chains of transmission contributed to the outbreak.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Phylogeny , Disease Outbreaks
14.
J Pers Med ; 14(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38672984

ABSTRACT

BACKGROUND: As the global battle against the COVID-19 pandemic endures, the spread of the Delta variant has introduced nuanced challenges, prompting a nuanced examination. MATERIALS AND METHODS: We performed a multilevel logistic regression analysis encompassing 197 patients, comprising 44 vaccinated individuals (V group) and 153 unvaccinated counterparts (UV). These patients, afflicted with the Delta variant of SARS-CoV-2, were hospitalized between October 2021 and February 2022 at the COVID-19 department of a University Centre in Cluj-Napoca, Romania. We compared patient characteristics, CT lung involvement, Padua score, oxygen saturation (O2 saturation), ventilation requirements, dynamics of arterial blood gas (ABG) parameters, ICU admission rates, and mortality rates between the two groups. RESULTS: The UV group exhibited a statistically significant (p < 0.05) proclivity toward developing a more severe form of infection, marked by elevated rates of lung involvement, oxygen requirement, ICU admission, and mortality. CONCLUSION: Our findings underscore the substantial efficacy of the vaccine in diminishing the incidence of severe disease, lowering the rates of ICU admissions, and mitigating mortality among hospitalized patients.

15.
Article in English | MEDLINE | ID: mdl-38445691

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) caused the outbreak of coronavirus disease 2019 (COVID-19) in late 2019 in Wuhan, China. In early 2020, the disease spread rapidly around the world. Since the pandemic, SARS-CoV-2 has evolved dramatically into a wide variety of variants endowed with devastating properties. As of March 6, 2022, five SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron strains have been identified. Due to the crucial importance of understanding the differences between the Omicron and Delta variants, this systematic review was conducted. METHODS: This systematic review investigated new variants of Omicron SARS-CoV-2 based on cur-rent studies. Online databases were searched for English articles as of January 03, 2023. Selection of publications was a two-step process of title/abstract and full-text assessment against eligibility crite-ria. The relevant data from the included articles were systematically collected and organized in a designed table for analysis. To ensure the quality of the review, the PRISMA checklist and Newcas-tle-Ottawa Scale (NOS) of quality assessment were utilized. RESULTS: The data extracted from 58 articles were analyzed, including 10003 pieces of evidence. Lower risk of hospitalization, ICU admission, and mortality after vaccination were reported in the Omicron variant compared to the Delta variant. Additionally, the Delta variant led to more severe clinical symptoms in comparison to the Omicron variant. CONCLUSION: The Omicron variant of SARS-CoV-2 results in less severe disease outcomes as com-pared to Delta. Nevertheless, it remains crucial to maintain ongoing monitoring, implement contain-ment measures, and adapt vaccination protocols to effectively address the evolving variants.

16.
mSphere ; 9(3): e0081223, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38426787

ABSTRACT

Pregnant patients are at greater risk of hospitalization with severe COVID-19 than non-pregnant people. This was a retrospective observational cohort study of remnant clinical specimens from patients who visited acute care hospitals within the Johns Hopkins Health System in the Baltimore, MD-Washington DC, area between October 2020 and May 2022. Participants included confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected pregnant people and matched non-pregnant people (the matching criteria included age, race/ethnicity, area deprivation index, insurance status, and vaccination status to ensure matched demographics). The primary dependent measures were clinical COVID-19 outcomes, infectious virus recovery, viral RNA levels, and mucosal anti-spike (S) IgG titers from upper respiratory tract samples. A total of 452 individuals (117 pregnant and 335 non-pregnant) were included in the study, with both vaccinated and unvaccinated individuals represented. Pregnant patients were at increased risk of hospitalization (odds ratio [OR] = 4.2; confidence interval [CI] = 2.0-8.6), intensive care unit admittance (OR = 4.5; CI = 1.2-14.2), and being placed on supplemental oxygen therapy (OR = 3.1; CI = 1.3-6.9). Individuals infected during their third trimester had higher mucosal anti-S IgG titers and lower viral RNA levels (P < 0.05) than those infected during their first or second trimesters. Pregnant individuals experiencing breakthrough infections due to the Omicron variant had reduced anti-S IgG compared to non-pregnant patients (P < 0.05). The observed increased severity of COVID-19 and reduced mucosal antibody responses particularly among pregnant participants infected with the Omicron variant suggest that maintaining high levels of SARS-CoV-2 immunity through booster vaccines may be important for the protection of this at-risk population.IMPORTANCEIn this retrospective observational cohort study, we analyzed remnant clinical samples from non-pregnant and pregnant individuals with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections who visited the Johns Hopkins Hospital System between October 2020 and May 2022. Disease severity, including intensive care unit admission, was greater among pregnant than non-pregnant patients. Vaccination reduced recovery of infectious virus and viral RNA levels in non-pregnant patients, but not in pregnant patients. In pregnant patients, increased nasopharyngeal viral RNA levels and recovery of infectious virus were associated with reduced mucosal IgG antibody responses, especially among women in their first trimester of pregnancy or experiencing breakthrough infections from Omicron variants. Taken together, this study provides insights into how pregnant patients are at greater risk of severe COVID-19. The novelty of this study is that it focuses on the relationship between the mucosal antibody response and its association with virus load and disease outcomes in pregnant people, whereas previous studies have focused on serological immunity. Vaccination status, gestational age, and SARS-CoV-2 omicron variant impact mucosal antibody responses and recovery of infectious virus from pregnant patients.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Humans , Female , SARS-CoV-2 , Antibody Formation , Breakthrough Infections , Cohort Studies , Retrospective Studies , RNA, Viral , Immunoglobulin G
17.
Front Public Health ; 12: 1320059, 2024.
Article in English | MEDLINE | ID: mdl-38504678

ABSTRACT

Introduction: A substantial proportion of the over 700 million COVID-19 cases world-wide experience long-term symptoms. The objectives of this study were to compare symptom trajectories and risk factors for post-COVID-19 condition after Delta and Omicron infection. Methods: This study consecutively recruited patients with SARS-CoV-2 infection from November 2021 to March 2022. We recorded demographics, comorbidities, vaccination status, sick leave, and 18 symptoms during acute infection and after 4 months. The primary outcome measures were symptoms during acute infection and after 4 months. Secondary outcome measures were work and school absenteeism. Results: We followed a cohort of 1,374 non-hospitalized COVID-19 patients in Bergen, Norway, at three time points. The median age was 39.8 years and 11% were children <16 years. Common acute upper respiratory symptoms waned during follow-up. Fatigue remained common from acute infection (40%) until after 4 months (37%). Four months post-infection, patients reported increased frequencies of dyspnea (from 15% during acute illness to 25% at 4 months, p < 0.001), cognitive symptoms (from 9 to 32%, p < 0.001) and depression (from 1 to 17%, p < 0.001). Patients infected with Omicron reported less dyspnea (22% versus 27%, p = 0.046) and smell/taste problems (5% versus 19%, p < 0.001) at 4 months follow-up than those with Delta infection. Comorbidities and female sex were risk factors for persistent dyspnea and cognitive symptoms. Ten percent reported sick leave after acute illness, and vaccination reduced the risk of absenteeism (adjusted risk ratio: 0.36, 95% confidence interval: 0.15, 0.72, p = 0.008). Conclusion: At 4 months, home-isolated patients infected with Omicron reported overall comparable symptom burden, but less dyspnea and smell/taste problems than Delta infected patients. Several acute symptoms waned during follow-up. It is worrying that dyspnea, neurocognitive symptoms, and particularly depression, increased significantly during the first 4 months after acute infection. Previous vaccination was protective against prolonged sick leave.


Subject(s)
COVID-19 , Child , Humans , Female , Adult , Acute Disease , COVID-19/epidemiology , SARS-CoV-2 , Disease Progression , Norway/epidemiology , Dyspnea
18.
J Med Virol ; 96(2): e29459, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345153

ABSTRACT

We recently established a long-term SARS-CoV-2 infection model using lung-cancer xenograft mice and identified mutations that arose in the SARS-CoV-2 genome during long-term propagation. Here, we applied our model to the SARS-CoV-2 Delta variant, which has increased transmissibility and immune escape compared with ancestral SARS-CoV-2. We observed limited mutations in SARS-CoV-2 Delta during long-term propagation, including two predominant mutations: R682W in the spike protein and L330W in the nucleocapsid protein. We analyzed two representative isolates, Delta-10 and Delta-12, with both predominant mutations and some additional mutations. Delta-10 and Delta-12 showed lower replication capacity compared with SARS-CoV-2 Delta in cultured cells; however, Delta-12 was more lethal in K18-hACE2 mice compared with SARS-CoV-2 Delta and Delta-10. Mice infected with Delta-12 had higher viral titers, more severe histopathology in the lungs, higher chemokine expression, increased astrocyte and microglia activation, and extensive neutrophil infiltration in the brain. Brain tissue hemorrhage and mild vacuolation were also observed, suggesting that the high lethality of Delta-12 was associated with lung and brain pathology. Our long-term infection model can provide mutant viruses derived from SARS-CoV-2 Delta and knowledge about the possible contributions of emergent mutations to the properties of new variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Heterografts , SARS-CoV-2/genetics , Brain
19.
BMC Public Health ; 24(1): 556, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388348

ABSTRACT

BACKGROUND: SARS-CoV-2 infections usually cause immune dysregulation in the human body. Studies of immunological changes resulting from coinfections with Mycobacterium tuberculosis (Mtb) or HIV are limited. METHODS: We conducted a retrospective study focusing on patients with COVID-19. A total of 550 patients infected with SARS-CoV-2 were enrolled in our study and categorized into four groups based on the presence of coinfections; 166 Delta-infected patients, among whom 103 patients had no coinfections, 52 who were coinfected with Mtb, 11 who were coinfected with HIV, and 384 Omicron-infected patients. By collecting data on epidemiologic information, laboratory findings, treatments, and clinical outcomes, we analyzed and compared clinical and immunological characteristics. RESULTS: Compared with those in the Delta group, the median white blood cell, CD4 + T-cell and B-cell counts were lower in the Mtb group and the HIV group. Except for those in the Omicron group, more than half of the patients in the three groups had abnormal chest CT findings. Among the three groups, there were no significant differences in any of the cytokines. Compared with those in the Delta group, the disease duration and LOS were longer in the Mtb group and the HIV group. For unvaccinated Delta-infected patients, in the Mtb and HIV groups, the number of B cells and CD4 + T cells was lower than that in the Delta group, with no significant difference in the LOS or disease duration. In the Mtb group, three (6%) patients presented with a disease duration greater than four months and had decreased lymphocyte and IL17A counts, possibly due to double infections in the lungs caused by SARS-CoV-2 and M. tuberculosis. CONCLUSIONS: We found that SARS-CoV-2 patients coinfected with Mtb or HIV exhibited a longer disease duration and longer LOS, with a decrease in B cells and CD4 + T cells, suggesting that these cells are related to immune function. Changes in cytokine levels suggest that coinfection with Mtb or HIV does not result in dysregulation of the immune response. Importantly, we discovered a chronic course of coinfection involving more than four months of Mtb and SARS-CoV-2 infection.


Subject(s)
COVID-19 , Coinfection , HIV Infections , Mycobacterium tuberculosis , Humans , Coinfection/epidemiology , SARS-CoV-2 , Retrospective Studies , HIV Infections/complications , HIV Infections/epidemiology , Cytokines
20.
Vaccine X ; 16: 100444, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38327768

ABSTRACT

Although the global pandemic of SARS-CoV-2 has passed, there are still regional outbreaks that continue to jeopardize human health. Hence, there is still a great deal of interest in developing an efficient vaccine that can quickly and effectively prevent reemerging outbreaks of SARS-CoV-2. Delta variant was once a dominant strain in the world in 2021, and we first constructed a recombinant RBDdelta-Fc fusion vaccine by coupling the RBD of Delta variant with the human Fc fragment. This Fc fusion strategy increases the immunogenicity of the recombinant RBD vaccine, with a long-lasting high level of IgG antibodies and neutralizing antibodies induced by RBDdelta-Fc vaccine. This RBDdelta-Fc vaccine, as well as the RBD-Fc vaccine prepared in our previously study, could trigger a durable immune effect by the heterologous boosting immunity, and the RBD-Fc induced a quicker humoral immune response than the homologous immunization with inactivated vaccines. In conclusion, the Fc fusion strategy has a significant role in enhancing the immunogenicity of recombinant protein vaccines, thus promising the development of a safe and efficient vaccine for the heterologous boosting against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...