Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Front Mol Neurosci ; 17: 1009404, 2024.
Article in English | MEDLINE | ID: mdl-38660384

ABSTRACT

Brain-derived neurotrophic factor (BDNF) and its tropomyosin receptor kinase B (TrkB) are important signaling proteins that regulate dendritic growth and maintenance in the central nervous system (CNS). After binding of BDNF, TrkB is endocytosed into endosomes and continues signaling within the cell soma, dendrites, and axon. In previous studies, we showed that BDNF signaling initiated in axons triggers long-distance signaling, inducing dendritic arborization in a CREB-dependent manner in cell bodies, processes that depend on axonal dynein and TrkB activities. The binding of BDNF to TrkB triggers the activation of different signaling pathways, including the ERK, PLC-γ and PI3K-mTOR pathways, to induce dendritic growth and synaptic plasticity. How TrkB downstream pathways regulate long-distance signaling is unclear. Here, we studied the role of PLC-γ-Ca2+ in BDNF-induced long-distance signaling using compartmentalized microfluidic cultures. We found that dendritic branching and CREB phosphorylation induced by axonal BDNF stimulation require the activation of PLC-γ in the axons of cortical neurons. Locally, in axons, BDNF increases PLC-γ phosphorylation and induces intracellular Ca2+ waves in a PLC-γ-dependent manner. In parallel, we observed that BDNF-containing signaling endosomes transport to the cell body was dependent on PLC-γ activity and intracellular Ca2+ stores. Furthermore, the activity of PLC-γ is required for BDNF-dependent TrkB endocytosis, suggesting a role for the TrkB/PLC-γ signaling pathway in axonal signaling endosome formation.

2.
J Comp Neurol ; 532(2): e25588, 2024 02.
Article in English | MEDLINE | ID: mdl-38335050

ABSTRACT

Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes. However, it is not known if there are differences in the cellular properties underlying their functional differences; thus, we compared the neuroanatomical, electrophysiological, and morphological properties of MCH cells in male and female Mch-cre;L10-Egfp reporter mice. Half of MCH cells expressed CART and were most prominent in the medial hypothalamus. Whole-cell patch-clamp recordings revealed differences in their passive and active membrane properties in a sex-dependent manner. Female MCH/CART+ cells had lower input resistances, but male cells largely differed in their firing properties. All MCH cells increased firing when stimulated, but their firing frequency decreases with sustained stimulation. MCH/CART+ cells showed stronger spike rate adaptation than MCH/CART- cells. The kinetics of excitatory events at MCH cells also differed by cell type, as the rising rate of excitatory events was slower at MCH/CART+ cells. By reconstructing the dendritic arborization of our recorded cells, we found no sex differences, but male MCH/CART+ cells had less dendritic length and fewer branch points. Overall, distinctions in topographical division and cellular properties between MCH cells add to their heterogeneity and help elucidate their response to stimuli or effect on modulating their respective neural networks.


Subject(s)
Cocaine , Hypothalamic Hormones , Animals , Female , Male , Mice , Amphetamines/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Melanins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Pituitary Hormones/metabolism
3.
Neurosci Bull ; 39(10): 1512-1532, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37326884

ABSTRACT

The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Neuronal Plasticity , Neurons , Animals , Mice , Enhancer of Zeste Homolog 2 Protein/metabolism , Histone Methyltransferases/metabolism , Histones/genetics , Morphogenesis , Neurons/metabolism
4.
Adv Drug Alcohol Res ; 3: 11158, 2023.
Article in English | MEDLINE | ID: mdl-38389817

ABSTRACT

Objective: Earlier, we and others have reported that alcohol exposure in adolescent rat impaired performance of a spatial memory task in the Morris water maze. The goal of the present study was to investigate the effects of acute adolescent alcohol treatment on the hippocampus-dependent (contextual fear conditioning) and hippocampus-independent (cued fear) memories. The study also looked at the structural changes in anterior CA1 hippocampal neurons in adolescent alcohol-treated rats. Methods: Adolescent female rats were administered with a single dose of alcohol (1.0, 1.5, or 2.0 g/kg) or vehicle either before training (pre-training) or after training (pre-testing). Experimental and control rats were trained in the fear conditioning paradigm, and 24 h later tested for both contextual fear conditioning as well as cued fear memory. Separate groups of rats were treated with either alcohol (2 g/kg) or vehicle and sacrificed 24 h later. Their brains were harvested and processed for rapid Golgi staining. Randomly selected CA1 pyramidal neurons were analyzed for dendritic branching and dendritic spine density. Results: Pre-training alcohol dose-dependently attenuated acquisition of hippocampus-dependent contextual fear conditioning but had no effect on the acquisition of amygdala-associated cued fear. When administered following training (pre-testing), alcohol did not alter either contextual conditioning or cued fear memory. Golgi stained CA1 pyramidal neurons in alcohol treated female rats had reduced basilar tree branching and less complex dendritic arborization. Conclusion: Alcohol specifically impaired hippocampal learning in adolescent rats but not amygdala-associated cued fear memory. Compared to vehicle-treated rats, CA1 hippocampal pyramidal neurons in alcohol-treated rats had less complex dendritic morphology. Together, these data suggest that adolescent alcohol exposure produces changes in the neuronal organization of the hippocampus, and these changes may be related to impairments in hippocampus-dependent memory formation.

5.
Neuroscience Bulletin ; (6): 1512-1532, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010641

ABSTRACT

The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.


Subject(s)
Animals , Mice , Enhancer of Zeste Homolog 2 Protein/metabolism , Histone Methyltransferases/metabolism , Histones/genetics , Morphogenesis , Neuronal Plasticity , Neurons/metabolism
6.
J Ayurveda Integr Med ; 13(4): 100651, 2022.
Article in English | MEDLINE | ID: mdl-36370484

ABSTRACT

BACKGROUND: In Ayurveda; an Indian system of traditional medicine, Ocimum sanctum is said to have remedial effect on hriddaurbalya (problems affecting the mind), aakshepayukta vikara (nervous disorders) and shiroroga (diseases of head). Hence, in Ayurvedic practice, it is profoundly used as an antistress medicine. Stress is known to affect neurons of functionally significant brain regions like substantia nigra. However, experimental evidence showing its effect on morphology of substantia nigral neurons is lacking. In addition, whether the O. sanctum treatment attenuates stress induced substantia nigral neuronal structural changes is not known. OBJECTIVES: To know the effect of stress on morphology of substantia nigral neurons and the effect of O. sanctum fresh leaf extract (OSE) on substantia nigral neurons of stressed rats. MATERIAL AND METHODS: Present study included three experiments. Experiment I: To study the effect of 3 and 6 weeks of foot shock stress in rats; Experiment II- To study the effect of 3 weeks of OSE treatment on 3 week-stress undergoing rats and on 3 week-stressed rats; Experiment III- To study the effect of 6 weeks of OSE treatment in 6 week-stress undergoing rats and in 6 week-stressed rats. RESULTS: In experiment I, stress had significant deleterious effect on dendritic arborization of substantia nigral neurons. Experiments II and III showed prevention and attenuation of the stress induced dendritic atrophy of substantia nigral neurons in both 2 ml and 4 ml OSE treatment groups. Protective effect of OSE was more pronounced in rats which are treated for a longer duration. CONCLUSIONS: Foot shock stress induces neuronal damage in the substantia nigra of rats. Treatment with fresh leaf extract of O. sanctum could prevent and attenuate the foot shock stress induced behavioral deficit and substantia nigral neuronal damage.

7.
Cell Rep ; 36(7): 109522, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34407407

ABSTRACT

Neuro-vascular communication is essential to synchronize central nervous system development. Here, we identify angiopoietin/Tie2 as a neuro-vascular signaling axis involved in regulating dendritic morphogenesis of Purkinje cells (PCs). We show that in the developing cerebellum Tie2 expression is not restricted to blood vessels, but it is also present in PCs. Its ligands angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are expressed in neural cells and endothelial cells (ECs), respectively. PC-specific deletion of Tie2 results in reduced dendritic arborization, which is recapitulated in neural-specific Ang1-knockout and Ang2 full-knockout mice. Mechanistically, RNA sequencing reveals that Tie2-deficient PCs present alterations in gene expression of multiple genes involved in cytoskeleton organization, dendritic formation, growth, and branching. Functionally, mice with deletion of Tie2 in PCs present alterations in PC network functionality. Altogether, our data propose Ang/Tie2 signaling as a mediator of intercellular communication between neural cells, ECs, and PCs, required for proper PC dendritic morphogenesis and function.


Subject(s)
Angiopoietin-2/metabolism , Dendrites/metabolism , Morphogenesis , Purkinje Cells/metabolism , Receptor, TIE-2/metabolism , Signal Transduction , Angiopoietin-1/metabolism , Animals , Cerebellum/blood supply , Cerebellum/growth & development , Gene Deletion , Gene Expression Regulation , Integrases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Biological , Organ Specificity
8.
Neuroimage ; 241: 118424, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34311067

ABSTRACT

This paper investigates the impact of cell body (namely soma) size and branching of cellular projections on diffusion MR imaging (dMRI) and spectroscopy (dMRS) signals for both standard single diffusion encoding (SDE) and more advanced double diffusion encoding (DDE) measurements using numerical simulations. The aim is to investigate the ability of dMRI/dMRS to characterize the complex morphology of brain cells focusing on these two distinctive features of brain grey matter. To this end, we employ a recently developed computational framework to create three dimensional meshes of neuron-like structures for Monte Carlo simulations, using diffusion coefficients typical of water and brain metabolites. Modelling the cellular structure as realistically connected spherical soma and cylindrical cellular projections, we cover a wide range of combinations of sphere radii and branching order of cellular projections, characteristic of various grey matter cells. We assess the impact of spherical soma size and branching order on the b-value dependence of the SDE signal as well as the time dependence of the mean diffusivity (MD) and mean kurtosis (MK). Moreover, we also assess the impact of spherical soma size and branching order on the angular modulation of DDE signal at different mixing times, together with the mixing time dependence of the apparent microscopic anisotropy (µA), a promising contrast derived from DDE measurements. The SDE results show that spherical soma size has a measurable impact on both the b-value dependence of the SDE signal and the MD and MK diffusion time dependence for both water and metabolites. On the other hand, we show that branching order has little impact on either, especially for water. In contrast, the DDE results show that spherical soma size has a measurable impact on the DDE signal's angular modulation at short mixing times and the branching order of cellular projections significantly impacts the mixing time dependence of the DDE signal's angular modulation as well as of the derived µA, for both water and metabolites. Our results confirm that SDE based techniques may be sensitive to spherical soma size, and most importantly, show for the first time that DDE measurements may be more sensitive to the dendritic tree complexity (as parametrized by the branching order of cellular projections), paving the way for new ways of characterizing grey matter morphology, non-invasively using dMRS and potentially dMRI.


Subject(s)
Cell Size , Computer Simulation , Diffusion Magnetic Resonance Imaging/methods , Gray Matter/cytology , Gray Matter/diagnostic imaging , Models, Neurological , Brain/cytology , Brain/diagnostic imaging , Brain/physiology , Carisoprodol , Gray Matter/physiology , Humans , Magnetic Resonance Spectroscopy/methods , Monte Carlo Method
9.
Cells ; 10(6)2021 05 22.
Article in English | MEDLINE | ID: mdl-34067418

ABSTRACT

PARP6, a member of a family of enzymes (17 in humans) known as poly-ADP-ribose polymerases (PARPs), is a neuronally enriched PARP. While previous studies from our group show that Parp6 is a regulator of dendrite morphogenesis in rat hippocampal neurons, its function in the nervous system in vivo is poorly understood. Here, we describe the generation of a Parp6 loss-of-function mouse model for examining the function of Parp6 during neurodevelopment in vivo. Using CRISPR-Cas9 mutagenesis, we generated a mouse line that expressed a Parp6 truncated variant (Parp6TR) in place of Parp6WT. Unlike Parp6WT, Parp6TR is devoid of catalytic activity. Homozygous Parp6TR do not exhibit obvious neuromorphological defects during development, but nevertheless die perinatally. This suggests that Parp6 catalytic activity is important for postnatal survival. We also report PARP6 mutations in six patients with several neurodevelopmental disorders, including microencephaly, intellectual disabilities, and epilepsy. The most severe mutation in PARP6 (C563R) results in the loss of catalytic activity. Expression of Parp6C563R in hippocampal neurons decreases dendrite morphogenesis. To gain further insight into PARP6 function in neurons we also performed a BioID proximity labeling experiment in hippocampal neurons and identified several microtubule-binding proteins (e.g., MAP-2) using proteomics. Taken together, our results suggest that PARP6 is an essential microtubule-regulatory gene in mice, and that the loss of PARP6 catalytic activity has detrimental effects on neuronal function in humans.


Subject(s)
ADP Ribose Transferases/metabolism , Hippocampus/metabolism , Poly(ADP-ribose) Polymerases/metabolism , ADP Ribose Transferases/genetics , Animals , Cell Line, Tumor , Humans , Mice, Knockout , Protein Binding/physiology
10.
J Neurosci Res ; 99(5): 1390-1400, 2021 May.
Article in English | MEDLINE | ID: mdl-33538046

ABSTRACT

Nitric oxide (NO) is an important signaling molecule with many functions in the nervous system. Derived from the enzymatic conversion of arginine by several nitric oxide synthases (NOS), NO plays significant roles in neuronal developmental events such as the establishment of dendritic branching or arbors. A brief summary of the discovery, molecular biology, and chemistry of NO, and a description of important NO-mediated signal transduction pathways with emphasis on the role for NO in the development of dendritic branching during neurodevelopment are presented. Important sex differences in neuronal nitric oxide synthase expression during neuronal development are considered. Finally, a survey of endogenous and exogenous substances that disrupt dendritic patterning is presented with particular emphasis on how these molecules may drive NO-mediated sex differences in dendritic branching.


Subject(s)
Brain/physiology , Dendrites/physiology , Neurogenesis/physiology , Neuronal Plasticity/physiology , Nitric Oxide/physiology , Sex Characteristics , Animals , Brain/cytology , Female , Humans , Male
11.
J Neurochem ; 157(6): 2055-2069, 2021 06.
Article in English | MEDLINE | ID: mdl-33220080

ABSTRACT

Rarefaction of the dendritic tree leading to neuronal dysfunction is a hallmark of many neurodegenerative diseases and we have shown previously that heat shock protein B5 (HspB5)/αB-crystallin is able to increase dendritic complexity in vitro. The aim of this study was to investigate if this effect is also present in vivo, if HspB5 can counteract dendritic rarefaction under pathophysiological conditions and the impact of phosphorylation of HspB5 in this process. HspB5 and eight mutants inhibiting or mimicking phosphorylation at the three phosphorylation sites serine (S)19, S45, and S59 were over-expressed in cultured rat hippocampal neurons with subsequent investigation of the complexity of the dendritic tree. Sholl analysis revealed significant higher complexity of the dendritic tree after over-expression of wild-type HspB5 and the mutant HspB5-AEE. All other mutants showed no or minor effects. For in vivo investigation in utero electroporation of mouse embryos was applied. At embryonal day E15.5 the respective plasmids were injected, cornu ammonis 1 (CA1) pyramidal cells transfected by electroporation and their basal dendritic trees were analyzed at post-natal day P15. In vivo, HspB5 and HspB5-AEE led to an increase of total dendritic length as well as a higher complexity. Finally, the dendritic effect of HspB5 was investigated under a pathophysiological condition, that is, iron deficiency which reportedly results in dendritic rarefaction. HspB5 and HspB5-AEE but not the non-phosphorylatable mutant HspB5-AAA significantly counteracted the dendritic rarefaction. Thus, our data suggest that up-regulation and selective phosphorylation of HspB5 in neurodegenerative diseases may preserve dendritic morphology and counteract neuronal dysfunction.


Subject(s)
Crystallins/metabolism , Dendrites/metabolism , Hippocampus/metabolism , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Animals , Cells, Cultured , Dendrites/pathology , Female , Hippocampus/cytology , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Neurons/pathology , Phosphorylation/physiology , Pregnancy , Rats , Rats, Sprague-Dawley
12.
Mol Neurobiol ; 58(4): 1330-1344, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33165828

ABSTRACT

MicroRNAs are known to be critical regulators of neuronal plasticity. The highly conserved, hypoxia-regulated microRNA-210 (miR-210) has been shown to be associated with long-term memory in invertebrates and dysregulated in neurodevelopmental and neurodegenerative disease models. However, the role of miR-210 in mammalian neuronal function and cognitive behaviour remains unexplored. Here we generated Nestin-cre-driven miR-210 neuronal knockout mice to characterise miR-210 regulation and function using in vitro and in vivo methods. We identified miR-210 localisation throughout neuronal somas and dendritic processes and increased levels of mature miR-210 in response to neural activity in vitro. Loss of miR-210 in neurons resulted in higher oxidative phosphorylation and ROS production following hypoxia and increased dendritic arbour density in hippocampal cultures. Additionally, miR-210 knockout mice displayed altered behavioural flexibility in rodent touchscreen tests, particularly during early reversal learning suggesting processes underlying updating of information and feedback were impacted. Our findings support a conserved, activity-dependent role for miR-210 in neuroplasticity and cognitive function.


Subject(s)
Behavior, Animal , Dendrites/metabolism , MicroRNAs/metabolism , Animals , Hippocampus/cytology , Learning , Male , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Models, Biological , Up-Regulation/genetics
13.
Front Cell Neurosci ; 14: 203, 2020.
Article in English | MEDLINE | ID: mdl-32733208

ABSTRACT

Parvalbumin positive (PV+) interneurons play a pivotal role in cognition and are known to be regulated developmentally and by ovarian hormones. The onset of puberty represents the end of a period of optimal learning when impairments in synaptic plasticity are observed in the CA1 hippocampus of female mice. Therefore, we tested whether the synaptic inhibitory current generated by PV+ interneurons is increased at puberty and contributes to these deficits in synaptic plasticity. To this end, the spontaneous inhibitory postsynaptic current (sIPSC) was recorded using whole-cell patch-clamp techniques from CA1 pyramidal cells in the hippocampal slice before (PND 28-32) and after the onset of puberty in female mice (~PND 35-44, assessed by vaginal opening). sIPSC frequency and amplitude were significantly increased at puberty, but these measures were reduced by 1 µM DAMGO [1 µM, (D-Ala2, N-MePhe4, Gly-ol)-enkephalin], which silences PV+ activity via µ-opioid receptor targets. At puberty, dendritic branching of PV+ interneurons in GAD67-GFP mice was increased, while expression of the δ subunit of the GABAA receptor (GABAR) on these interneurons decreased. Both frequency and amplitude of sIPSCs were significantly increased in pre-pubertal mice with reduced δ expression, suggesting a possible mechanism. Theta burst induction of long-term potentiation (LTP), an in vitro model of learning, is impaired at puberty but was restored to optimal levels by DAMGO administration, implicating inhibition via PV+ interneurons as one cause. Administration of the neurosteroid/stress steroid THP (30 nM, 3α-OH, 5α-pregnan-20-one) had no effect on sIPSCs. These findings suggest that phasic inhibition generated by PV+ interneurons is increased at puberty when it contributes to impairments in synaptic plasticity. These results may have relevance for the changes in cognitive function reported during early adolescence.

14.
J Comp Neurol ; 528(18): 3305-3450, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32725618

ABSTRACT

Retinal ganglion cells (RGCs) convey visual signals to 50 regions of the brain. For reasons of interest and convenience, they constitute an excellent system for the study of brain structure and function. There is general agreement that, absent a complete "parts list," understanding how the nervous system processes information will remain an elusive goal. Recent studies indicate that there are 30-50 types of ganglion cell in mouse retina, whereas only a few years ago it was still written that mice and the more visually oriented lagomorphs had less than 20 types of RGC. More than 30 years ago, I estimated that rabbits have about 40 types of RGC. The present study indicates that this number is much too low. I have employed the old but powerful method of Golgi-impregnation to rabbit retina, studying the range of component neurons in this already well-studied retinal system. Close quantitative and qualitative analyses of 1,142 RGCs in 26 retinas take into account cell body and dendritic field size, level(s) of dendritic stratification in the retina's inner plexiform layer, and details of dendritic branching. Ninety-one morphologies are recognized. Of these, at least 32 can be correlated with physiologically studied RGCs, dye-injected for morphological analysis. It is unlikely that rabbits have 91 types of RGC, but is argued here that this number lies between 60 and 70. The present study provides a "yardstick" for measuring the output of future molecular studies that may be more definitive in fixing the number of RGC types in rabbit retina.


Subject(s)
Mammals/anatomy & histology , Retinal Ganglion Cells/classification , Retinal Ganglion Cells/cytology , Animals , Anisotropy , Cell Count , Dendrites/physiology , Rabbits , Retinal Ganglion Cells/physiology
15.
J Neurosci ; 40(28): 5413-5430, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32499377

ABSTRACT

Diverse neuronal populations with distinct cellular morphologies coordinate the complex function of the nervous system. Establishment of distinct neuronal morphologies critically depends on signaling pathways that control axonal and dendritic development. The Sema3A-Nrp1/PlxnA4 signaling pathway promotes cortical neuron basal dendrite arborization but also repels axons. However, the downstream signaling components underlying these disparate functions of Sema3A signaling are unclear. Using the novel PlxnA4KRK-AAA knock-in male and female mice, generated by CRISPR/cas9, we show here that the KRK motif in the PlxnA4 cytoplasmic domain is required for Sema3A-mediated cortical neuron dendritic elaboration but is dispensable for inhibitory axon guidance. The RhoGEF FARP2, which binds to the KRK motif, shows identical functional specificity as the KRK motif in the PlxnA4 receptor. We find that Sema3A activates the small GTPase Rac1, and that Rac1 activity is required for dendrite elaboration but not axon growth cone collapse. This work identifies a novel Sema3A-Nrp1/PlxnA4/FARP2/Rac1 signaling pathway that specifically controls dendritic morphogenesis but is dispensable for repulsive guidance events. Overall, our results demonstrate that the divergent signaling output from multifunctional receptor complexes critically depends on distinct signaling motifs, highlighting the modular nature of guidance cue receptors and its potential to regulate diverse cellular responses.SIGNIFICANCE STATEMENT The proper formation of axonal and dendritic morphologies is crucial for the precise wiring of the nervous system that ultimately leads to the generation of complex functions in an organism. The Semaphorin3A-Neuropilin1/Plexin-A4 signaling pathway has been shown to have multiple key roles in neurodevelopment, from axon repulsion to dendrite elaboration. This study demonstrates that three specific amino acids, the KRK motif within the Plexin-A4 receptor cytoplasmic domain, are required to coordinate the downstream signaling molecules to promote Sema3A-mediated cortical neuron dendritic elaboration, but not inhibitory axon guidance. Our results unravel a novel Semaphorin3A-Plexin-A4 downstream signaling pathway and shed light on how the disparate functions of axon guidance and dendritic morphogenesis are accomplished by the same extracellular ligand in vivo.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Dendrites/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Neuropeptides/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction/physiology , rac1 GTP-Binding Protein/metabolism , Animals , Axons/metabolism , Cells, Cultured , Female , Male , Mice , Mice, Knockout , Neurons/metabolism , Semaphorin-3A/metabolism
16.
Cell Tissue Res ; 381(1): 35-42, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32266463

ABSTRACT

Extensive branching creates the complex dendritic arbor of mammalian CNS neurons but capturing the complete process of branch formation with time-lapse recordings has been challenging. Here, we report that application of BMP7 to cultured hippocampal neurons accelerated dendritic growth sufficiently to document branches forming in less than 20 h via frequent time-lapse imaging (10-min intervals). In these recordings, most branches emerged as collateral sprouts from the shaft of a parent branch. Analysis of the recordings showed that filopodia were abundant and formed transiently throughout the length of dendrites but among these, only a small subset occurred at sites where branches later emerged. Conversely, formation of lamellipodia was rare and coincided with sites where collateral branches emerged. This pattern suggests that lamellipodial structures act as an important intermediate form of cytoskeletal remodeling related to a cellular commitment to branch, whereas filopodia appear to be related to events prior to such commitment.


Subject(s)
Dendrites/metabolism , Hippocampus/cytology , Neurons/cytology , Pseudopodia/metabolism , Animals , Cells, Cultured , Rats
17.
Cell Rep ; 27(3): 900-915.e5, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995485

ABSTRACT

In the mouse retina, more than 30 retinal ganglion cell (RGC) subtypes have been classified based on a combined metric of morphological and functional characteristics. RGCs arise from a common pool of retinal progenitor cells during embryonic stages and differentiate into mature subtypes in adult retinas. However, the cellular and molecular mechanisms controlling formation and maturation of such remarkable cellular diversity remain unknown. Here, we demonstrate that T-box transcription factor T-brain 1 (Tbr1) is expressed in two groups of morphologically and functionally distinct RGCs: the orientation-selective J-RGCs and a group of OFF-sustained RGCs with symmetrical dendritic arbors. When Tbr1 is genetically ablated during retinal development, these two RGC groups cannot develop. Ectopically expressing Tbr1 in M4 ipRGCs during development alters dendritic branching and density but not the inner plexiform layer stratification level. Our data indicate that Tbr1 plays critical roles in regulating the formation and dendritic morphogenesis of specific RGC types.


Subject(s)
Retinal Ganglion Cells/metabolism , T-Box Domain Proteins/metabolism , Action Potentials/drug effects , Animals , Axons/pathology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cholera Toxin/toxicity , Dendrites/physiology , Embryo, Mammalian/metabolism , Mice , Mice, Transgenic , Patch-Clamp Techniques , Potassium/pharmacology , Retina/growth & development , Retina/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , T-Box Domain Proteins/genetics
18.
Neuroscience ; 399: 53-64, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30579834

ABSTRACT

The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that modify extracellular matrix components and play crucial roles in development and numerous diseases. ADAMTS18 is a member of the ADAMTS family, and genome-wide association studies made an initial association of ADAMTS18 with white matter integrity in healthy people of 72-74 years old. However, the potential roles of ADAMTS18 in central nervous system remain unclear. In this study, we showed that Adamts18 mRNA is highly abundant in developing brains, especially in the cerebellum granular cell layer and the hippocampus dentate gyrus (DG) granular cell layer. Adamts18 knockout (KO) mice displayed higher dendritic branching complexity and spine density on hippocampal DG granular cells. Behavioral tests showed that Adamts18 KO mice had reduced levels of depression-like behaviors compared to their wild-type (WT) littermates. The increased neurite formation could be attributed in part to reduced phosphorylation levels of the collapsin response mediator protein-2 (CRMP2) due to activation of the laminin/PI3K/AKT/GSK-3ß signaling pathway. Our findings revealed a critical role of ADAMTS18 in neuronal morphogenesis and emotional control in mice.


Subject(s)
ADAMTS Proteins/deficiency , Depressive Disorder/enzymology , Depressive Disorder/pathology , Neurons/enzymology , Neurons/pathology , ADAMTS Proteins/genetics , Animals , Brain/enzymology , Brain/growth & development , Brain/pathology , Disease Models, Animal , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology , RNA, Messenger/metabolism
19.
Front Mol Neurosci ; 11: 447, 2018.
Article in English | MEDLINE | ID: mdl-30574069

ABSTRACT

Huntington-interacting protein 1-related protein (HIP1R) was identified on the basis of its structural homology with HIP1. Based on its domain structure, HIP1R is a putative endocytosis-related protein. Our previous study had shown that knockdown of HIP1R induces a dramatic decrease of dendritic growth and branching in cultured rat hippocampal neurons. However, the underlying mechanism remains elucidative. In this study, we found that knockdown of HIP1R impaired the endocytosis of activated epidermal growth factor receptor (EGFR) and the consequent activation of the downstream ERK and Akt proteins. Meanwhile, it blocked the EGF-induced dendritic outgrowth. We also showed that the HIP1R fragment, amino acids 633-822 (HIP1R633-822), interacted with EGFR and revealed a dominant negative effect in disrupting the HIP1R-EGFR interaction-mediated neuronal development. Collectively, these results reveal a novel mechanism that HIP1R plays a critical role in neurite initiation and dendritic branching in cultured hippocampal neurons via mediating the endocytosis of EGFR and downstream signaling.

20.
Neuropharmacology ; 140: 260-274, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30099050

ABSTRACT

Previous research shows Ouabain (OUA) to bind Na, K-ATPase, thereby triggering a number of signaling pathways, including the transcription factors NFᴋB and CREB. These transcription factors play a key role in the regulation of BDNF and WNT-ß-catenin signaling cascades, which are involved in neuroprotection and memory regulation. This study investigated the effects of OUA (10 nM) in the modulation of the principal signaling pathways involved in morphological plasticity and memory formation in the hippocampus of adult rats. The results show intrahippocampal injection of OUA 10 nM to activate the Wnt/ß-Catenin signaling pathway and to increase CREB/BDNF and NFᴋB levels. These effects contribute to important changes in the cellular microenvironment, resulting in enhanced levels of dendritic branching in hippocampal neurons, in association with an improvement in spatial reference memory and the inhibition of long-term memory extinction.


Subject(s)
Hippocampus/cytology , Hippocampus/drug effects , Ouabain/pharmacology , Spatial Memory/drug effects , Animals , Axin Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/physiology , Male , Maze Learning , Microinjections , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Nucleocytoplasmic Transport Proteins/metabolism , Rats , Spatial Memory/physiology , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...