Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Water Res ; 262: 122124, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39053209

ABSTRACT

The inefficient nitrogen removal in constructed wetlands (CWs) can be attributed to insufficient carbon sources for low carbon-to-nitrogen (C/N) ratio wastewater. In this study, sugarcane bagasse fermentation liquid (SBFL) was used as a supplemental carbon source in intermittently aerated CWs to enhance nitrogen removal. The impact of different regulated influent C/N ratios on nitrogen removal and greenhouse gas (GHG) emissions was investigated. Results demonstrated that SBFL addition significantly enhanced the denitrification capacity, resulting in faster NO3--N removal compared to sucrose. Moreover, intermittently aerated CWs significantly improved NH4+-N removal efficiency compared to non-aerated CWs. The highest total nitrogen removal efficiency (98.3 %) was achieved at an influent C/N ratio of 5 in intermittently aerated CWs with SBFL addition. The addition of SBFL resulted in a reduction of N2O emissions by 17.8 %-43.7 % compared to sucrose. All CWs exhibited low CH4 emissions, with SBFL addition (0.035-0.066 mg·m-2h-1) resulting in lower emissions compared to sucrose. Additionally, higher abundance of denitrification (nirK, nirS and nosZ) genes as well as more abundant denitrifying bacteria were shown in CWs of SBFL inputs. The results of this study provide a feasible strategy for applying SBFL as a carbon source to improve nitrogen removal efficiency and mitigate GHG emissions in CWs.


Subject(s)
Carbon , Denitrification , Fermentation , Nitrogen , Waste Disposal, Fluid , Wastewater , Wetlands , Nitrogen/metabolism , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Saccharum
2.
Bioresour Technol ; 394: 130240, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160849

ABSTRACT

Nitrate accumulation is an important issue that affects animal health and causes eutrophication. This study combined biodegradable polymers with degrading bacteria to lead to high denitrification efficiency. The results showed polycaprolactone had the highest degradation and carbon release rate (0.214 mg/g∙d) and nitrogen removal was greatest when the Bacillus pumilus and Halomonas venusta ratio was 1:2. When the hydraulic retention time was extended to 12 h, the nitrate removal rate for H. venusta with B. pumilus and polycaprolactone increased by 48 %. Furthermore, the group with B. pumilus contained more Proteobacteria (77.34 %) and denitrifying functional enzymes than the group without B. pumilus. These findings indicated B.pumilus can enhance the degradation of biodegradable polymers especially polycaprolactone to improve the denitrification of the aerobic denitrification bacteria H.venusta when treating maricultural wastewater.


Subject(s)
Bacillus pumilus , Denitrification , Bacillus pumilus/metabolism , Nitrates , Polymers , Bioreactors/microbiology , Carbon/metabolism , Nitrogen
3.
Front Microbiol ; 14: 1284369, 2023.
Article in English | MEDLINE | ID: mdl-37860138

ABSTRACT

Excessive nitrogen emissions are a major contributor to water pollution, posing a threat not only to the environment but also to human health. Therefore, achieving deep denitrification of wastewater is of significant importance. Traditional biological denitrification methods have some drawbacks, including long processing times, substantial land requirements, high energy consumption, and high investment and operational costs. In contrast, the novel bio-denitrification technology reduces the traditional processing time and lowers operational and maintenance costs while improving denitrification efficiency. This technology falls within the category of environmentally friendly, low-energy deep denitrification methods. This paper introduces several innovative bio-denitrification technologies and their combinations, conducts a comparative analysis of their denitrification efficiency across various wastewater types, and concludes by outlining the future prospects for the development of these novel bio-denitrification technologies.

4.
Bioresour Technol ; 348: 126804, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35131456

ABSTRACT

This study researched denitrification performance and mechanism of denitrification biofilm reactor with different HRTs and carbon sources dosages. Experimental group (EG) had better nitrate and COD removal performance than control group (CG) with different HRTs or carbon doses, and the maximum nitrate-to-nitrite transformation ratio (NTR) of them reached 7.91 ± 1.60% and 17.50 ± 1.92%, respectively. Because organic carbon sources were added to the carrier's interior in EG, forming high local concentrations in biofilms and counter-diffusional with nitrate. By contrast, carbon sources and nitrate were provided from the aqueous phase in CG. Thus, the EG system has more active regions of the biofilm than CG. In addition, EG had higher proportions of microorganisms and enzymes related to denitrification and carbon metabolism. The most dominant phylum, genus, and species were Proteobacteria, Thaurea, and Thauera_sp._27, respectively. The transcript of acetyl-CoA synthetase (K01895) and denitrification (M00529) was mainly originated from unclassified_g__Pseudomonas and unclassified_g__Thauera, respectively.


Subject(s)
Denitrification , Nitrates , Biofilms , Bioreactors , Carbon , Nitrates/metabolism , Nitrogen
5.
Environ Sci Pollut Res Int ; 29(32): 49335-49345, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35220533

ABSTRACT

In this study, effects of carbon to nitrogen (COD/TN) ratios of biogas slurry on shortcut nitrification-denitrification in a pilot-scale integrated fixed film activated sludge (IFAS) system were investigated. Lowering the COD/TN ratio from 11.7 to 6.2 exerted a negative impact on shortcut nitrification-denitrification performance. Accordingly, the NH3-N and TN removal rates decreased from 94.4 to 91.2% and 92.3 to 85.9%, respectively. The dynamics of microbial assembly was analyzed by MiSeq sequencing, and the denitrifying functional genes were quantified by qPCR. The results showed that ammonia oxidizing bacteria and amoA gene were more abundant on the biofilm of oxic tank, indicating they play a key role in NH3-N removal. Autotrophic, endogenous, and fast heterotrophic kinetics denitrifiers were coexisted and enriched in the IFAS system with a decreasing of COD/TN ratio. TN removal was mainly affected by denitrifiers (including Arenimonas, Acidovorax, and Thaurea) harboring narG and nirS genes. Canonical correspondence analysis proved that COD/TN ratio was the most critical factor driving the succession of microbial community. Dissolved oxygen (DO) and pH were found positively correlated with denitrifiers at low COD/TN ratio conditions. As a result, NH3-N and TN removal were effectively enhanced when the DO level in the oxic tank of IFAS system was increased to 1.0-3.0 mg/L.


Subject(s)
Microbiota , Nitrification , Biofuels , Bioreactors/microbiology , Carbon , Denitrification , Nitrogen , Oxygen , Sewage/microbiology , Wastewater
6.
Environ Res ; 204(Pt A): 111979, 2022 03.
Article in English | MEDLINE | ID: mdl-34506782

ABSTRACT

The response of the denitrification community to long-term antibiotic exposure requires further investigation. Here, the significantly altered denitrifying community structure and function were observed by continuous exposure to 1 mg/L sulfamethoxazole (SMZ) or chlortetracycline (CTC) for 180 d in the expanded granular sludge bed reactors. Thaurea, positively correlated with SMZ and NO3- removal efficiency (NrE), was highly enriched in the SMZ-added reactor, while, Comamons and Acinetobacter were largely inhibited. The acute inhibited and then gradual-recovered NrE (87.17-90.38 %) was observed with highly expressed narG, indicating the adaptability of Thaurea to SMZ. However, the abundance of Thaurea and Comamonas greatly decreased, while Melioribacter and Acinetobacter were largely enriched in the CTC-added reactor. CTC created more serious and continuous inhibition of NO3- reduction (NrE of 64.53-66.95 %), with lowly expressed narG. Improved NO2- reduction capacity was observed in both reactors (70.16-95.42 %) with highly expressed nirS and nosZ, revealing the adaptability of NO2- reduction populations to antibiotics.


Subject(s)
Chlortetracycline , Denitrification , Bacteria , Bioreactors , Chlortetracycline/toxicity , Nitrogen , Sewage , Sulfamethoxazole/toxicity
7.
Environ Technol ; 43(27): 4227-4236, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34152252

ABSTRACT

Nickel (ii) (Ni2+) is considered as one of the necessary trace elements in the process of Anammox culture, but it may have toxic effects at high concentration. This study explored the long-term influence of Ni2+ on the denitrification efficiency of Anammox bioreactors. The results showed that when the concentration of Ni2+ was 0.5 mg/L, the bioreactor had the highest denitrification efficiency, while the removal efficiency of ammonia nitrogen and nitrite nitrogen gradually decreased at concentrations higher than 2 mg/L, and the removal rates of ammonia nitrogen and nitrite nitrogen were 26% and 39.81% at the end of the experiment, respectively. The NRR was decreased from 7.47 kg N/m3 d to 3.28 kg N/m3 d during the whole process. The highest concentration of microbial dehydrogenase was attained in about 40 days; in the meantime, its ability to consume organic matter was also maximized. The sludge morphology was changed from granular cluster to loose flocculant with a small number of spherical and filamentous bacteria and bacilli distributed on the surface. At the end of the experiment, both species richness and community diversity were reduced, and the proportion of the dominant bacteria Candidatus Kuenenia was also decreased from 59.89% to 36.72%.


Subject(s)
Microbiota , Sewage , Sewage/microbiology , Denitrification , Nickel , Ammonia , Nitrites , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Bioreactors/microbiology , Nitrogen , Bacteria , Oxidoreductases
8.
J Environ Manage ; 299: 113575, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34474253

ABSTRACT

The effects of hydraulic retention time (HRT) on the denitrification performance of the multi-chambered bio-electrochemistry system and the metabolic mechanism of the microbial community were investigated. Results indicated that the NO3--N and NO2--N removal efficiency was up to 99.5% and 99.9%, respectively. The electricity generation performance of the system was optimum at 24 h HRT, with the maximum power density and output voltage of the fourth chamber to be 471.2 mW/m3 and 602.4 mV, respectively. With the decrease of HRT from 24 h to 8 h, the protein-like substance in extracellular polymeric substance (EPS) of granular sludge was reduced and the fluorescence intensities were weakened. Besides, the abundance of metabolism pathway was the highest at 50.0% and 49.9%, respectively, and the methane metabolism (1.8% and 2.0%, respectively) and the nitrogen metabolism (0.8% and 0.9%, respectively) in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway played important roles in providing guaranteed stability and efficient removal of organic matter and nitrogen from the system.


Subject(s)
Bioreactors , Denitrification , Extracellular Polymeric Substance Matrix/chemistry , Nitrogen/analysis , Sewage
9.
J Hazard Mater ; 411: 125087, 2021 06 05.
Article in English | MEDLINE | ID: mdl-33476908

ABSTRACT

Hexavalent chromium (Cr(VI)) may inhibit denitrification in biological wastewater treatment systems, and the inhibited denitrification process is difficult to recover in a short time. This study explored Cr(VI) cascade impact (20-125 mg L-1) on denitrification and developed one nontoxic biological accelerant (combination of L-cysteine, flavin adenine dinucleotide, biotin and cytokinin) for denitrification recovery. The results showed that NO3--N removal efficiency decreased from 75.7% to 21.5% when Cr(VI) concentration increased from 80 to 125 mg L-1. Addition of accelerant could effectively promote the removal of NO3--N, and observably reduce the recovery time (42 T) compared with natural recovery (63 T). Furthermore, the main site of Cr(VI) reduction and Cr(III) immobilization was located in the intercellular compartment of the biofilm. Microbes produced more tightly bound extracellular polymeric substances (TB-EPS) to protect them from toxicity under the low Cr(VI) concentrations, while low EPS was secreted when Cr(VI) concentration was higher than 60 mg L-1. Compared to natural recovery system, bio-accelerant addition was beneficial to the recovery of denitrifiers activities, especially for the bacteria containing nirS gene. The results facilitated an understanding of Cr(VI) impact on denitrification, and the proposed bio-accelerant can be potentially applied to heavy metal shock-loading emergency situations.


Subject(s)
Metals, Heavy , Water Purification , Chromium , Denitrification
10.
J Hazard Mater ; 405: 124366, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33301967

ABSTRACT

Antibiotics commonly exist in municipal, livestock and industrial wastewaters. However, the response of key microbiota performance in wastewater treatment plants to antibiotic exposure lacks systematic research. In this study, the short-term acute stress of four commonly used antibiotics (sulfamethoxazole, chlortetracycline, ciprofloxacin, and amoxicillin) on microbial denitrification performance was systematically investigated. All tested antibiotics exhibited the inhibitory effects in varying degrees by repeated addition for six cycles. The nitrate removal efficiencies (NrE) decreased to 7.98-26.80%, accompanied by the significant decrease of the expressed narG gene, by exposure to sulfamethoxazole, chlortetracycline or amoxicillin. Nitrite reduction was inhibited more severely than nitrate reduction, which was further verified by the low- or non-expressed nirS and nosZ genes. Furthermore, a higher antibiotic concentration made stronger inhibitory effect. Except for chlortetracycline, 2.09-6.80 times decrease of k value was commonly observed as concentration increased from 10 to 50 or 100 mg L-1. Even in a short period (24 h), antibiotics largely decreased the abundance of the dominant denitrifying bacterial genera (Thauera, Comamonas, etc.), while, some unclassified populations (Labrenzia, Longilinea, etc.) were enriched. This study provides theoretical researches on the microbial denitrification behaviors influenced by exposure to different antibiotics.


Subject(s)
Denitrification , Microbiota , Anti-Bacterial Agents/pharmacology , Bioreactors , Nitrites , Nitrogen , Wastewater
11.
Huan Jing Ke Xue ; 41(7): 3356-3364, 2020 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-32608909

ABSTRACT

In this study, the effects of aeration strategy on nitrogen removal performance of activated sludge processes in treating low-carbon-source municipal wastewater were investigated. Two aeration strategies (continuous aeration (CA) and intermittent aeration (IA)) were evaluated, and the long-term performance of activated sludge processes employing these strategies in treating wastewater with C/N=3 were analyzed. The results demonstrated that the total nitrogen removal efficiency in CA was 17.92% higher than that in the IA process. Meanwhile, the carbon source utilized in nitrogen removal in CA was 44.29% higher compared with the IA process. Furthermore, the results of 16S rRNA sequencing showed that relative abundances of denitrifying bacteria in CA and IA were 5.86% and 2.06%, respectively, suggesting that the CA process has better denitrification ability when treating low-carbon-source wastewater. In addition, 16S rRNA sequencing gene prediction was utilized to analyze the in-depth mechanisms. The results demonstrated that genes involved in membrane transport, carbohydrate metabolism, and cell composition were more highly expressed in CA. The enhancement of metabolic activity under continuous aeration strengthened microbial carbon source utilization. Therefore, the activated sludge process under continuous aeration was more efficient in treating low-carbon-source municipal wastewater. This study provides ideas for low-carbon-source municipal wastewater treatment.

12.
Environ Geochem Health ; 42(3): 1009-1020, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31897870

ABSTRACT

Operation performance and bacterial community structure of sulfur-based autotrophic denitrification (SAD) based on different sulfur sources served as electron donor was first parallelly compared among three sequencing batch reactors. Sulfur and sodium thiosulfate systems achieved similar operation performance and were superior to that of sodium sulfide. When the influent NO3--N concentration ranged from 50 to 150 mg/L, the effluent NO3--N concentrations of the sulfur and sodium thiosulfate systems were 0-5.99 mg/L and 0-4.52 mg/L, respectively, without NO2--N accumulation. However, when the effluent concentration of NO3--N in the sodium sulfide system was 0-10.38 mg/L, that of NO2--N in the effluent was 0-39.85 mg/L. In addition, participation of sulfur sources presented obvious pressure on the bacterial community structure based on the high-throughput sequencing. Microbial diversity results indicated that sludge with elemental sulfur as electron donor had the richest microbial diversity, followed by sodium thiosulfate and sodium sulfide. Moreover, sludge with elemental sulfur and sodium thiosulfate as electron donor demonstrated more similar community structure compared with the sludge that denitrified with sodium sulfide according to the microbial similarity analysis. The 9.34%, 24.3% and 29.6% of sequences could be assigned to potential SAD organisms from sludge denitrifying with elemental sulfur, sodium thiosulfate and sodium sulfide, respectively. Furthermore, all sludge denitrifying with different sulfur sources showed an enrichment of separate core functional microorganisms. This study could provide an insight into improving the understanding of SAD in engineering applications.


Subject(s)
Microbiota , Sewage/microbiology , Sulfur/metabolism , Autotrophic Processes , Bioreactors , Denitrification , Microbiota/genetics , Nitrates/metabolism , Sewage/chemistry , Sulfides/metabolism , Thiosulfates/metabolism
13.
Bioresour Technol ; 294: 122189, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31569043

ABSTRACT

In this study, various modified agricultural wastes (modified canna leaves (MCL), modified rice straw (MRS) and modified peanut shells (MPS)) as solid carbon sources (SCSs) were used to remove nitrate in constructed wetlands (CWs). Then, modified SCSs combined with nZVI (SCSN) as co-electrons further enhanced both heterotrophic denitrification (HD) and autotrophic denitrification (AD) performance of CWs. The results showed that NO3--N removal efficiencies in CWs with SCSNs (75.3-91.1%) and in CWs with SCSs (63.3-65.5%) were significantly higher than that in CK-CW (47.0%). The presence of SCSs reduced the accumulation of NO2--N in CWs. Compared to the addition of SCSs, the addition of SCSNs decreased the effluent COD concentration in CWs, avoiding secondary pollution. In addition, the solid-phase denitrifiers Silanimonas and Thauera were enriched in MPS-CW. Thermomonas, an autotrophic denitrifying bacteria (ADB), and Azospira, a nitrate-reducing Fe (II) oxidation bacteria (NRFOB), exhibited high relative abundance in MPN-CW.


Subject(s)
Denitrification , Wetlands , Adsorption , Carbon , Nitrates , Nitrogen
14.
Chemosphere ; 197: 96-104, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29334654

ABSTRACT

Biodegradable polymer supported denitrification (BPD) system shows good denitrification performance for the wastewater with low nitrate concentrations. In this study, a BPD system using Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) polymer as carbon source was developed to treat the wastewater with high nitrate concentrations. The denitrification performance, utilization ratio of PHBV polymers, and microbial community structure evolution and key denitrifying bacteria were comprehensively studied. Results indicated that an average nitrate removal efficiency of 99% could be achieved with an influent NO3--N concentration of 100 mg L-1 and a hydraulic retention time (HRT) of 7.25 h. Mass balance model predicted that 80% of the PHBV polymers were consumed by denitrifying bacteria, close to 72% consumption in real condition, suggesting the model might be useful for PHBV polymers management in BPD system. Further, the bacterial community structures varied along the bioreactor profile, which closely linked to the concentration profiles of nitrate and ammonia. Metatranscriptomic analysis identified the key denitrifying bacteria as Comamonas, Acidovorax and Dechloromonas. The PHBV supported denitrification system developed in this study shows potential for removal of high concentration of nitrate from wastewater.


Subject(s)
Nitrates/chemistry , Polyesters/chemistry , Waste Disposal, Fluid/methods , Ammonia , Bioreactors/microbiology , Carbon/chemistry , Comamonadaceae , Denitrification , Hydroxybutyrates , Nitrates/analysis , Pentanoic Acids , Wastewater/chemistry , Water Microbiology
15.
Environ Sci Pollut Res Int ; 24(24): 19693-19702, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28685327

ABSTRACT

Electrotrophic denitrification is a novel nitrogen removal technique. In this study, the performance and the mechanism of electrotrophic denitrification were investigated at different nitrate concentrations and current intensities. The results showed that the performance of electrotrophic denitrification was good with a sludge loading of 0.39 kg N/kg VSS day. The half-saturation constant for nitrate-N was 1894.03 mg/L. The optimal nitrate-N concentration and current intensity were 1500 mg/L and 20 µA, respectively. Electrotrophic denitrification was defined as the process of direct use of electron for nitrate reduction, and electrotrophic denitrifier was proposed to be the microbe of using electricity as energy source directly. The present work will benefit the development and application of electrotrophic denitrification. Graphical abstract ᅟ.


Subject(s)
Bioelectric Energy Sources , Denitrification , Electricity , Nitrates/analysis , Sewage/chemistry , Water Pollutants, Chemical/analysis , Electrochemical Techniques , Electron Transport , Kinetics , Nitrates/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL