Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.943
Filter
1.
Article in English | MEDLINE | ID: mdl-38986474

ABSTRACT

Two approaches are presented here to analyze the absorption resonances between carbynes and cyclo[n]carbons, namely the analytical tight-binding model to calculate the optical selection rules of cumulenic atomic rings and chains and theab initiotime-dependent density functional theory for the optical investigation of polyynic carbon ring and chains. The optical absorption spectra of the carbon ring match that of the finite chain when their eigen energies align following theNring= 2Nchain+ 2 rule, which states that the number of atoms in an atomic ringNringis twice the number of atoms on a finite chainNchainwith two additional atoms. Two representative atomic chains are chosen for our numerical calculations, specifically carbynes withN= 7 and 8 carbon atoms as optical resonance spectra match to a recently synthesized carbon ring called cyclo$[18]$carbon. Despite the mismatch in resonance peaks, molecular orbital transitions of both carbynesN= 7 and 8 and cyclo[n]carbons reveal a wave function symmetry change from inversion to reflection and vice versa for allowed molecular orbital transitions, which results in electron density redistribution along the polyynic carbyne axis or the cyclo[n]carbons circumference. Our investigation of the correlation of optical absorption peaks between carbynes and cyclo[n]carbons is a step towards enhancing the reliability of allotrope identification in advanced molecular device spectroscopy. Moreover, this work could facilitate the non-invasive, rapid and crucial assessment of these sensitive 1D allotropes by providing accurate descriptions of their electronic and optical properties, particularly in controlled synthesis environments.

2.
Sensors (Basel) ; 24(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000920

ABSTRACT

TiO2 is a typical semiconductor material, and it has attracted much attention in the field of humidity sensors. Doping is an efficient way to enhance the humidity response of TiO2. Eu-doped TiO2 material was investigated in both theoretical simulations and experiments. In a simulation based on density functional theory, a doped Eu atom can increase the performance of humidity sensors by producing more oxygen vacancies than undoped TiO2. In these experiments, Eu-doped TiO2 nanorods were prepared by hydrothermal synthesis, and the results also confirm the theoretical prediction. When the doping mole ratio is 5 mol%, the response of the humidity sensor reaches 23,997.0, the wet hysteresis is 2.3% and the response/recovery time is 3/13.1 s. This study not only improves the basis for preparation of high-performance TiO2 humidity sensors, but also fills the research gap on rare earth Eu-doped TiO2 as a humidity-sensitive material.

3.
Article in English | MEDLINE | ID: mdl-39008992

ABSTRACT

Using density functional theory (DFT) and linear response approaches, we compute the on-site Hubbard interaction $U$ of elemental Terbium (Tb) metal in the pressure range $\sim 0-65$ GPa. The resulting first-principles $U$ values with experimental crystal structures enable us to examine the magnetic properties of Tb using a DFT+U method. The lowest-energy magnetic states in our calculations for different high-pressure Tb phases -- including hcp, $\alpha$-Sm, and dhcp -- are found to be compatible with the corresponding magnetic ordering vectors reported in experiments. The result shows that the inclusion of Hubbard $U$ substantially improves the accuracy and efficiency in modeling correlated rare-earth materials. Our study also provides the necessary $U$ information for other quantum many-body techniques to study Tb under extreme pressure conditions.

4.
Angew Chem Int Ed Engl ; : e202407149, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949229

ABSTRACT

This paper describes a concise, asymmetric and stereodivergent total synthesis of tacaman alkaloids. A key step in this synthesis is the biocatalytic Baeyer-Villiger oxidation of cyclohexanone, which was developed to produce seven-membered lactones and establish the required stereochemistry at the C14 position (92% yield, 99% ee, 500 mg scale). Cis- and trans-tetracyclic indoloquinolizidine scaffolds were rapidly synthesized through an acid-triggered, tunable acyl-Pictet-Spengler type cyclization cascade, serving as the pivotal reaction for building the alkaloid skeleton. Computational results revealed that hydrogen bonding was crucial in stabilizing intermediates and inducing different addition reactions during the acyl-Pictet-Spengler cyclization cascade. By strategically using these two reactions and the late-stage diversification of the functionalized indoloquinolizidine core, the asymmetric total syntheses of eight tacaman alkaloids were achieved. This study may potentially advance research related to the medicinal chemistry of tacaman alkaloids.

5.
Article in English | MEDLINE | ID: mdl-38952267

ABSTRACT

Irradiation of the major conformation of duplex DNA found in cells (B form) produces cyclobutane pyrimidine dimers (CPDs) from adjacent pyrimidines in a head-to-head orientation (syn) with the C5 substituents in a cis stereochemistry. These CPDs have crucial implications in skin cancer. Irradiation of G-quadruplexes and other non-B DNA conformations in vitro produces, however, CPDs between nonadjacent pyrimidines in nearby loops with syn and head-to-tail orientations (anti) with both cis and trans stereochemistry to yield a mixture of six possible isomers of the T=T dimer. This outcome is further complicated by formation of mixtures of nonadjacent CPDs of C=T, T=C, and C=C, and successful analysis depends on development of specific and sensitive methods. Toward meeting this need, we investigated whether ion mobility mass spectrometry (IMMS) and MS/MS can distinguish the cis,syn and trans,anti T=T CPDs. Ion mobility can afford baseline separation and give relative mobilities that are in accord with predicted cross sections. Complementing this ability to distinguish isomers is MS/MS collisional activation where fragmentation also distinguishes the two isomers and confirms conclusions drawn from ion mobility analysis. The observations offer early support that ion mobility and MS/MS can enable the distinction of DNA photoproduct isomers.

6.
Angew Chem Int Ed Engl ; : e202409725, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953140

ABSTRACT

Fluorescent molecular systems are important for various applications such as sensing of analytes, probes for biologically relevant processes and as optoelectronic materials. Achieving high fluorescence quantum yield across the spectrum of solvent polarity and in solid-state is challenging in molecular materials. Herein, we present a strategy to achieve strongly fluorescent molecular materials based on weak intramolecular charge-transfer (ICT) in a family of unsymmetrical donor-thiazolo[5,4-d]thiazoles-acceptor systems (both neutral and cationic). Detailed photophysical studies reveal that the delicate balance between the donor and acceptor result in high solution-state fluorescence quantum yield (> 80%) in both polar protic and apolar solvents. Quantum chemical computations uncover a hitherto unappreciated insight that the extent of ICT is aptly represented by the change in Mulliken charges between the ground and excited-state for different fragments rather than the classical approach of monitoring the change in dipole moment for the entire molecule. This insight rationalizes the observed photophysical properties and can have implications in the design of tuneable donor-π-acceptor systems.

7.
Article in English | MEDLINE | ID: mdl-38953235

ABSTRACT

The efficient harnessing of solar power for water treatment via photocatalytic processes has long been constrained by the challenge of understanding and optimizing the interactions at the photocatalyst surface, particularly in the presence of nontarget cosolutes. The adsorption of these cosolutes, such as natural organic matter, onto photocatalysts can inhibit the degradation of pollutants, drastically decreasing the photocatalytic efficiency. In the present work, computational methods are employed to predict the inhibitory action of a suite of small organic molecules during TiO2 photocatalytic degradation of para-chlorobenzoic acid (pCBA). Specifically, tryptophan, coniferyl alcohol, succinic acid, gallic acid, and trimesic acid were selected as interfering agents against pCBA to observe the resulting competitive reaction kinetics via bulk and surface phase reactions according to Langmuir-Hinshelwood adsorption dynamics. Experiments revealed that trimesic and gallic acids were most competitive with pCBA, followed by succinic acid. Density functional theory (DFT) and machine learning interatomic potentials (MLIPs) were used to investigate the molecular basis of these interactions. The computational findings showed that while the type of functional group did not directly predict adsorption affinity, the spatial arrangement and electronic interactions of these groups significantly influenced adsorption dynamics and corresponding inhibitory behavior. Notably, MLIPs, derived by fine-tuning models pretrained on a vastly larger dataset, enabled the exploration of adsorption behaviors over substantially longer periods than typically possible with conventional ab initio molecular dynamics, enhancing the depth of understanding of the dynamic interaction processes. Our study thus provides a pivotal foundation for advancing photocatalytic technology in environmental applications by demonstrating the critical role of molecular-level interactions in shaping photocatalytic outcomes.

8.
Environ Res ; : 119579, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986803

ABSTRACT

In this work, a novel nitrogen-doped biochar bentonite composite was synthesized by a single-pot co-pyrolysis method. Batch studies were conducted to evaluate the performance of the developed composite in eliminating synthetic dyes from the aqueous matrix. Energy dispersive X-ray spectroscopy analysis and field emission scanning electron microscopy imaging confirmed the N doping and bentonite impregnation into biochar. X-ray photoelectron spectroscopy analysis revealed that the N atoms were doped interstitially into the carbon matrix of biochar in the form of pyridinic and pyrrolic nitrogen. Simultaneous heteroatom doping and bentonite impregnation reduced the specific surface area to 41.721 m2.g-1 but improved the adsorption capacity of biochar for dye adsorption. Further experimental studies depicted that simultaneous bentonite impregnation and N doping into the biochar matrix is beneficial for direct blue-6 (DB-6) and methylene blue (MB) removal and maximum adsorption capacities of 53.17 mg. g-1 and 41.33 mg. g-1 can be obtained for MB and DB-6, respectively, at varying conditions. Adsorption energetics of the dyes with the developed composite portrayed the spontaneity of the process through negative ΔG values. The Langmuir and Freundlich isotherm models fitted the best for MB and DB-6 adsorption. The monolayer adsorption capacity and favourability factor for MB and DB-6 adsorption were calculated to be 54.15 mg. g-1 and 0.217, respectively from the best-fitted isotherms. Based on density functional theory calculations and spectroscopic studies, major interactions governing the adsorption were predicted to be charge-based interactions, π-π interactions, H-bonding, and Lewis acid-base interactions.

9.
Bioresour Technol ; : 131090, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986880

ABSTRACT

To reveal the key enzymes in the nitrogen removal pathway and to further elucidate the mechanism of the catalytic reaction, this study utilized metaproteomics combined with molecular dynamics and density functional theory calculation. K. stuttgartiensis provided the proteins up to 88.37 % in the anammox-based system. Hydrazine synthase (HZS) and hydrazine dehydrogenase (HDH) accounted for 15.94 % and 3.45 % of the total proteins expressed by K. stuttgartiensis, thus were considered as critical enzymes in the nitrogen removal pathway. The process of HZSγ binding to NO with lowest binding free energy of -4.91 ±â€¯1.33 kJ/mol. The reaction catalyzed by HZSα was calculated to be the rate-limiting catalyzing step, because it transferred the proton from NH3 to ·OH by crossing an energy barrier of up to 190.29 kJ/mol. This study provided molecular level insights to enhance the performance of nitrogen removal in anammox-based system.

10.
Article in English | MEDLINE | ID: mdl-38985897

ABSTRACT

The commercial viability of emerging lithium-sulfur batteries (LSBs) remains greatly hindered by short lifespans caused by electrically insulating sulfur, lithium polysulfides (Li2Sn; 1 ≤ n ≤ 8) shuttling, and sluggish sulfur reduction reactions (SRRs). This work proposes the utilization of a hybrid composed of sulfiphilic MoS2 and mayenite electride (C12A7:e-) as a cathode host to address these challenges. Specifically, abundant cement-based C12A7:e- is the most stable inorganic electride, possessing the ultimate electrical conductivity and low work function. Through density functional theory simulations, the key aspects of the MoS2/C12A7:e- hybrid including electronic properties, interfacial binding with Li2Sn, Li+ diffusion, and SRR have been unraveled. Our findings reveal the rational rules for MoS2 as an efficient cathode host by enhancing its mutual electrical conductivity and surface polarity via MoS2/C12A7:e-. The improved electrical conductivity of MoS2 is attributed to the electron donation from C12A7:e- to MoS2, yielding a semiconductor-to-metal transition. The resultant band positions of MoS2/C12A7:e- are well matched with those of conventional current-collecting materials (i.e., Cu and Ni), electrochemically enhancing the electronic transport. The accepted charge also intensifies MoS2 surface polarity for attracting polar Li2Sn by forming stronger bonds with Li2Sn via ionic Li-S bonds than electrolytes with Li2Sn, thereby preventing polysulfide shuttling. Importantly, MoS2/C12A7:e- not only promotes rapid reaction kinetics by reducing ionic diffusion barriers but also lowers the Gibbs free energies of the SRR for effective S8-to-Li2S conversion. Beyond the reported applications of C12A7:e-, this work highlights its functionality as an electrode material to boost the efficiency of LSBs.

11.
Nano Lett ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989866

ABSTRACT

Two-dimensional magnet CrI3 is a promising candidate for spintronic devices. Using nonadiabatic molecular dynamics and noncollinear spin time-dependent density functional theory, we investigated hole spin relaxation in two-dimensional CrI3 and its dependence on magnetic configurations, impacted by spin-orbit and electron-phonon interactions. Driven by in-plane and out-of-plane iodine motions, the relaxation rates vary, extending from over half a picosecond in ferromagnetic systems to tens of femtoseconds in certain antiferromagnetic states due to significant spin fluctuations, associated with the nonadiabatic spin-flip in tuning to the adiabatic flip. Antiferromagnetic CrI3 with staggered layer magnetic order notably accelerates adiabatic spin-flip due to enhanced state degeneracy and additional phonon modes. Ferrimagnetic CrI3 shows a transitional behavior between ferromagnetic and antiferromagnetic types as the magnetic moment changes. These insights into the spin dynamics of CrI3 underscore its potential for rapid-response spintronic applications and advance our understanding of two-dimensional materials for spintronics.

12.
Sci Rep ; 14(1): 15708, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977755

ABSTRACT

This study investigates the potential of platinum (Pt) decorated single-layer WSe2 (Pt-WSe2) monolayers as high-performance gas sensors for NO2, CO2, SO2, and H2 using first-principles calculations. We quantify the impact of Pt placement (basal plane vs. vertical edge) on WSe2's electronic properties, focusing on changes in bandgap (ΔEg). Pt decoration significantly alters the bandgap, with vertical edge sites (TV-WSe2) exhibiting a drastic reduction (0.062 eV) compared to pristine WSe2 and basal plane decorated structures (TBH: 0.720 eV, TBM: 1.237 eV). This substantial ΔEg reduction in TV-WSe2 suggests a potential enhancement in sensor response. Furthermore, TV-WSe2 displays the strongest binding capacity for all target gases due to a Pt-induced "spillover effect" that elongates adsorbed molecules. Specifically, TV-WSe2 exhibits adsorption energies of - 0.5243 eV (NO2), - 0.5777 eV (CO2), - 0.8391 eV (SO2), and - 0.1261 eV (H2), indicating its enhanced sensitivity. Notably, H2 adsorption on TV-WSe2 shows the highest conductivity modulation, suggesting exceptional H2 sensing capabilities. These findings demonstrate that Pt decoration, particularly along WSe2 vertical edges, significantly enhances gas sensing performance. This paves the way for Pt-WSe2 monolayers as highly selective and sensitive gas sensors for various applications, including environmental monitoring, leak detection, and breath analysis.

13.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000604

ABSTRACT

The noncovalent chalcogen interaction between SO2/SO3 and diazines was studied through a dispersion-corrected DFT Kohn-Sham molecular orbital together with quantitative energy decomposition analyses. For this, supramolecular circular chains of up to 12 molecules were built with the aim of checking the capability of diazine molecules to detect SO2/SO3 compounds within the atmosphere. Trends in the interaction energies with the increasing number of molecules are mainly determined by the Pauli steric repulsion involved in these σ-hole/π-hole interactions. But more importantly, despite the assumed electrostatic nature of the involved interactions, the covalent component also plays a determinant role in its strength in the involved chalcogen bonds. Noticeably, π-hole interactions are supported by the charge transfer from diazines to SO2/SO3 molecules. Interaction energies in these supramolecular complexes are not only determined by the S···N bond lengths but attractive electrostatic and orbital interactions also determine the trends. These results should allow us to establish the fundamental characteristics of chalcogen bonding based on its strength and nature, which is of relevance for the capture of sulfur oxides.


Subject(s)
Chalcogens , Sulfur Oxides , Chalcogens/chemistry , Sulfur Oxides/chemistry , Static Electricity , Models, Molecular , Sulfur Dioxide/chemistry
14.
Article in English | MEDLINE | ID: mdl-38994719

ABSTRACT

Corrosion protection technology plays a crucial role in preserving infrastructure, ensuring safety and reliability, and promoting long-term sustainability. In this study, we combined experiments and various analyses to investigate the mechanism of corrosion occurring on the epoxy-based anticorrosive coating containing the additive of two-dimensional (2D) and water-stable zirconium-based metal-organic frameworks (Zr-MOFs). By using benzoic acid as the modulator for the growth of the MOF, a 2D MOF constructed from hexazirconium clusters and BTB linkers (BTB = 1,3,5-tri(4-carboxyphenyl)benzene) with coordinated benzoate (BA-ZrBTB) can be synthesized. By coating the BA-ZrBTB/epoxy composite film (BA-ZrBTB/EP) on the surface of cold-rolled steel (CRS), we found the lowest coating roughness (RMS) of BA-ZrBTB/EP is 2.83 nm with the highest water contact angle as 99.8°, which represents the hydrophobic coating surface. Notably, the corrosion rate of the BA-ZrBTB/EP coating is 2.28 × 10-3 mpy, which is 4 orders of magnitude lower than that of the CRS substrate. Moreover, the energy barrier for oxygen diffusion through BA-ZrBTB/EP coating is larger than that for epoxy coating (EP), indicating improved oxygen resistance for adding 2D Zr-MOFs as the additive. These results underscore the high efficiency and potential of BA-ZrBTB as a highly promising agent for corrosion prevention in various commercial applications. Furthermore, this study represents the first instance of applying 2D Zr-MOF materials in anticorrosion applications, opening up new possibilities for advanced corrosion-resistant coatings.

15.
Small ; : e2401656, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994827

ABSTRACT

Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper-based catalysts have shown efficient conversion of CO2 into the desired multi-carbon (C2+) products. This work explores Cu-based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100-cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis.

16.
J Mol Model ; 30(8): 268, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012396

ABSTRACT

CONTEXT: In the realm of quantum chemistry, the accurate prediction of electronic structure and properties of nanostructures remains a formidable challenge. Density functional theory (DFT) and density matrix renormalization group (DMRG) have emerged as two powerful computational methods for addressing electronic correlation effects in diverse molecular systems. We compare ground-state energies ( e 0 ), density profiles ( n ), and average entanglement entropies ( S ¯ ) in metals, insulators and at the transition from metal to insulator, in homogeneous, superlattices, and harmonically confined chains described by the fermionic one-dimensional Hubbard model. While for the homogeneous systems, there is a clear hierarchy between the deviations, D % ( S ¯ ) < D % ( e 0 ) < D ¯ % ( n ) , and all the deviations decrease with the chain size; for superlattices and harmonic confinement, the relation among the deviations is less trivial and strongly dependent on the superlattice structure and the confinement strength considered. For the superlattices, in general, increasing the number of impurities in the unit cell represents lower precision in the DFT calculations. For the confined chains, DFT performs better for metallic phases, while the highest deviations appear for the Mott and band-insulator phases. This work provides a comprehensive comparative analysis of these methodologies, shedding light on their respective strengths, limitations, and applications. METHODS: The DFT calculations were performed using the standard Kohn-Sham scheme within the BALDA approach. It integrated the numerical Bethe-Ansatz (BA) solution of the Hubbard model as the homogeneous density functional within a local-density approximation (LDA) for the exchange-correlation energy. The DMRG algorithms were implemented using the ITensor library, which is based on the matrix product states (MPS) ansatz. The calculations were performed until the energy reaches convergence of at least 10 - 8 .

17.
ACS Nano ; 18(28): 18405-18411, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38970487

ABSTRACT

The unique spin texture of quantum states in topological materials underpins many proposed spintronic applications. However, realizations of such great potential are stymied by perturbations, such as temperature and local fields imposed by impurities and defects, that can render a promising quantum state uncontrollable. Here, we report room-temperature scanning tunneling microscopy/spectroscopy observation of interaction between Rashba states and topological surface states, which manifests local electronic structure along step edges controllable by the layer thickness of thin films. The first-principles theoretical calculation elucidates the robust Rashba states coexisting with topological surface states along the surface steps with characteristic spin textures in momentum space. Furthermore, the Rashba edge states can be switched off by reducing the thickness of a topological insulator Bi2Se3 to bolster their interaction with the hybridized topological surface states. The study unveils a manipulating mechanism of the spin textures at room temperature, reinforcing the necessity of thin film technology in controlling the quantum states.

18.
Materials (Basel) ; 17(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998420

ABSTRACT

This study presents theoretical and experimental investigations into the electron and hole color centers in BaFBr crystals, characterizing their electronic and optical properties. Stoichiometric BaFBr crystals grown by the Steber method were used in the experiments. Radiation defects in BaFBr crystals were created by irradiation with 147 MeV 84Kr ions with up to fluences of 1010-1014 ions/cm2. The formation of electron color centers (F(F-), F2(F-), F2(Br-)) and hole aggregates was experimentally established by optical absorption spectroscopy. Performed measurements are compared with theoretical calculations. It allows us to determine the electron transition mechanisms and investigate the processes involved in photoluminescence emission in Eu-doped BaFBr materials to enhance the understanding of the fundamental electronic structure and properties of electron and hole color centers formed in BaFBr crystals.

19.
Nanomaterials (Basel) ; 14(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998679

ABSTRACT

The contact resistance formed between MoS2 and metal electrodes plays a key role in MoS2-based electronic devices. The Schottky barrier height (SBH) is a crucial parameter for determining the contact resistance. However, the SBH is difficult to modulate because of the strong Fermi-level pinning (FLP) at MoS2-metal interfaces. Here, we investigate the FLP effect and the contact types of monolayer and multilayer MoS2-metal van der Waals (vdW) interfaces using density functional theory (DFT) calculations based on Perdew-Burke-Ernzerhof (PBE) level. It has been demonstrated that, compared with monolayer MoS2-metal close interfaces, the FLP effect can be significantly reduced in monolayer MoS2-metal vdW interfaces. Furthermore, as the layer number of MoS2 increases from 1L to 4L, the FLP effect is first weakened and then increased, which can be attributed to the charge redistribution at the MoS2-metal and MoS2-MoS2 interfaces. In addition, the p-type Schottky contact can be achieved in 1L-4L MoS2-Pt, 3L MoS2-Au, and 2L-3L MoS2-Pd vdW interfaces, which is useful for realizing complementary metal oxide semiconductor (CMOS) logic circuits. These findings indicated that the FLP and contact types can be effectively modulated at MoS2-metal vdW interfaces by selecting the layer number of MoS2.

20.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998907

ABSTRACT

Currently, lithium-ion batteries have an increasingly urgent need for high-performance electrolytes, and additives are highly valued for their convenience and cost-effectiveness features. In this work, the feasibilities of fullerenes and fluorinated fullerenes as typical bis(fluorosulfonyl)imide/1,2-dimethoxymethane (LiFSI/DME) electrolyte additives are rationally evaluated based on density functional theory calculations and molecular dynamic simulations. Interestingly, electronic structures of C60, C60F2, C60F4, C60F6, 1-C60F8, and 2-C60F8 are found to be compatible with the properties required as additives. It is noted that that different numbers and positions of F atoms lead to changes in the deformation and electronic properties of fullerenes. The F atoms not only show strong covalent interactions with C cages, but also affect the C-C covalent interaction in C cages. In addition, molecular dynamic simulations unravel that the addition of trace amounts of C60F4, C60F6, and 2-C60F8 can effectively enhance the Li+ mobility in LiFSI/DME electrolytes. The results expand the range of applications for fullerenes and their derivatives and shed light on the research into novel additives for high-performance electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...