Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.953
Filter
1.
STAR Protoc ; 5(4): 103356, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39356643

ABSTRACT

The snapshot nature of single-cell transcriptomics presents a challenge for studying the dynamics of gene expression. Metabolic labeling, where nascent RNA is labeled with 4-thiouridine (4sU), captures temporal information at the single-cell level, providing greater insight into expression dynamics. Here, we present an optimized, automation-friendly protocol for the metabolic labeling of RNA alongside single-cell RNA sequencing through combinatorial indexing. We describe steps for 4sU labeling, cell fixation and chemical treatment, and automated two-level combinatorial indexing. For complete details on the use and execution of this protocol, please refer to Maizels et al.1.

2.
Elife ; 122024 Oct 04.
Article in English | MEDLINE | ID: mdl-39364747

ABSTRACT

Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp-, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.


Subject(s)
Apoptosis , Drosophila Proteins , RNA-Binding Proteins , Transcription Factors , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Motor Neurons/metabolism , Drosophila/metabolism , Neurons/metabolism , Neural Stem Cells/metabolism , Gene Expression Regulation, Developmental
3.
iScience ; 27(10): 110852, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39381746

ABSTRACT

The sea cucumber Apostichopus japonicus, a key species in Chinese aquaculture, plays a significant evolutionary role within the Echinodermata phylum. However, the sex determination mechanism in this species remains poorly understood. Here, we conducted extensive sex surveys and sampling of eight wild populations, investigating the sex-related SNPs and insertion or deletions (indels) through bulk segregation analysis (BSA) and genome-wide association study (GWAS) analysis. Our findings suggest that A. japonicus employs a polygenic sex determination (PSD) system, with solute carrier family 8 (SLC8A) being the candidate gene for sex determination, encoding sodium-calcium exchanger (NCX1). The analysis of normalized sequencing depth reveals variations across chromosomes 6, 13, 14, 16, and 18, supporting the PSD system. We also identified 541.656 kb of male-specific sequences and screened five markers (C77185, C98086, C64977, C125, and C876) for molecular sex identification. Overall, this study provides new insights into A. japonicus sex determination, highlighting a complex multi-gene mechanism rather than a simple XX/XY system.

4.
Elife ; 122024 Oct 09.
Article in English | MEDLINE | ID: mdl-39383064

ABSTRACT

Stimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin (CaN) as a new potential modulator of beta cell regeneration. We showed that CaN overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, CaN inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. CaN appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal CaN as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration.


Subject(s)
Calcineurin , Cell Proliferation , Insulin-Secreting Cells , Regeneration , Zebrafish , Animals , Calcineurin/metabolism , Calcineurin/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Cell Differentiation , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Cell Cycle , Gene Expression Profiling
5.
Cell Rep ; 43(10): 114797, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39352808

ABSTRACT

Human-specific genes are potential drivers of brain evolution. Among them, SRGAP2C has contributed to the emergence of features characterizing human cortical synapses, including their extended period of maturation. SRGAP2C inhibits its ancestral copy, the postsynaptic protein SRGAP2A, but the synaptic molecular pathways differentially regulated in humans by SRGAP2 proteins remain largely unknown. Here, we identify CTNND2, a protein implicated in severe intellectual disability (ID) in Cri-du-Chat syndrome, as a major partner of SRGAP2. We demonstrate that CTNND2 slows synaptic maturation and promotes neuronal integrity. During postnatal development, CTNND2 moderates neuronal excitation and excitability. In adults, it supports synapse maintenance. While CTNND2 deficiency is deleterious and results in synaptic loss of SYNGAP1, another major ID-associated protein, the human-specific protein SRGAP2C, enhances CTNND2 synaptic accumulation in human neurons. Our findings suggest that CTNND2 regulation by SRGAP2C contributes to synaptic neoteny in humans and link human-specific and ID genes at the synapse.

6.
Elife ; 122024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365728

ABSTRACT

Mutations in the well-known Myostatin (MSTN) produce a 'double-muscle' phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant 'double-muscle' phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.


Subject(s)
CRISPR-Cas Systems , Fibroblast Growth Factor 5 , Myostatin , Animals , Myostatin/genetics , Myostatin/metabolism , Sheep , Fibroblast Growth Factor 5/genetics , Fibroblast Growth Factor 5/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Mutation , Gene Knockout Techniques , Hyperplasia/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
7.
Cell Rep ; 43(10): 114814, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39378153

ABSTRACT

Fate determination of neural stem cells (NSCs) is crucial for cortex development and is closely linked to neurodevelopmental disorders when gene expression networks are disrupted. The transcriptional corepressor chromodomain Y-like (CDYL) is widely expressed across diverse cell populations within the human embryonic cortex. However, its precise role in cortical development remains unclear. Here, we show that CDYL is critical for human cortical neurogenesis and that its deficiency leads to a substantial increase in gamma-aminobutyric acid (GABA)-ergic neurons in cortical organoids. Subsequently, neuronatin (NNAT) is identified as a significant target of CDYL, and its abnormal expression obviously influences the fate commitment of cortical NSCs. Cross-species comparisons of CDYL targets unravel a distinct developmental trajectory between human cortical organoids and the mouse cortex at an analogous stage. Collectively, our data provide insight into the evolutionary roles of CDYL in human cortex development, emphasizing its critical function in maintaining the fate of human cortical NSCs.

8.
Cell Rep ; 43(10): 114807, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368083

ABSTRACT

Stemness and pluripotency are mediated by transcriptional master regulators that promote self-renewal and repress cell differentiation, among which is the high-mobility group (HMG) box transcription factor SOX2. Dysregulated SOX2 expression, by contrast, leads to transcriptional aberrations relevant to oncogenic transformation, cancer progression, metastasis, therapy resistance, and relapse. Here, we report a post-transcriptional mechanism by which the cytosolic pool of SOX2 contributes to these events in an unsuspected manner. Specifically, a low-complexity region within SOX2's C-terminal segment connects to the ribosome to modulate the expression of cognate downstream factors. Independent of nuclear structures or DNA, this C-terminal functionality alone changes metabolic properties and induces non-adhesive growth when expressed in the cytosol of SOX2 knockout cells. We thus propose a revised model of SOX2 action where nuclear and cytosolic fractions cooperate to impose cell fate decisions via both transcriptional and translational mechanisms.

9.
Elife ; 132024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356057

ABSTRACT

The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells - generated by an increased number of cell fusion events - have higher resorptive activity. We find that osteoclast fusion and bone resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La's unique regulatory role in osteoclast multinucleation and function is controlled by an ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.


Subject(s)
Osteoclasts , Oxidation-Reduction , Reactive Oxygen Species , Osteoclasts/metabolism , Animals , Mice , Reactive Oxygen Species/metabolism , Bone Resorption/metabolism , Cell Differentiation , Signal Transduction , Mice, Inbred C57BL , Cell Fusion , Membrane Proteins/metabolism
10.
Cell Rep ; 43(10): 114837, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39368089

ABSTRACT

The major lactiferous ducts of the human breast branch out and end at terminal ductal lobular units (TDLUs). Despite their functional and clinical importance, the three-dimensional (3D) architecture of TDLUs has remained undetermined. Our quantitative and volumetric imaging of healthy human breast tissue demonstrates that highly branched TDLUs, which exhibit increased proliferation, are uncommon in the resting tissue regardless of donor age, parity, or hormonal contraception. Overall, TDLUs have a consistent shape and branch parameters, and they contain a main subtree that dominates in bifurcation events and exhibits a more duct-like keratin expression pattern. Simulation of TDLU branching morphogenesis in three dimensions suggests that evolutionarily conserved mechanisms regulate mammary gland branching in humans and mice despite their anatomical differences. In all, our data provide structural insight into 3D anatomy and branching of the human breast and exemplify the power of volumetric imaging in gaining a deeper understanding of breast biology.

11.
Cell Rep ; 43(9): 114762, 2024 09 24.
Article in English | MEDLINE | ID: mdl-39321020

ABSTRACT

Adult mammary stem cells (aMaSCs) are vital to tissue expansion and remodeling during the process of postnatal mammary development. The protein C receptor (Procr) is one of the well-identified surface markers of multipotent aMaSCs. However, an understanding of the regulatory mechanisms governing Procr's protein stability remains incomplete. In this study, we identified Glycoprotein m6a (Gpm6a) as a critical protein for aMaSC activity modulation by using the Gpm6a knockout mouse model. Interestingly, we determined that Gpm6a depletion results in a reduction of Procr protein stability. Mechanistically, Gpm6a regulates Procr protein stability by mediating the formation of lipid rafts, a process requiring Zdhhc1 and Zdhhc2 to palmitate Gpm6a at Cys17,18 and Cys246 sites. Our findings highlight an important mechanism involving Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation for the regulation of Procr stability, aMaSC activity, and postnatal mammary development.


Subject(s)
Acyltransferases , Lipoylation , Mammary Glands, Animal , Animals , Acyltransferases/metabolism , Acyltransferases/genetics , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mice , Female , Mice, Knockout , Humans , Membrane Microdomains/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Protein Stability
12.
iScience ; 27(9): 110659, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39224513

ABSTRACT

All organisms have to carefully regulate their gene expression, not least during development. mRNA levels are often used as proxy for protein output; however, this approach ignores post-transcriptional effects. In particular, mRNA-protein correlation remains elusive for organisms that exhibit aggregative rather than clonal multicellularity. We addressed this issue by generating a paired transcriptomics and proteomics time series during the transition from uni-to multicellular stage in the social ameba Dictyostelium discoideum. Our data reveals that mRNA and protein levels correlate highly during unicellular growth, but decrease when multicellular development is initiated. This accentuates that transcripts alone cannot accurately predict protein levels. The dataset provides a useful resource to study gene expression during aggregative multicellular development. Additionally, our study provides an example of how to analyze and visualize mRNA and protein levels, which should be broadly applicable to other organisms and conditions.

13.
iScience ; 27(9): 110600, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39224519

ABSTRACT

Tightly controlled neurogenesis is crucial for generating the precise number of neurons and establishing the intricate architecture of the cortex, with deficiencies often leading to neurodevelopmental disorders. Neuroepithelial progenitors (NPs) transit into radial glial progenitors (RGPs) to initiate neural differentiation, yet the governing mechanisms remain elusive. Here, we found that histone deacetylases 1 and 2 (HDAC1/2) mediated suppression of Wnt signaling is essential for the NP-to-RGP transition. Conditional depletion of HDAC1/2 from NPs upregulated Wnt signaling genes, impairing the transition to RGPs and resulting in rosette structures within the neocortex. Multi-omics analysis revealed that HDAC1/2 are critical for downregulating Wnt signaling, identifying Wnt9a as a key target. Overexpression of Wnt9a led to an increased population of NPs and the disruption of cortical organization. Notably, Wnt inhibitor administration partially rescued the disrupted cortical architecture. Our findings reveal the significance of tightly controlled Wnt signaling through epigenetic mechanisms in neocortical development.

14.
Elife ; 122024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239947

ABSTRACT

Alcohol consumption in pregnancy can affect genome regulation in the developing offspring but results have been contradictory. We employed a physiologically relevant murine model of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA methylation that was mostly tissue-specific, with some perturbations likely originating as early as gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regulatory potential indicative of broad effects of alcohol on genome regulation. Replication studies in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable at genes linked to disease-relevant traits including facial morphology, intelligence, educational attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and choline protected against some of the damaging effects of early moderate PAE on DNA methylation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome regulation even in the absence of overt phenotypic changes and highlight a role for preventative maternal dietary interventions.


Drinking excessive amounts of alcohol during pregnancy can cause foetal alcohol spectrum disorder and other conditions in children that affect their physical and mental development. Many countries advise women who are pregnant or trying to conceive to avoid drinking alcohol entirely. However, surveys of large groups of women in Western countries indicate that most women continue drinking low to moderate amounts of alcohol until they discover they are pregnant and then stop consuming alcohol for the rest of their pregnancy. It remains unclear how this common drinking pattern affects the foetus. The instructions needed to build and maintain a human body are stored within molecules of DNA. Some regions of DNA called genes contain the instructions to make proteins, which perform many tasks in the body. Other so-called 'non-coding' regions do not code for any proteins but instead have roles in regulating gene activity. One way cells control which genes are switched on or off is adding or removing tags known as methyl groups to certain locations on DNA. Previous studies indicate that alcohol may affect how children develop by changing the patterns of methyl tags on DNA. To investigate the effect of moderate drinking during the early stages of pregnancy, Bestry et al. exposed pregnant mice to alcohol and examined how this affected the patterns of methyl tags on DNA in their offspring. The experiments found moderate levels of alcohol were sufficient to alter the patterns of methyl tags in the brains and livers of the newborn mice. Most of the changes were observed in non-coding regions of DNA, suggesting alcohol may affect how large groups of genes are regulated. Fewer changes in the patterns of methyl tags were found in mice whose mothers had diets rich in two essential nutrients known as folate and choline. Further experiments found that some of the affected mouse genes were similar to genes linked to foetal alcohol spectrum disorder and other related conditions in humans. These findings highlight the potential risks of consuming even moderate levels of alcohol during pregnancy and suggest that a maternal diet rich in folate and choline may help mitigate some of the harmful effects on the developing foetus.


Subject(s)
DNA Methylation , Prenatal Exposure Delayed Effects , Animals , DNA Methylation/drug effects , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Mice , Humans , Diet , Male , Ethanol/adverse effects , Ethanol/toxicity , Mice, Inbred C57BL , Disease Models, Animal , Brain/drug effects , Brain/embryology , Brain/metabolism , Fetal Alcohol Spectrum Disorders/genetics , Liver/drug effects , Liver/metabolism , Liver/embryology
15.
iScience ; 27(9): 110630, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39246450

ABSTRACT

Controlled myogenic differentiation is integral to the development, maintenance and repair of skeletal muscle, necessitating precise regulation of myogenic progenitors and resident stem cells. The transformation of proliferative muscle progenitors into multinuclear syncytia involves intricate cellular processes driven by cytoskeletal reorganization. While actin and microtubles have been extensively studied, we illuminate the role of septins, an essential yet still often overlooked cytoskeletal component, in myoblast architecture. Notably, Septin9 emerges as a critical regulator of myoblast differentiation during the initial commitment phase. Knock-down of Septin9 in C2C12 cells and primary mouse myoblasts accelerates the transition from proliferation to committed progenitor transcriptional programs. Furthermore, we unveil significant reorganization and downregulation of Septin9 during myogenic differentiation. Collectively, we propose that filmamentous septin structures and their orchestrated reorganization in myoblasts are part of a temporal regulatory mechanism governing the differentiation of myogenic progenitors. This study sheds light on the dynamic interplay between cytoskeletal components underlying controlled myogenic differentiation.

16.
iScience ; 27(9): 110702, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39262797

ABSTRACT

Sex-specific metabolic characteristics emerge in the mouse germ line after reaching the genital ridges around embryonic day 10.5, coinciding with sexual differentiation. However, the impact of such metabolic characteristics on germ cell development remains unclear. In this study, we observed the specific upregulation in male fetal germ cells of D-3-phosphoglycerate dehydrogenase (PHGDH), the primary enzyme in the serine-glycine-one-carbon metabolism, along with an increase in a downstream metabolite, S-adenosylmethionine (SAM), crucial for protein and nucleic acid methylation. Inhibiting PHGDH in fetal testes resulted in reduced SAM levels in germ cells, accompanied by increases in the number of mouse vasa homolog (MVH/VASA)-positive germ cells and the promyelocytic leukemia zinc finger (PLZF)-positive undifferentiated spermatogonia ratio. Furthermore, PHGDH inhibition led to a decrease in the methylation of histone H3 and DNA, resulting in aberrations in gene expression profiles. In summary, our findings underscore the significant role of certain metabolic mechanisms in the development of male germ cells.

17.
iScience ; 27(9): 110631, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39262804

ABSTRACT

Imbalanced dietary intake, such as a high-fat diet (HFD) during pregnancy, has been associated with adverse offspring outcomes. Metabolic stress from imbalanced food intake alters the function of epigenetic regulators, resulting in abnormal transcriptional outputs in embryos to cause congenital disorders. We report herein that maternal HFD exposure causes metabolic changes in pregnant mice and non-compaction cardiomyopathy (NCC) in E15.5 embryos, accompanied by decreased 5-hydroxymethylcytosine (5hmC) levels and altered chromatin accessibility in embryonic heart tissues. Remarkably, maternal vitamin C supplementation mitigates these detrimental effects, likely by restoring iron, a cofactor for Tet enzymes, in a reduced state. Using a genetic approach, we further demonstrated that the cardioprotective benefits of vitamin C under HFD conditions are attributable to enhanced Tet activity. Our results highlight an interaction between maternal diet, specifically HFD or vitamin C, and epigenetic modifications during early heart development, emphasizing the importance of balanced maternal nutrition for healthy embryonic development.

18.
Elife ; 132024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248331

ABSTRACT

SRSF2 plays a dual role, functioning both as a transcriptional regulator and a key player in alternative splicing. The absence of Srsf2 in MyoD + progenitors resulted in perinatal mortality in mice, accompanied by severe skeletal muscle defects. SRSF2 deficiency disrupts the directional migration of MyoD progenitors, causing them to disperse into both muscle and non-muscle regions. Single-cell RNA-sequencing analysis revealed significant alterations in Srsf2-deficient myoblasts, including a reduction in extracellular matrix components, diminished expression of genes involved in ameboid-type cell migration and cytoskeleton organization, mitosis irregularities, and premature differentiation. Notably, one of the targets regulated by Srsf2 is the serine/threonine kinase Aurka. Knockdown of Aurka led to reduced cell proliferation, disrupted cytoskeleton, and impaired differentiation, reflecting the effects seen with Srsf2 knockdown. Crucially, the introduction of exogenous Aurka in Srsf2-knockdown cells markedly alleviated the differentiation defects caused by Srsf2 knockdown. Furthermore, our research unveiled the role of Srsf2 in controlling alternative splicing within genes associated with human skeletal muscle diseases, such as BIN1, DMPK, FHL1, and LDB3. Specifically, the precise knockdown of the Bin1 exon17-containing variant, which is excluded following Srsf2 depletion, profoundly disrupted C2C12 cell differentiation. In summary, our study offers valuable insights into the role of SRSF2 in governing MyoD progenitors to specific muscle regions, thereby controlling their differentiation through the regulation of targeted genes and alternative splicing during skeletal muscle development.


Subject(s)
Cell Differentiation , Cell Movement , Muscle Development , Muscle, Skeletal , MyoD Protein , Serine-Arginine Splicing Factors , Animals , Mice , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , MyoD Protein/metabolism , MyoD Protein/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Myoblasts/metabolism , Alternative Splicing
19.
Elife ; 132024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269144

ABSTRACT

Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.

SELECTION OF CITATIONS
SEARCH DETAIL