Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
2.
Nutr Neurosci ; : 1-23, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963807

ABSTRACT

OBJECTIVES: The present study aims to evaluate the impact of early exposure to brain injury and malnutrition on episodic memory and behavior. METHODS: For this, a systematic review was carried out in the Medline/Pubmed, Web of Science, Scopus, and LILACS databases with no year or language restrictions. RESULTS: Initially, 1759 studies were detected. After screening, 53 studies remained to be read in full. The meta-analysis demonstrated that exposure to double insults worsens episodic recognition memory but does not affect spatial memory. Early exposure to low-protein diets has been demonstrated to aggravate locomotor and masticatory sequelae. Furthermore, it reduces the weight of the soleus muscle and the muscle fibers of the masseter and digastric muscles. Early exposure to high-fat diets promotes an increase in oxidative stress and inflammation in the brain, increasing anxiety- and depression-like behavior and reducing locomotion. DISCUSSION: Epigenetic modifications were noted in the hippocampus, hypothalamus, and prefrontal cortex depending on the type of dietetic exposure in early life. These findings demonstrate the impact of the double insult on regions involved in cognitive and behavioral processes. Additional studies are essential to understand the real impact of the double insults in the critical period.

3.
Evolution ; 78(9): 1568-1582, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38842069

ABSTRACT

The adaptive potential of plastic phenotypes relies on combined developmental responses. We investigated how manipulation of developmental conditions related to foraging mode in the fish Megaleporinus macrocephalus induces plastic responses at different levels: (a) functional modularity of skull bones, (b) biomechanical properties of the chondrocranium using finite element models, (c) bmp4 expression levels, used as a proxy for molecular pathways involved in bone responses to mechanical load. We identified new modules in experimental groups, suggesting increased integration in specific head bone elements associated with the development of subterminal and upturned mouths, which are major features of Megaleporinus plastic morphotypes released in the lab. Plastic responses in head shape involved differences in the magnitude of mechanical stress, which seem restricted to certain chondrocranium regions. Three bones represent a "mechanical unit" related to changes in mouth position induced by foraging mode, suggesting that functional modularity might be enhanced by the way specific regions respond to mechanical load. Differences in bmp4 expression levels between plastic morphotypes indicate associations between molecular signaling pathways and biomechanical responses to load. Our results offer a multilevel perspective of epigenetic factors involved in plastic responses, expanding our knowledge about mechanisms of developmental plasticity that originate novel complex phenotypes.


Subject(s)
Bone Morphogenetic Protein 4 , Skull , Stress, Mechanical , Animals , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Skull/anatomy & histology , Biomechanical Phenomena , Finite Element Analysis
5.
Front Nutr ; 9: 947458, 2022.
Article in English | MEDLINE | ID: mdl-36110404

ABSTRACT

Several studies have demonstrated that a maternal low-protein diet induces long-term metabolic disorders, but the involved mechanisms are unclear. This study investigated the molecular effects of a low-protein diet during pregnancy and lactation on glucose and protein metabolism in soleus muscle isolated from adult male rats. Female rats were fed either a normal protein diet or low-protein diet during gestation and lactation. After weaning, all pups were fed a normal protein diet until the 210th day postpartum. In the 7th month of life, mass, contractile function, protein and glucose metabolism, and the Akt-mTOR pathway were measured in the soleus muscles of male pups. Dry weight and contractile function of soleus muscle in the low-protein diet group rats were found to be lower compared to the control group. Lipid synthesis was evaluated by measuring palmitate incorporation in white adipose tissue. Palmitate incorporation was higher in the white adipose tissue of the low-protein diet group. When incubated soleus muscles were stimulated with insulin, protein synthesis, total amino acid incorporation and free amino acid content, glucose incorporation and uptake, and glycogen synthesis were found to be reduced in low-protein diet group rats. Fasting glycemia was higher in the low-protein diet group. These metabolic changes were associated with a decrease in Akt and GSK-3ß signaling responses to insulin and a reduction in RPS6 in the absence of the hormone. There was also notably lower expression of Akt in the isolated soleus muscle of low-protein diet group rats. This study is the first to demonstrate how maternal diet restriction can reduce skeletal muscle protein and mass by downregulating the Akt-mTOR pathway in adulthood.

6.
Mol Cell Endocrinol ; 542: 111522, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34843899

ABSTRACT

The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).


Subject(s)
Endocannabinoids , Energy Metabolism , Energy Metabolism/physiology , Female , Humans , Lactation , Obesity/metabolism , Receptor, Cannabinoid, CB1/metabolism
7.
Int J Mol Sci ; 24(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36614149

ABSTRACT

Synaptic transmission is a dynamic process that requires precise regulation. Early in life, we must be able to forge appropriate connections (add and remove) to control our behavior. Neurons must recognize appropriate targets, and external soluble factors that activate specific signaling cascades provide the regulation needed to achieve this goal. Wnt signaling has been implicated in several forms of synaptic plasticity, including functional and structural changes associated with brain development. The analysis of synapses from an electrophysiological perspective allows us to characterize the functional role of cellular signaling pathways involved in brain development. The application of quantal theory to principles of developmental plasticity offers the possibility of dissecting the function of structural changes associated with the birth of new synapses as well as the maturation of immature silent synapses. Here, we focus on electrophysiological and molecular evidence that the Wnt signaling pathway regulates glutamatergic synaptic transmission, specifically N-methyl-d-aspartate receptors (NMDARs), to control the birth of new synapses. We also focus on the role of Wnts in the conversion of silent synapses into functional synapses.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Wnt Signaling Pathway , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Neurons/metabolism
8.
J Dev Orig Health Dis ; 12(3): 505-512, 2021 06.
Article in English | MEDLINE | ID: mdl-32799949

ABSTRACT

Maternal protein restriction and physical activity can affect the interaction mother-placenta-fetus. This study quantified the gene expression of brain-derived neurotrophic factor (BDNF), neurothrophin 4, tyrosine kinase receptor B (TrkB/NTRK2), insulin-like growth factor (IGF-1), and insulin-like growth factor receptor (IGF-1r) in the different areas of mother's brain (hypothalamus, hippocampus, and cortex), placenta, and fetus' brain of rats. Female Wistar rats (n = 20) were housed in cages containing a running wheel for 4 weeks before gestation. According to the distance spontaneously traveled daily, rats were classified as inactive or active. During gestation, on continued access to the running wheel, active and inactive groups were randomized to receive normoprotein diet (18% protein) or a low-protein (LP) diet (8% protein). At day 20 of gestation, gene expression of neurotrophic factors was analyzed by quantitative polymerase chain reaction in different brain areas and the placenta. Dams submitted to a LP diet during gestation showed upregulation of IGF-1r and BDNF messenger RNA in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, and BDNF, NTRK2, IGF-1 and IGF-1r in the cortex. In the placenta, there was a downregulation of IGF-1. In the brain of pups from mothers on LP diet, IGF-1r and NTRK2 were downregulated. Voluntary physical activity attenuated the effects of LP diet on IGF-1r in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, IGF-1 in the placenta, and NTRK2 in the fetus' brain. In conclusion, both maternal protein restriction and spontaneous physical activity influence the gene expression of BDNF, NTRK2, IGF-1, and IGF-1r, with spontaneous physical activity being able to normalize in part the defects caused by protein restriction during pregnancy.


Subject(s)
Brain/metabolism , Diet, Protein-Restricted , Maternal Nutritional Physiological Phenomena , Nerve Growth Factors/metabolism , Placenta/metabolism , Animals , Female , Male , Neuronal Plasticity , Physical Conditioning, Animal , Placentation , Pregnancy , Rats, Wistar
9.
Life Sci ; 263: 118574, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33049280

ABSTRACT

AIMS: We investigated the involvement of the renin angiotensin system (RAS) on the cardiorespiratory control in rats from dams fed with a low-protein diet. MAIN METHODS: Male offspring were obtained from dams fed a normoprotein diet (NP, 17% casein) and low-protein diet (LP, 8% casein) during pregnancy and lactation. Direct measurements of arterial pressure (AP), heart rate (HR) and respiratory frequency (RF) were recorded in awake 90-day-old at resting and after losartan potassium through either intracerebroventricular (ICV) microinjections or intravenous (IV) administration. Cardiovascular variability was evaluated by spectral analysis. Peripheral chemoreflex sensitivity was assessed through the potassium cyanide (KCN; 40 µg/0.1 ml/rat, IV). Gene expression was evaluated by qPCR, and MAPK (Mitogen Activated Protein Kinase) expression was evaluated by western blot. KEY FINDINGS: The LP offspring had higher mean AP (MAP) and RF than NP offspring. In the spectral analysis, the LP rats also showed higher low frequency of systolic AP (NP: 2.7 ± 0.3 vs. LP: 5.0 ± 1.0 mmHg). After ICV losartan, MAP and RF in LP rats remained higher than those in NP rats, but without changes in HR. The peripheral chemoreflex was similar between the groups. LP group had lower gene expression of Rac1 (Ras-related C3 botulinum toxin substrate 1) (NP: 1.13 ± 0.06 vs. LP: 0.88 ± 0.08). Peripherally, LP rats had larger delta of MAP after IV losartan (NP: -9.8 ± 2 vs. LP: -23 ± 6 mmHg), without changes in HR and RF. SIGNIFICANCE: In rats, the RAS participates peripherally, but not centrally, in the maintenance of arterial hypertension in male offspring induced by maternal protein restriction.


Subject(s)
Diet, Protein-Restricted/adverse effects , Hypertension/physiopathology , Maternal Nutritional Physiological Phenomena/physiology , Prenatal Exposure Delayed Effects/physiopathology , Renin-Angiotensin System/physiology , Animals , Arterial Pressure/drug effects , Arterial Pressure/physiology , Female , Heart Rate/drug effects , Heart Rate/physiology , Lactation/physiology , Losartan/pharmacology , Male , Pregnancy , Rats , Rats, Wistar , Respiratory Rate/drug effects , Respiratory Rate/physiology
10.
J Exp Zool B Mol Dev Evol ; 334(1): 14-24, 2020 01.
Article in English | MEDLINE | ID: mdl-31829529

ABSTRACT

How specific environmental contexts contribute to the robustness and variation of developmental trajectories and evolutionary transitions is a central point in Ecological Evolutionary Developmental Biology ("Eco-Evo-Devo"). However, the articulation of ecological, evolutionary and developmental processes into integrative frameworks has been elusive, partly because standard experimental designs neglect or oversimplify ecologically meaningful contexts. Microbial models are useful to expose and discuss two possible sources of bias associated with conventional gene-centered experimental designs: the use of laboratory strains and standard laboratory environmental conditions. We illustrate our point by showing how contrasting developmental phenotypes in Myxococcus xanthus depend on the joint variation of temperature and substrate stiffness. Microorganismal development can provide key information for better understanding the role of environmental conditions in the evolution of developmental variation, and to overcome some of the limitations associated with current experimental approaches.


Subject(s)
Biological Evolution , Ecosystem , Models, Biological , Myxococcus xanthus/growth & development , Myxococcus xanthus/genetics , Bias , Research Design
11.
Eur J Nutr ; 59(5): 2207-2218, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31385064

ABSTRACT

PURPOSE: Early weaning (EW) is a risk factor for obesity development. Brown adipose tissue (BAT) hypofunction is related to obesity onset. Here, we evaluated whether sympathetic nervous system (SNS) activity in BAT and the thermogenic function of BAT are decreased in adulthood in obese rats from two EW models. METHODS: At the time of birth, lactating Wistar rats and their pups (three males and three females) were separated into three groups: the control group, in which pups consumed milk throughout lactation; the non-pharmacological EW (NPEW) group, in which suckling was interrupted with a bandage during the last 3 days of lactation; and the pharmacological EW (PEW) group, in which dams were treated with bromocriptine (0.5 mg/twice a day) 3 days before weaning. The offspring were sacrificed on PN180. RESULTS: Adult male rats from both EW models exhibited lower BAT SNS activity. Female rats from the PEW group showed a decrease in BAT SNS activity. The protein levels of UCP1 were lower in the NPEW males, while PGC1α levels were lower in both PEW and NPEW males. Both groups of EW females showed reductions in the levels of ß3-AR, TRß1, and PGC1α. The UCP1 protein level was reduced only in the NPEW females. The EW groups of both sexes had lower AMPK protein levels in BAT. In the hypothalamus, only the PEW females showed an increase in AMPK protein levels. In both groups of EW males, adrenal catecholamine was increased and tyrosine hydroxylase was decreased, while in EW females, adrenal catecholamine was decreased. CONCLUSIONS: Early weaning alters the thermogenic capacity of BAT, which partially contributes to obesity in adulthood, and there are sex-related differences in these alterations.


Subject(s)
Adipose Tissue, Brown , Lactation , Animals , Female , Male , Rats , Rats, Wistar , Thermogenesis , Weaning
12.
J Exp Zool B Mol Dev Evol ; 332(8): 356-364, 2019 12.
Article in English | MEDLINE | ID: mdl-31702107

ABSTRACT

An emergent property of an entity is one that results from the organization or interaction of its components. Here I argue that modularity (discreteness) is a universal emergent property of organismic traits that results from the universal bounded responsiveness, to inputs (e.g., genomic or environmental), of the phenotype at all levels of organization. While degree of modularity is variable and may be subject to change under selection, I argue that the consequences of modularity, such as the evolvability of modular traits (e.g., due to their somewhat independent expression and selection; and their potential for expression in new combinations) are not responsible for the existence of modularity itself. I discuss some other views of modularity in biology; and the related idea that increased complexity (e.g., increased numbers of kinds of modular traits) is a product of selection. I argue that emergent properties characterize innovative phenotypes at their origin. When emergent properties occur at more than one level of phenotypic organization, they sometimes lead to confusion due to confounding levels of organization with levels of selection, as has occurred in discussions of group selection in the evolution of sociality. Phenotypes, whose environmental sensitivity and (emergent) properties are emphasized here, seem likely to assume increasing importance as biology moves toward a better understanding of the genome as agent of both the transmission and the expression of traits.


Subject(s)
Biological Evolution , Genome , Phenotype , Selection, Genetic
13.
Environ Pollut ; 250: 312-322, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31003143

ABSTRACT

Bisphenol S (BPS) has replaced bisphenol A (BPA), a known non-persistent endocrine disrupting chemical, in several products. Considering that little is known regarding BPS effects, especially during critical windows of ontogenetic development, and that BPA, which is quite similar to BPS, is know to be transferred to the offspring via the placenta and milk, in the present study we investigated the behavioral, biochemical and endocrine profiles of Wistar rats born from dams that were BPS-exposed [groups: BPS10 (10 µg/kg/day), BPS50 (50 µg/kg/day)] during pregnancy and lactation. Due to the non-monotonic dose-response effect of bisphenol, the data of both BPS groups were directly compared with those of the controls, not to each other. Males and females were analyzed separately. At weaning, male BPS50 offspring had hypotriglyceridemia and hyperthyroxinemia, whereas BPS50 females showed higher 25(OH)D levels. At adulthood, BPS offspring of both sexes had lower food intake. BPS males showed lower visceral adiposity. BPS50 females had smaller fat droplets in brown adipocytes. BPS males showed higher anxiety and higher locomotor activity, while BPS10 females showed lower exploration. During a food challenge test at adulthood, BPS males consumed more high-fat diet at 30 min. BPS10 females initially (at 30 min) consumed more high-fat diet but, after 12 h, less of this diet was consumed. BPS50 males had hypertriglyceridemia and lower plasma T3, while BPS females showed lower plasma T4. BPS10 females had lower progesterone, whereas BPS50 females had higher plasma 25(OH)D. Maternal BPS exposure has adverse effects on the triacylglycerol, hormones levels and behavior of the progeny. Furthermore, the increased preference for the fat-enriched diet suggests an increased risk for obesity and its health consequences in the long term.


Subject(s)
Endocrine Disruptors/toxicity , Phenols/toxicity , Sulfones/toxicity , Animals , Benzhydryl Compounds , Breast Feeding , Diet, High-Fat , Eating/drug effects , Endocrine System , Female , Lactation , Lipids/blood , Male , Maternal Exposure , Milk , Obesity , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Wistar
14.
Neotrop Entomol ; 47(1): 62-68, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28386773

ABSTRACT

Understanding the factors driving the diet breadth of phytophagous insects remains one of the main questions in ecological research. In this study we explored the diet breadth and plant-insect associations in the plume moth Lioptilodes friasi Vargas & Parra (Lepidoptera: Pterophoridae). This phytophagous insect was originally described in association with a single host species, Haplopappus foliosus (Asteraceae), a native shrub of the Chilean Mediterranean matorral. In order to address the breadth of host plant choice, we surveyed other Haplopappus species growing along the elevation gradient of central Chile from sea level to 2600 m. We were able to obtain L. friasi adults from five additional Haplopappus species: Haplopappus chrysantemifolius and Haplopappus decurrens from the coastal zone, Haplopappus multifolius and Haplopappus schumanii from the mid-elevation zone, and Haplopappus scrobiculatus at high elevation. Our results demonstrate that the genus-specialized endophagous herbivore L. friasi has a wider distribution and climatic tolerance than previously described. Its biogeographical range extends from the lowland coastal habitats up to the Andean subnival level. We propose that shared flower phenotypic traits such as morphology and chemical composition may have allowed the colonization of closely related Haplopappus species in central Chile, the expansion of which is limited by the harsh high elevation conditions.


Subject(s)
Ecosystem , Lepidoptera , Altitude , Animal Distribution , Animals , Chile , Female , Haplopappus , Herbivory , Male
15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(6): 6982, 2018. tab, graf
Article in English | LILACS | ID: biblio-889095

ABSTRACT

Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT) hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower metabolic rate. We evaluated autonomic nerve activity in BAT and its function in adult rats that were exposed to tobacco smoke during lactation. At birth, litters were adjusted to 3 male and 3 female pups/litter. From postnatal day (PND) 3 to 21, Wistar lactating rats and their pups were divided into SE group, smoke-exposed in a cigarette smoking machine (4 times/day) and C group, exposed to filtered air. Offspring were sacrificed at PND180. Adult SE rats of both genders had lower interscapular BAT autonomic nervous system activity, with higher BAT mass but no change in morphology. BAT UCP1 and CPT1a protein levels were decreased in the SE groups of both genders. Male SE rats had lower β3-AR, TRα1, and TRβ1 expression while females showed lower PGC1α expression. BAT Dio2 mRNA and hypothalamic POMC and MC4R levels were similar between groups. Hypothalamic pAMPK level was higher in SE males and lower in SE females. Thus, neonatal cigarette smoke exposure induces lower BAT thermogenic capacity, which can be obesogenic at adulthood.


Subject(s)
Animals , Male , Female , Rats , Adipose Tissue, Brown/physiopathology , Biomarkers/analysis , Sympathetic Nervous System/physiopathology , Thermogenesis/physiology , Tobacco Smoke Pollution/adverse effects , Adipose Tissue, Brown/metabolism , Animals, Newborn , Blotting, Western , Immunohistochemistry , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Tobacco Smoke Pollution/analysis
16.
Exp Physiol ; 102(11): 1486-1499, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28833822

ABSTRACT

NEW FINDINGS: What is the central question of this study? In the present study, a reproducible model of maternal voluntary physical activity was developed to evaluate the adaptive response of physical activity by attenuating the effects of maternal undernutrition on physical features, reflex ontogeny and growth trajectory of offspring during development. What is the main finding and its importance? Maternal physical activity may induce neuronal maturation of sensorimotor connections impacting on the patterns of locomotor activity in malnourished offspring. Thus, physical activity should be considered as a therapeutic means of countering the effects of maternal undernutrition, by providing a useful strategy for enhancing the neuronal activity of children born to mothers who experience a restricted diet during pregnancy. This study evaluated the effects of maternal voluntary physical activity during pregnancy and lactation on somatic growth (SG), reflex ontogeny (RO) and locomotor activity (LA) of rats whose mothers were protein restricted. Virgin female Wistar rats were divided into the following six groups: control, normal protein (C-NP, n = 4); control, low protein (C-LP, n = 4); inactive, normal protein (I-NP, n = 8); inactive, low protein (I-LP, n = 7); very active, normal protein (VA-NP, n = 8); and very active, low protein (VA-LP, n = 6). Voluntary physical activity was recorded daily in dams. The LP groups were fed an 8% casein diet, whereas control groups were fed a 17% casein diet during pregnancy and lactation. Offspring were evaluated in terms of SG (body weight and length, latero-lateral skull axis and anteroposterior head axis) and RO (palmar grasp, righting, free-fall righting, negative geotaxis, cliff avoidance, auditory startle response and vibrissa placing). The LA was evaluated at 23, 45 and 60 days old in the open field. Voluntary physical activity was reduced during pregnancy and lactation independent of the maternal diet. Pups from LP dams showed delayed SG, reflex maturation and patterns of LA when compared with control pups. The C-LP and I-LP pups showed a delayed SG, RO and LA. Pups from VA-LP mothers showed no delay in SG and RO and presented a faster development of patterns of LA. Maternal voluntary physical activity attenuated the effects of LP diet on indicators of neurodevelopment and patterns of LA of offspring.


Subject(s)
Nervous System/growth & development , Neurodevelopmental Disorders/prevention & control , Physical Conditioning, Animal/methods , Prenatal Exposure Delayed Effects , Protein-Energy Malnutrition/physiopathology , Age Factors , Animal Nutritional Physiological Phenomena , Animals , Behavior, Animal , Disease Models, Animal , Female , Gestational Age , Lactation , Maternal Nutritional Physiological Phenomena , Motor Activity , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/physiopathology , Nutritional Status , Pregnancy , Protein-Energy Malnutrition/complications , Protein-Energy Malnutrition/psychology , Rats, Wistar , Volition
17.
Br J Nutr ; 117(6): 796-803, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28412994

ABSTRACT

This study evaluated the effects of a post-weaning high-fat (HF) diet on somatic growth, food consumption, metabolic parameters, phagocytic rate and nitric oxide (NO) production of peritoneal macrophages in young rats submitted to a maternal low-protein (LP) diet. Male Wistar rats (aged 60 d) were divided in two groups (n 22/each) according to their maternal diet during gestation and lactation: control (C, dams fed 17 % casein) and LP (dams fed 8 % casein). At weaning, half of the groups were fed HF diet and two more groups were formed (HF and low protein-high fat (LP-HF)). Somatic growth, food and energy intake, fat depots, serum glucose, cholesterol and leptin concentrations were evaluated. Phagocytic rate and NO production were analysed in peritoneal macrophages under stimulation of zymosan and lipopolysaccharide (LPS)+interferon γ (IFN-γ), respectively. The maternal LP diet altered the somatic parameters of growth and development of pups. LP and LP-HF pups showed a higher body weight gain and food intake than C pups. HF and LP-HF pups showed increased retroperitoneal and epididymal fat depots, serum level of TAG and total cholesterol compared with C and LP pups. After LPS+IFN-γ stimulation, LP and LP-HF pups showed reduced NO production when compared with their pairs. Increased phagocytic activity and NO production were seen in LP but not LP-HF peritoneal macrophages. However, peritoneal macrophages of LP pups were hyporesponsive to LPS+IFN-γ induced NO release, even after a post-weaning HF diet. Our data demonstrated that there was an immunomodulation related to dietary fatty acids after the maternal LP diet-induced metabolic programming.


Subject(s)
Diet, High-Fat , Diet, Protein-Restricted , Dietary Fats/pharmacology , Macrophages, Peritoneal/drug effects , Malnutrition/complications , Maternal Nutritional Physiological Phenomena , Weight Gain , Animals , Dietary Fats/administration & dosage , Energy Intake/drug effects , Female , Interferon-gamma/blood , Lactation , Lipopolysaccharides , Macrophages, Peritoneal/metabolism , Male , Nitric Oxide/metabolism , Obesity/etiology , Obesity/immunology , Obesity/metabolism , Pregnancy , Pregnancy Complications , Prenatal Exposure Delayed Effects , Rats, Wistar , Weaning , Zymosan
18.
Proc Biol Sci ; 284(1853)2017 Apr 26.
Article in English | MEDLINE | ID: mdl-28446698

ABSTRACT

Understanding how populations adapt to heterogeneous thermal regimes is essential for comprehending how latitudinal gradients in species diversification are formed, and how taxa will respond to ongoing climate change. Adaptation can occur by innate genetic factors, by phenotypic plasticity, or by a combination of both mechanisms. Yet, the relative contribution of such mechanisms to large-scale latitudinal gradients of thermal tolerance across conspecific populations remains unclear. We examine thermal performance in 11 populations of the intertidal copepod Tigriopus californicus, ranging from Baja California Sur (Mexico) to British Columbia (Canada). Common garden experiments show that survivorship to acute heat-stress differs between populations (by up to 3.8°C in LD50 values), reflecting a strong genetic thermal adaptation. Using a split-brood experiment with two rearing temperatures, we also show that developmental phenotypic plasticity is beneficial to thermal tolerance (by up to 1.3°C), and that this effect differs across populations. Although genetic divergence in heat tolerance strongly correlates with latitude and temperature, differences in the plastic response do not. In the context of climate warming, our results confirm the general prediction that low-latitude populations are most susceptible to local extinction because genetic adaptation has placed physiological limits closer to current environmental maxima, but our results also contradict the prediction that phenotypic plasticity is constrained at lower latitudes.


Subject(s)
Acclimatization , Copepoda/physiology , Temperature , Animals , British Columbia , Climate Change , Copepoda/genetics , Mexico , Phenotype
19.
Front Physiol ; 7: 504, 2016.
Article in English | MEDLINE | ID: mdl-27899895

ABSTRACT

Developmental origins of cardiometabolic diseases have been related to maternal nutritional conditions. In this context, the rising incidence of arterial hypertension, diabetes type II, and dyslipidemia has been attributed to genetic programming. Besides, environmental conditions during perinatal development such as maternal undernutrition or overnutrition can program changes in the integration among physiological systems leading to cardiometabolic diseases. This phenomenon can be understood in the context of the phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental input without genetic change, following a novel, or unusual input during development. Experimental studies indicate that fetal exposure to an adverse maternal environment may alter the morphology and physiology that contribute to the development of cardiometabolic diseases. It has been shown that both maternal protein restriction and overnutrition alter the central and peripheral control of arterial pressure and metabolism. This review will address the new concepts on the maternal diet induced-cardiometabolic diseases that include the potential role of the perinatal malnutrition.

20.
Neuropeptides ; 59: 71-81, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27261099

ABSTRACT

Previously, we demonstrated that maternal prolactin inhibition at the end of lactation, using bromocriptine (BRO), leads to an increase in leptin transfer via milk and induces the adult progeny to present hypothyroidism, leptin resistance and metabolic syndrome (obesity, hyperglycemia, hypertriglyceridemia, lower HDL). To test if these alterations are due to direct BRO action on the pups, in the present study we evaluated the long-term effects of direct injection of BRO (0.1µg/once daily) in male Wistar rats from postnatal (PN) day 1 to 10 (early treatment) or from PN11 to 20 (late treatment) on: food intake, body mass, cardiovascular parameters, hormone profile, hypothalamic leptin signaling, glucose homeostasis and thyroid hormone-dependent proteins. The respective controls were injected with methanol-saline. Offspring were killed at adulthood (PN180). Adult PN1-10 BRO-treated animals had lower food intake, hypoprolactinemia, lower leptin action (lower OBR-b, STAT-3 and SOCS-3 mRNA levels in the arcuate nucleus), lower TRH-TSH-thyroid axis as well as lower thyroid hormone markers. On the other hand, adult animals that were BRO-treated during the PN11-20 period showed hyperphagia, higher blood pressure, higher prolactinemia and OBR-b, higher TRH and plasma T3, hypercorticosteronemia as well as higher Dio2 and UCP1 mRNA expression in the brown adipose tissue. Glucose homeostasis was not changed treatment in either period. Our data show that early and late dopamine overexposure during lactation induces diverse metabolic disturbances later in life, increasing the risk of thyroid dysfunction and, consequently, changes in prolactinemia.


Subject(s)
Bromocriptine/pharmacology , Prolactin/blood , Thyroid Gland/drug effects , Thyroid Hormones/blood , Animals , Animals, Newborn , Blood Pressure/drug effects , Body Weight/drug effects , Eating/drug effects , Heart Rate/drug effects , Hypothalamus/drug effects , Hypothalamus/metabolism , Leptin/metabolism , Male , Rats , Rats, Wistar , Thyroid Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL