Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 758
Filter
1.
Growth Factors ; : 1-10, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39001597

ABSTRACT

Aims: This study aims to explore the potential role of vascular endothelial growth factor-B (VEGF-B) in the pathogenesis of diabetic peripheral neuropathy (DPN). The expression of VEGFRs were reanalysed by using gene arrays of peripheral nerve samples from mouse models of DPN retrieved from the GEO database. 213 T2D patients as well as 31 healthy individuals were recruited. The serum VEGF-B was detected and its relationship with DPN was analysed. The elevated VEGFR1 was the only change of VEGFR gene expression in the peripheral nerve from mouse models of DPN. The level of serum VEGF-B in T2D patients with DPN was higher than that in T2D patients without DPN and healthy people. Analysis of correlation and binary logistic regression confirmed that the increased serum VEGF-B level was an independent risk factor of DPN in T2D patients. VEGF-B-VEGFR1 signaling pathway may be involved in the development of DPN.

2.
Article in English | MEDLINE | ID: mdl-38961840

ABSTRACT

Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increase morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes, that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so called metabolic memory. Emerging evidence from in-vitro, in-vivo animal models and clinical trials with diabetes subjects identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.

3.
FASEB J ; 38(14): e23789, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39018098

ABSTRACT

Diabetic nephropathy (DN) is a major healthcare challenge for individuals with diabetes and associated with increased cardiovascular morbidity and mortality. The existing rodent models do not fully represent the complex course of the human disease. Hence, developing a translational model of diabetes that reproduces both the early and the advanced characteristics of DN and faithfully recapitulates the overall human pathology is an unmet need. Here, we introduce the Nile grass rat (NGR) as a novel model of DN and characterize key pathologies underlying DN. NGRs spontaneously developed insulin resistance, reactive hyperinsulinemia, and hyperglycemia. Diabetic NGRs evolved DN and the key histopathological aspects of the human advanced DN, including glomerular hypertrophy, infiltration of mononuclear cells, tubular dilatation, and atrophy. Enlargement of the glomerular tufts and the Bowman's capsule areas accompanied the expansion of the Bowman's space. Glomerular sclerosis, renal arteriolar hyalinosis, Kimmelsteil-Wilson nodular lesions, and protein cast formations in the kidneys of diabetic NGR occurred with DN. Diabetic kidneys displayed interstitial and glomerular fibrosis, key characteristics of late human pathology as well as thickening of the glomerular basement membrane and podocyte effacement. Signs of injury included glomerular lipid accumulation, significantly more apoptotic cells, and expression of KIM-1. Diabetic NGRs became hypertensive, a known risk factor for kidney dysfunction, and showed decreased glomerular filtration rate. Diabetic NGRs recapitulate the breadth of human DN pathology and reproduce the consequences of chronic kidney disease, including injury and loss of function of the kidney. Hence, NGR represents a robust model for studying DN-related complications and provides a new foundation for more detailed mechanistic studies of the genesis of nephropathy, and the development of new therapeutic approaches.


Subject(s)
Diabetic Nephropathies , Disease Models, Animal , Animals , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Rats , Male , Humans , Insulin Resistance , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Kidney/pathology , Kidney/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism
4.
J Sex Med ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971577

ABSTRACT

BACKGROUND: Peyronie's disease (PD) is a connective tissue disorder that affects the penis and is characterized by abnormal collagen structure in the penile tunica albuginea, resulting in plaque formation and penile deformity. PD's overall prevalence is estimated at 3.2% to 8.9%, with rates as high as 20.3% among men with type 2 diabetes mellitus (DM). However, the characteristics of DM associated with PD complications remain unclear. AIM: To explore clinical associations between DM characteristics and PD complications. METHODS: We conducted a retrospective analysis of patients with DM and PD who presented at our institution between 2007 and 2022. We examined patients' clinical histories, DM- and PD-related clinical parameters, and complications. Penile deformities were assessed through physical examination, photographs, and penile Doppler ultrasound. Patients were categorized into subgroups based on age of DM onset: early (<45 years), average (45-65 years), and late (>65 years). OUTCOMES: Outcomes included effects of DM characteristics on PD development, progression, and severity. RESULTS: In total, 197 patients were included in the evaluation. Early-onset diabetes and elevated hemoglobin A1c (HbA1c) levels exhibited significant correlations with the early development of PD (ρ = 0.66, P < .001, and ρ = -0.24, P < .001, respectively). Furthermore, having DM at an early age was associated with the occurrence of penile plaque (ρ = -0.18, P = .03), and there were no significant differences in plaque dimensions (ρ = -0.29, P = .053). A rise in HbA1c levels after the initial PD diagnosis displayed positive correlations with the formation of penile plaque (ρ = 0.22, P < .006). CLINICAL IMPLICATIONS: These findings emphasize the need for comprehensive assessments and personalized treatment strategies for individuals with DM and PD. Enhanced management approaches can improve outcomes for those facing both challenges. STRENGTHS AND LIMITATIONS: Limitations include the single-site retrospective design with potential selection bias, inaccuracies in medical record data, and challenges in controlling confounding variables. CONCLUSIONS: This study highlights that early-onset diabetes and poor diabetes control, as indicated by a subsequent rise in HbA1c levels following PD diagnosis, are significantly correlated with the onset and severity of PD. Revealing the mechanisms behind these findings will help us develop better management strategies for individuals with DM and PD.

5.
Vitam Horm ; 125: 1-29, 2024.
Article in English | MEDLINE | ID: mdl-38997161

ABSTRACT

Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.


Subject(s)
Glycation End Products, Advanced , Receptor for Advanced Glycation End Products , Signal Transduction , Glycation End Products, Advanced/metabolism , Humans , Receptor for Advanced Glycation End Products/metabolism , Animals , Signal Transduction/physiology , Oxidative Stress/physiology
6.
Pharmacol Res ; 206: 107264, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876443

ABSTRACT

Disturbances in copper (Cu) homeostasis have been observed in diabetes and associated complications. Cu is an essential micronutrient that plays important roles in various fundamental biological processes. For example, diabetic cardiomyopathy is associated with elevated levels of Cu in the serum and tissues. Therefore, targeting Cu may be a novel treatment strategy for diabetic complications. This review provides an overview of physiological Cu metabolism and homeostasis, followed by a discussion of Cu metabolism disorders observed during the occurrence and progression of diabetic complications. Finally, we discuss the recent therapeutic advances in the use of Cu coordination complexes as treatments for diabetic complications and their potential mechanisms of action. This review contributes to a complete understanding of the role of Cu in diabetic complications and demonstrates the broad application prospects of Cu-coordinated compounds as potential therapeutic agents.

7.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892513

ABSTRACT

BACKGROUND: Biochemical events provoked by oxidative stress and advanced glycation may be inhibited by combining natural bioactives with classic therapeutic agents, which arise as strategies to mitigate diabetic complications. The aim of this study was to investigate whether lycopene combined with a reduced insulin dose is able to control glycemia and to oppose glycoxidative stress in kidneys of diabetic rats. METHODS: Streptozotocin-induced diabetic rats were treated with 45 mg/kg lycopene + 1 U/day insulin for 30 days. The study assessed glycemia, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma. Superoxide dismutase (SOD) and catalase (CAT) activities and the protein levels of advanced glycation end-product receptor 1 (AGE-R1) and glyoxalase-1 (GLO-1) in the kidneys were also investigated. RESULTS: An effective glycemic control was achieved with lycopene plus insulin, which may be attributed to improvements in insulin sensitivity. The combined therapy decreased the dyslipidemia and increased the PON-1 activity. In the kidneys, lycopene plus insulin increased the activities of SOD and CAT and the levels of AGE-R1 and GLO-1, which may be contributing to the antialbuminuric effect. CONCLUSIONS: These findings demonstrate that lycopene may aggregate favorable effects to insulin against diabetic complications resulting from glycoxidative stress.


Subject(s)
Antioxidants , Diabetes Mellitus, Experimental , Glycation End Products, Advanced , Insulin , Kidney , Lycopene , Oxidative Stress , Rats, Wistar , Animals , Lycopene/pharmacology , Kidney/drug effects , Kidney/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycation End Products, Advanced/metabolism , Antioxidants/pharmacology , Male , Insulin/blood , Insulin/metabolism , Oxidative Stress/drug effects , Rats , Blood Glucose/metabolism , Blood Glucose/drug effects , Superoxide Dismutase/metabolism , Catalase/metabolism , Aryldialkylphosphatase/metabolism , Receptor for Advanced Glycation End Products/metabolism , Insulin Resistance , Lactoylglutathione Lyase/metabolism , Drug Therapy, Combination , Hypoglycemic Agents/pharmacology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism
8.
Endocrine ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861116

ABSTRACT

AIM: To analysis the change of electrogastrogram (EGG) in patients with type 2 diabetes mellitus (T2DM), and evaluate the prevalence of abnormal gastric electrical rhythm (AGER) and its relative influencing factors. METHODS: A total of 65 patients with T2DM hospitalized at the Second Affiliated Hospital of Soochow University from Dec. 2020 to Dec. 2021 were included in the cross-sectional study. General information, clinical data, and medical history data of all study subjects, including name, gender, body mass index (BMI), duration of diabetes, anti-diabetic therapies, high blood pressure (HBP) history, smoking history, and medication history, were completely collected. The results of laboratory tests, including biochemical parameters, glycosylated hemoglobin (HbA1c), fasting C-peptide, 2 h postprandial C-peptide, 24 h urine total protein (24 hUTP), urine microalbumin creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were recorded. EGG, Gastroparesis Cardinal Symptom Index (GCSI), gastric emptying ultrasound, fundus examination, carotid artery ultrasonography, cardiac autonomic function test, heart rate variability (HRV) were all examined and recorded as well. According to the results of EGG, the subjects were divided into normal gastric electrical rhythm (NGER) group and abnormal gastric electrical rhythm (AGER) group. RESULTS: (1) Fasting blood glucose (FBG), HbA1c, the presence of diabetic peripheral neuropathy (DPN) and diabetic cardiac autonomic neuropathy (DCAN) were significantly higher in the AGER group (p < 0.05). Low frequency (LF) and high frequency (HF), the indicators of HRV, were significantly lower in the AGER group (p < 0.05). In addition, the prevalence of feeling excessively full after meals, loss of appetite, and stomach or belly visibly larger after meals of gastrointestinal symptoms of gastroparesis were significantly higher in the AGER group (p < 0.05). Multiple logistic regression analysis showed that FBG and the prevalence of DCAN were the independent risk factors. CONCLUSION: AGER was associated with high FBG and the presence of DCAN. EGG examination is recommended for patients with gastrointestinal symptoms and clues of DCAN.

9.
Cell Biochem Funct ; 42(4): e4053, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773932

ABSTRACT

Diabetes mellitus (DM) is a heterogeneous group of disorders characterized by hyperglycemia. Microribonucleic acids (microRNAs) are noncoding RNA molecules synthesized in the nucleus, modified, and exported to the extracellular environment to bind to their complementary target sequences. It regulates protein synthesis in the targeted cells by inhibiting translation or triggering the degradation of the target messenger. MicroRNA-29 is one of noncoding RNA that can be secreted by adipose tissue, hepatocytes, islet cells, and brain cells. The expression level of the microRNA-29 family in several metabolic organs is regulated by body weight, blood concentrations of inflammatory mediators, serum glucose levels, and smoking habits. Several experimental studies have demonstrated the effect of microRNA-29 on the expression of target genes involved in glucose metabolism, insulin synthesis and secretion, islet cell survival, and proliferation. These findings shed new light on the role of microRNA-29 in the pathogenesis of diabetes and its complications, which plays a vital role in developing appropriate therapies. Different molecular pathways have been proposed to explain how microRNA-29 promotes the development of diabetes and its complications. However, to the best of our knowledge, no published review article has summarized the molecular mechanism of microRNA-29-mediated initiation of DM and its complications. Therefore, this narrative review aims to summarize the role of microRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes and its complications.


Subject(s)
Diabetes Mellitus , MicroRNAs , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Diabetes Complications/metabolism , Diabetes Complications/pathology , Animals
11.
J Pediatr Endocrinol Metab ; 37(7): 652-656, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38814569

ABSTRACT

OBJECTIVES: To analyze and summarize the clinical characteristics and treatment of juvenile patients with type 1 diabetes mellitus (T1DM) complicated by early cataract. CASE PRESENTATION: This retrospective study collected clinical data from 210 children and adolescents newly diagnosed with T1DM who were admitted to the Department of Pediatrics, Tongji Hospital (Wuhan) between 2015 and 2022. Among 210 patients with T1DM, early cataract developed within 3 months before diabetes onset and 12 months thereafter in 2 (0.95 %) patients. The two patients were both females, aged 13 and 9 years, respectively. In both cases, cataracts in both eyes appeared in the early stages of T1DM, showing a short course and rapid development. After intensive insulin treatment for stringent and stable blood glucose control, one patient underwent cataract extraction with significant improvement, and her visual acuity returned to normal. The other patient received intensive insulin therapy and insulin pump therapy for 8 years. Subsequently, she underwent cataract surgery after achieving stable blood glucose levels, without complete recovery of vision. CONCLUSIONS: Cataract is a rare complication in the early stages of T1DM in children and adolescents. Ophthalmic surgery is the preferred treatment for patients with diabetic cataract after achieving stable glycemic control, which may help prevent visual impairment.


Subject(s)
Cataract , Diabetes Mellitus, Type 1 , Humans , Cataract/diagnosis , Female , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Adolescent , Child , Retrospective Studies , Prognosis , Insulin/therapeutic use , Insulin/administration & dosage , Cataract Extraction , Blood Glucose/analysis , Hypoglycemic Agents/therapeutic use
12.
Phytother Res ; 38(7): 3564-3582, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715375

ABSTRACT

Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Saponins , Diabetes Mellitus, Type 2/drug therapy , Saponins/pharmacology , Saponins/chemistry , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Animals , Plants, Medicinal/chemistry , Insulin Resistance
13.
Biomedicines ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38790954

ABSTRACT

Extracellular vesicles represent a group of structures with the capacity to communicate with different cells and organs. This complex network of interactions can regulate multiple physiological processes in the organism. Very importantly, these processes can be altered during the appearance of different diseases including cancer, metabolic diseases, etc. In addition, these extracellular vesicles can transport different cargoes, altering the initiation of the disease, driving the progression, or even accelerating the pathogenesis. Then, we have explored the implication of these structures in different alterations such as pancreatic cancer, and in different metabolic alterations such as diabetes and its complications and non-alcoholic fatty liver disease. Finally, we have explored in more detail the communication between the liver and the pancreas. In summary, extracellular vesicles represent a very efficient system for the communication among different tissues and permit an efficient system as biomarkers of the disease, as well as being involved in the extracellular-vesicle-mediated transport of molecules, serving as a potential therapy for different diseases.

14.
Mol Med ; 30(1): 71, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797859

ABSTRACT

Diabetes mellitus, a chronic metabolic disease, often leads to numerous chronic complications, significantly contributing to global morbidity and mortality rates. High glucose levels trigger epigenetic modifications linked to pathophysiological processes like inflammation, immunity, oxidative stress, mitochondrial dysfunction, senescence and various kinds of cell death. Despite glycemic control, transient hyperglycemia can persistently harm organs, tissues, and cells, a latent effect termed "metabolic memory" that contributes to chronic diabetic complications. Understanding metabolic memory's mechanisms could offer a new approach to mitigating these complications. However, key molecules and networks underlying metabolic memory remain incompletely understood. This review traces the history of metabolic memory research, highlights its key features, discusses recent molecules involved in its mechanisms, and summarizes confirmed and potential therapeutic compounds. Additionally, we outline in vitro and in vivo models of metabolic memory. We hope this work will inform future research on metabolic memory's regulatory mechanisms and facilitate the development of effective therapeutic compounds to prevent diabetic complications.


Subject(s)
Diabetes Complications , Humans , Animals , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/etiology , Epigenesis, Genetic , Oxidative Stress , Hyperglycemia/metabolism
15.
Plant Foods Hum Nutr ; 79(2): 277-284, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38607509

ABSTRACT

Advanced glycation end products (AGEs) are formed within the body as a part of normal metabolism and are also the by-products of cooking food. The elevated levels of AGEs in the body are considered pathogenic. The modern diets contain high levels of AGEs which are getting incorporated into the body AGEs pool and contribute to post-diabetic and age-related complications. The objective of the present study is to estimate the cross-linked AGEs (AGE-fluorescence) and the more stable carboxymethyl-lysine (CML) by spectrofluorimetry and ELISA in 58 kinds of foods in India. It was evident from the results that the foods cooked at higher temperatures showed high levels of AGEs. Among the studied foods, the highest fluorescence was observed in Biscuits 2 (362 AU), and the highest level of carboxymethyl lysine (CML) was found in Soya milk (659.3 ng/g). However, there was less correlation between the AGE-fluorescence and the CML content of the food samples. Processed food such as tomato sauce, chilli sauce, and cheese, along with western foods like chicken nuggets, pizza, and biscuits like Biscuits 2, are known to contain high levels of AGEs. In the present study a preliminary database of AGE-fluorescence and CML content of 58 foods was developed, which is the first attempt among Indian foods. Furthermore, elaborated database can be developed including maximum consumed foods in India which will help in suggesting a better diet for the diabetic population.


Subject(s)
Beverages , Enzyme-Linked Immunosorbent Assay , Food Analysis , Glycation End Products, Advanced , Lysine , Spectrometry, Fluorescence , Glycation End Products, Advanced/analysis , Lysine/analogs & derivatives , Lysine/analysis , Spectrometry, Fluorescence/methods , Beverages/analysis , Enzyme-Linked Immunosorbent Assay/methods , Food Analysis/methods , India , Cooking/methods
17.
Front Endocrinol (Lausanne) ; 15: 1324782, 2024.
Article in English | MEDLINE | ID: mdl-38601203

ABSTRACT

Objective: This study aims to map evidence from Randomized Controlled Trials (RCTs) and systematic reviews/Meta-analyses concerning the treatment of Diabetic Nephropathy (DN) with Traditional Chinese Medicine (TCM), understand the distribution of evidence in this field, and summarize the efficacy and existing problems of TCM in treating DN. The intention is to provide evidence-based data for TCM in preventing and treating DN and to offer a reference for defining future research directions. Methods: Comprehensive searches of major databases were performed, spanning from January 2016 to May 2023, to include clinical RCTs and systematic reviews/Meta-analyses of TCM in treating DN. The analysis encompasses the publishing trend of clinical studies, the staging of research subjects, TCM syndrome differentiation, study scale, intervention plans, and outcome indicators. Methodological quality of systematic reviews was evaluated using the AMSTAR (Assessment of Multiple Systematic Reviews) checklist, and evidence distribution characteristics were analyzed using a combination of text and charts. Results: A total of 1926 RCTs and 110 systematic reviews/Meta-analyses were included. The majority of studies focused on stage III DN, with Qi-Yin deficiency being the predominant syndrome type, and sample sizes most commonly ranging from 60 to 100. The TCM intervention durations were primarily between 12-24 weeks. Therapeutic measures mainly consisted of Chinese herbal decoctions and patented Chinese medicines, with a substantial focus on clinical efficacy rate, TCM symptomatology, and renal function indicators, while attention to quality of life, dosage of Western medicine, and disease progression was inadequate. Systematic reviews mostly scored between 5 and 8 on the AMSTAR scale, and evidence from 94 studies indicated potential positive effects. Conclusion: DN represents a significant health challenge, particularly for the elderly, with TCM showing promise in symptom alleviation and renal protection. Yet, the field is marred by research inconsistencies and methodological shortcomings. Future investigations should prioritize the development of standardized outcome sets tailored to DN, carefully select evaluation indicators that reflect TCM's unique intervention strategies, and aim to improve the robustness of clinical evidence. Emphasizing TCM's foundational theories while incorporating advanced scientific technologies will be essential for innovating research methodologies and uncovering the mechanisms underlying TCM's efficacy in DN management.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Drugs, Chinese Herbal , Humans , Diabetes Mellitus/drug therapy , Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional/methods , Meta-Analysis as Topic , Randomized Controlled Trials as Topic , Systematic Reviews as Topic , Treatment Outcome
18.
Front Endocrinol (Lausanne) ; 15: 1380970, 2024.
Article in English | MEDLINE | ID: mdl-38559690

ABSTRACT

This study aimed to determine the efficacy of assessing the severity of diabetic polyneuropathy (DPN) in patients with untreated diabetes. Seventy-two patients with untreated type 2 diabetes who were hospitalized for glycemic control were enrolled and divided into the following two groups: patients who had no prior diagnosis and patients who were unattended or had discontinued treatment. Electrophysiological criteria consistent with Baba's classification were used to diagnose and assess the severity of DPN. The patients were divided into three subgroups: no DPN (stage 0), mild DPN (stage 1), and moderate or more-severe DPN (stages 2-4). Intergroup comparisons were performed for the clinical characteristics and the results of the nerve conduction studies. Twenty-two (30%), 25 (35%), and 25 (35%) patients were categorized into the no DPN, mild DPN, and moderate or more-severe DPN subgroups, respectively. The number of patients who were unattended or had discontinued treatment in the moderate or more-severe DPN subgroup was significantly higher than that in the no DPN subgroup. The patients in the moderate or more-severe DPN subgroup had an increased risk of developing diabetic retinopathy and nephropathy, with odds ratios of 19.5 and 11.0 for advanced stages of retinopathy and nephropathy, respectively. Thus, the assessment of the severity of DPN could aid in the prediction of the risk of developing diabetic complications in patients with untreated diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Diabetic Retinopathy , Humans , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/etiology , Diabetes Mellitus, Type 2/complications , Diabetic Retinopathy/complications , Odds Ratio , Risk Factors
19.
Biomed Pharmacother ; 174: 116525, 2024 May.
Article in English | MEDLINE | ID: mdl-38599057

ABSTRACT

PURPOSE: We previously showed the beneficial effect of L-Lysine (Lys), a chemical chaperone, on reducing diabetic complications in diabetic rats and type 2 diabetic patients. Herein, we evaluated the effect of Lys co-administration with Vitamin C and Zinc (Lys+VC+Zn), in diabetic rats. METHODS: The streptozotocin (50 mg/Kg) was injected into male adult Wistar rats to induce diabetes. Then, different groups of normal and diabetic rats were treated with Lys and Lys+VC+Zn for five months. So, there were 0.1 % Lys in the drinking water of both groups. The control groups received water alone. During the experiment, the body weight, and various parameters were determined in the blood, serum/plasma, and urine of the rats. RESULTS: The determination of biochemical indexes confirmed diabetes induction and its complications in rats. Treatment with either Lys or Lys+VC+Zn resulted in reduced blood glucose and protein glycation (decreasing AGEs and HbA1c), increased insulin secretion, alleviated insulin resistance and HOMA-IR, improved lipid profile and HDL functionality (LCAT and PON1), enhanced antioxidant status (FRAP and AOPP), improved kidney function (decreased microalbuminuria, serum urea, and creatinine), and increased chaperone capacity (HSP70). Lys+VC+Zn showed better effects on these parameters than Lys alone. CONCLUSIONS: The results of this study indicated that co-administration of Lys, a chemical chaperone, with two antioxidants (VC and Zn) potentiates its antidiabetic effects and prevent diabetic complications in rat model of diabetes.


Subject(s)
Antioxidants , Ascorbic Acid , Blood Glucose , Diabetes Mellitus, Experimental , Insulin Resistance , Lipids , Lysine , Rats, Wistar , Zinc , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Male , Ascorbic Acid/pharmacology , Ascorbic Acid/administration & dosage , Lysine/pharmacology , Lysine/administration & dosage , Zinc/pharmacology , Antioxidants/pharmacology , Antioxidants/administration & dosage , Rats , Lipids/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Streptozocin , Insulin/blood , Drug Therapy, Combination
20.
Cureus ; 16(3): e56674, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38646317

ABSTRACT

Diabetic retinopathy, nephropathy, and neuropathy are significant microvascular complications of diabetes mellitus, contributing to substantial morbidity and mortality worldwide. This comprehensive review examines the clinical relationship between these complications, focusing on shared pathophysiological mechanisms, bidirectional relationships, and implications for patient management. The review highlights the importance of understanding the interconnected nature of diabetic complications and adopting a holistic approach to diabetes care. Insights gleaned from this review underscore the necessity for early detection, timely intervention, and integrated care models involving collaboration among healthcare professionals. Furthermore, the review emphasizes the need for continued research to elucidate underlying mechanisms, identify novel therapeutic targets, and assess the efficacy of integrated care strategies in improving patient outcomes. By fostering interdisciplinary collaboration and knowledge exchange, future research endeavors hold the potential to advance our understanding and management of diabetic complications, ultimately enhancing patient care and quality of life.

SELECTION OF CITATIONS
SEARCH DETAIL
...