Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Article in English | MEDLINE | ID: mdl-38859775

ABSTRACT

Aims & Objective: This study entailed the creation of a new variation of pyrroloimidazoles with exceptional efficacy through chemical synthesis. The synthesis was accomplished by tricomponent reactions utilizing ninhydrins, diamines, and activated acetylenic compounds in an aqueous setting, leading to significant yields. The antioxidant properties of recently synthesized Pyrroloimidazoles derivatives have been ascribed to the existence of NH and OH groups, which were evaluated using two techniques. The antimicrobial effectiveness of recently developed pyrroloimidazoles was evaluated using a disk diffusion technique against both Gram-negative and Gram-positive bacteria. MATERIALS AND METHODS: The study team utilized high-quality starting chemicals, solvents, and reagents with consistent chemical and physical properties. The Shimadzu IR-460 spectrometer was used in a KBr medium to get the Ft-IR spectra of the synthesized nanocatalyst. Furthermore, we employed a Bruker DRX-400 AVANCE spectrometer to acquire 1H-NMR and 13C-NMR spectra of the synthesized compounds. The spectrometer utilized in this investigation functions at a frequency of 400 MHz. The solvent employed for the spectra of produced compounds was CDCl3, with TMS serving as the internal standard. The mass spectra of the produced compounds, which have an ionization potential of 70 eV, were obtained using the Finnigan MAT 8430 spectrometer. Elements of produced compounds were subjected to elemental analysis using the Heraeus CHN-O-Rapid analyzer. RESULTS: This work investigated the three-component reaction involving ninhydrins 1, diamines 2, and electron-deficient acetylenic compounds 3 for the eco-friendly production of pyrroloimidazoles derivatives 4 in water-based solutions at normal temperature. The results indicated that these molecules displayed noteworthy efficacy, similar to that of conventional antioxidants. Also, the results indicated that the synthesized pyrroloimidazoles have bacteriostatic properties. CONCLUSION: In summary, this study aimed to examine the environmentally friendly characteristics of ninhydrins, diamines, and electron-deficient acetylenic compounds when dissolved in water at normal room temperature. The research resulted in the successful production of new pyrroloimidazole derivatives with a high rate of success. This study conducted a more in-depth analysis of the antioxidant properties of the synthesized pyrroloimidazoles 4a-4d by the utilization of two techniques: DPPH radical scavenging and FRAP assays. The results indicated that these molecules displayed noteworthy efficacy, similar to that of conventional antioxidants. Furthermore, we utilized both Gram-positive and Gram-negative bacteria to showcase the antibacterial effectiveness of the synthesized pyrroloimidazoles by the disk diffusion technique. The results indicated that the synthesized pyrroloimidazoles have bacteriostatic properties. These reactions provide benefits, such as efficient utilization of atoms, generation of large quantities of products, and straightforwardness of the reaction.

2.
Water Res ; 257: 121745, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733965

ABSTRACT

Polyester-amide (PEA) thin film composite (TFC) NF membranes have rapidly evolved towards a competitive performance, benefiting from their remarkable antifouling capability and superior chlorine resistance. In this report, a new concept of synergistic interfacial polymerization is explored, which promptly triggers the reaction between hydramines and trimesoyl chloride (TMC) in the presence of a trace amount of diamines. This rapid-start mode enables the formation of defect-free PEA films without the requirement of catalysis. A comprehensive characterization of physicochemical properties using high-resolution mass spectrometer (HRMS) reveals that the recombination and formation of a "hydramine-diamine" coupling unit plays a decisive role in activating the synergistic interfacial polymerization reaction with TMC molecules. Taking the pair of serinol and piperazine (PIP) as an example, the PEA-NF membrane fabricated with 0.1 w/v% serinol mixed with 0.04 w/v% PIP as water-soluble monomer and 0.1 w/v% TMC as oil phase monomer was found to have a pure water permeability (PWP) of 18.5 L·m-2·h-1·bar-1 and a MgSO4 rejection of 95.5 %, which surpasses almost all the reported PEA NF membranes. Findings of the current research provide more possibilities for the low-cost and rapid synthesis of high-performance PEA membranes aiming for water purification.


Subject(s)
Membranes, Artificial , Polymerization , Diamines/chemistry , Polyesters/chemistry
3.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731615

ABSTRACT

Interaction of the pre-organized complex of iron(II) trimethylacetate and 1,10-phenanthroline (phen) [Fe2(piv)4(phen)2] (1) (piv = (Me)3CCO2-)) with 1,6-diaminohexane (dahx) in anhydrous acetonitrile yielded a 1D coordination polymer [Fe3O(piv)6(dahx)1.5]n (2) and an organic salt of pivalic acid (H2dahx)(piv)2 (3). The structure of the obtained compounds was determined by single-crystal X-ray diffraction analysis. The phase purity of the complexes was determined by powder X-ray diffraction analysis. According to the single-crystal X-ray analysis, coordination polymer 2 is formed due to the binding of a triangular carboxylate core {Fe3(µ3-O)(µ-piv)6} with an aliphatic diamine ligand. Thermal behavior was investigated for compounds 1 and 2 in an argon atmosphere.

4.
Toxicol Ind Health ; 40(3): 104-116, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38166466

ABSTRACT

Flexible polyurethane foams (PUF) are used in many consumer products. PUF may contain trace levels of aromatic diamine impurities that could represent a potential health risk. The risk associated with sleeping on a PUF mattress was evaluated. Toxicity benchmarks for sensitization and non-cancer endpoints were derived from the respective points-of-departure using standard assessment factors. For the cancer endpoints, toxicity benchmarks were derived from the 25th-percentile values of animal studies. Recently published emission and migration data allowed to link exposure with the CertiPURTM voluntary quality limits of ≤5 mg.kg-1 for 2,4-toluene diamine and 4,4'-methylene dianiline in PUF. Using conservative exposure scenarios, lifetime-average daily internal doses from the combined inhalation and dermal exposures were calculated. Margins of safety for non-cancer and sensitization endpoints were >104. The theoretical excess cancer risk was ≤1.5 × 10-7. It is concluded that sleeping on a mattress that satisfies the CertiPUR limit value does not pose undue risk to consumers.


Subject(s)
Diamines , Polyurethanes , Animals , Risk Assessment , Toluene
5.
Chemistry ; 30(16): e202303078, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38205968

ABSTRACT

We have previously reported the first formal hydroamination of enamines for the synthesis of chiral 1,2-diamines. Here, we describe: (i) the discovery, optimization, and substrate expansion of this reaction; (ii) a novel and straightforward protocol for the "click-type" synthesis of enamines in quantitative yield utilizing sodium sulfate in a dual role as an ancillary and dehydrating agent without the need for workup or purification; (iii) the application of this methodology to the first enantioselective synthesis of orthogonally protected 1,1'-(1-(4-fluorophenyl)ethane-1,2-diyl) piperazines, a scaffold for rapid lead optimization in drug discovery; (iv) a computational investigation into the mechanism and rationalization of the enantioselectivities of the reaction.

6.
Chem Asian J ; 19(1): e202300705, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37743249

ABSTRACT

1,2-Diamines are synthetically important motifs in organo-catalysis, natural products, and drug research. Continuous utilization of transition-metal based catalyst in direct 1,2-diamination of olefines, in contrast to metal-free transformations, with numerous impressive advances made in recent years (2015-2023). This review summarized contemporary research on the transition-metal catalyzed/mediated [e. g., Cu(II), Pd(II), Fe(II), Rh(III), Ir(III), and Co(II)] 1,2-diamination (asymmetric and non-asymmetric) especially emphasizing the recent synthetic methodologies and mechanistic understandings. Moreover, up-to-date discussion on (i) paramount role of oxidant and catalyst (ii) key achievements (iii) generality and uniqueness, (iv) synthetic limitations or future challenges, and (v) future opportunities are summarized related to this potential area.

7.
Ecotoxicol Environ Saf ; 269: 115758, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38128448

ABSTRACT

Aminolysis is widely recognized as a valuable chemical route for depolymerizing polymeric materials containing ester, amide, or urethane functional groups, including polyurethane foams. Bio-based polyurethane foams, pristine and reinforced with 40 wt% of sustainable fillers, were depolymerized in the presence of bio-derived butane-1,4-diamine, BDA. A process comparison was made using fossil-derived ethane-1,2-diamine, EDA, by varying amine/polyurethane ratio (F/A, 1:1 and 1:0.6). The obtained depolymerized systems were analyzed by FTIR and NMR characterizations to understand the effect of both diamines on the degradation pathway. The use of bio-based BDA seemed to be more effective with respect to conventional EDA, owing to its stronger basicity (and thus higher nucleophilicity), corresponding to faster depolymerization rates. BDA-based depolymerized systems were then employed to prepare second-generation bio-based composite polyurethane foams by partial replacement of isocyanate components (20 wt%). The morphological, mechanical, and thermal conductivity properties of the second-generation polyurethane foams were evaluated. The best performances (σ10 %=71 ± 9 kPa, λ = 0.042 ± 0.015 W∙ m-1 ∙K-1) were attained by employing the lowest F/A ratio (1:0.6); this demonstrates their potential application in different sectors such as packaging or construction, fulfilling the paradigm of the circular economy.


Subject(s)
Diamines , Polyurethanes , Amines , Isocyanates , Amides , Esters
8.
Materials (Basel) ; 16(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38068063

ABSTRACT

In unsaturated glycerol polyesters, the C=C bond is present. It makes it possible to carry out post-polymerisation modification (PPM) reactions, such as aza-Michael addition. This reaction can conduct crosslinking under in-situ conditions for tissue engineering regeneration. Until now, no description of such use of aza-Michael addition has been described. This work aims to crosslink the synthesised poly(glycerol itaconate) (PGItc; P3), polyester from itaconic acid (AcItc), and glycerol (G). The PGItc syntheses were performed in three ways: without a catalyst, in the presence of p-toluenesulfonic acid (PTSA), and in the presence of zinc acetate (Zn(OAc)2). PGItc obtained with Zn(OAc)2 (150 °C, 4 h, G:AcItc = 2:1) was used to carry out the aza-Michael additions. Crosslinking reactions were conducted with each of the five aliphatic diamines: 1,2-ethylenediamine (1,2-EDA; A1), 1,4-butanediamine (1,4-BDA; A2), 1,6-hexanediamine (1,6-HDA; A3), 1,8-octanediamine (1,8-ODA; A4), and 1,10-decanediamine (1,10-DDA; A5). Four ratios of the proton amine group: C=C bond were investigated. The maximum temperature and crosslinking time were measured to select the best amine for the addition product's application. FTIR, 1H NMR, DSC, and TG analysis of the crosslinked products were also investigated.

9.
Molecules ; 28(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138463

ABSTRACT

The endo- and exo-N-heterocyclic carbene precursors based on camphor were prepared diastereoselectively in five synthetic steps starting from (1S)-(+)-ketopinic acid. The obtained N-heterocyclic carbene precursors were investigated in an asymmetric benzoin reaction. All new compounds were fully characterized, and the absolute configurations were determined via X-ray diffraction and NOESY measurements.

10.
Molecules ; 28(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836698

ABSTRACT

Two new fluorine-containing diamine monomers were designed with the goal of reducing charge transfer complex (CTC) interactions between neighboring chains in polyimides (i.e., high transparency/low color) while hopefully maintaining the well-known thermal stability and flexibility generally associated with polyimides. The proposed diamines have been prepared through (1) the functionalization of 1,3-bis[(pentafluorobenzyl)oxy]benzene with 4-aminophenol and (2) the addition of 2-chloro-5-nitrobenzotrifluoride to 4,4'-bicyclohexanol followed by reduction of the resulting dinitro compound. The new compounds have been characterized by multinuclear NMR and IR spectroscopy and high-resolution liquid chromatography-mass spectrometry as well as single-crystal X-ray diffraction on the new diamine prepared from 4,4'-bicyclohexanol. Not only was the structure of the proposed new diamine confirmed, but another interesting example of hydrogen bonding between an N-H proton and the π-system of an aromatic ring was observed and documented. Initial polymerizations have been carried out via the two-step imidization process.

11.
Inflamm Res ; 72(10-11): 2013-2022, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37812220

ABSTRACT

OBJECTIVE: To test whether recombinant human diamine oxidase (rhDAO) with a mutated heparin-binding motif (mHBM), which shows an increased alpha-distribution half-life, prevents histamine-induced hemodynamic effects. MATERIAL: Thirty-eight female guinea pigs were either pretreated with rhDOA_mHBM or buffer. TREATMENT AND METHODS: Guinea pigs received a continuous infusion of histamine. Heart rate (HR), body core temperature and mean arterial pressure (MAP) were measured and blood was collected. RESULTS: Continuous intravenous infusion of 8 µg/kg/min histamine increased mean peak plasma histamine levels from 5 (± 0.3 SEM) to 28 ng/mL (± 4.9 SEM) after 30 min but had no effect on oxygen saturation. Guinea pigs pretreated with 4 mg/kg rhDAO_mHBM showed lower mean HR (p = 0.008), histamine plasma concentrations (p = 0.002), and higher body core temperatures at the end of the histamine challenge (p = 0.02) compared to controls. Cessation of histamine infusion led to a rebound increase in MAP, but this hemodynamic instability was prevented by rhDAO_mHBM. Pretreatment with 4 mg/kg rhDAO_mHBM reduced urinary histamine (p = 0.004) and 1-Methylhistamine (p < 0.0001) concentrations compared to controls. CONCLUSIONS: Prophylactic infusion of rhDAO_mHBM prevents hemodynamic effects in a guinea pig model of continuous histamine infusion. These findings might help in the translation from animals to humans and in the selection of the optimal dosing of rhDAO_mHBM during human histamine challenge studies.


Subject(s)
Amine Oxidase (Copper-Containing) , Histamine , Humans , Guinea Pigs , Female , Animals , Hemodynamics
12.
Angew Chem Int Ed Engl ; 62(42): e202309263, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37493209

ABSTRACT

Chiral 1,2-diamines are privileged scaffolds among bioactive natural products, active pharmaceutical ingredients, ligands for transition-metal-based asymmetric catalysis and organocatalysts. Despite this interest, the construction of chiral 1,2-diamine motifs still remains a challenge. To address this, an iridium(III)-catalyzed intermolecular C(sp3 )-H amidation reaction was developed. This method relies on the design of a new, cheap and cleavable exo-protecting/directing group derived from camphorsulfonic acid, which is directly installed from easily accessible precursors, and furnishes scalemic free 1,2-diamines upon cleavage of both nitrogen substituents. It was found applicable to both α-secondary and α-tertiary-1,2-diamines, for which a two-step protocol involving intermolecular olefin hydroamination and C(sp3 )-H amidation was developed. Kinetic and computational studies provided insights into the observed reactivity difference between pairs of diastereoisomeric substrates.

13.
Toxicol Ind Health ; 39(6): 313-324, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37134012

ABSTRACT

A sampling chamber was developed for emission testing of diisocyanates, methylene diphenyl diisocyanate (MDI), toluene diisocyanate (TDI), and corresponding diamines, methylene diphenyl diamine (MDA), and toluene diamine (TDA) from polyurethane (PU) product surfaces. In addition, a methodology for validation of the sampling chamber was presented, based on the introduction of generated standard atmospheres of the different diisocyanates and diamines to the sampling chamber system. Sampling of diisocyanates and diamines was performed on a circular glass fiber filter (150 mm diameter) impregnated with dihexyl amine (DHA) and acetic acid (AA) positioned inside a cylindrical stainless steel sampling chamber. The diisocyanates were immediately derivatized to DHA derivatives, and the amines were derivatized in a subsequent work-up procedure with ethyl chloroformate (ECF). The design of the sampling chamber and the presented methodology allowed for simultaneous sampling and analysis of diisocyanates and diamines of emission from a large surface area with minimal interior wall interaction in the sampling chamber. Performance characteristics of the sampling chamber for different sampling times and air humidity were obtained by determining collected amounts of the diisocyanates and diamines in the different parts of the sampling chamber. The repeatability of the collected amount on the impregnated filters in the sampling chamber was 15% with an overall recovery for 8 h of sampling in the range of 61% to 96%. The performance of the sampling chamber was not affected by air humidity (5%-75% RH), and no breakthrough during sampling was observed. LC-MS/MS determinations allowed for emission testing of diisocyanates and diamines on product surfaces as low as 10-30 ng m-2 h-1.


Subject(s)
Polyurethanes , Toluene 2,4-Diisocyanate , Diamines , Chromatography, Liquid , Tandem Mass Spectrometry , Isocyanates , Toluene 2,4-Diisocyanate/analysis , Amines
14.
Toxicol Ind Health ; 39(6): 298-312, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37145999

ABSTRACT

Performing risk assessments (RA) on household use of flexible polyurethane (PU) foams requires access to reliable data about emission and migration of potential diamine impurities. A toluene diisocyanate (TDI) and a methylene diphenyl diisocyanate (MDI) based foam were thermally treated to enable measurements on samples with defined concentrations of the corresponding diamines, toluene diamine (TDA), and methylene dianiline (MDA). The thermally treated foams used for emission testing contained up to 15 mg.kg-1 of TDA and 27 mg.kg-1 of MDA. Those used for migration testing contained 5.1 mg.kg-1 of TDA and 14.1 mg.kg-1 of MDA. Stability of the thermally generated diamines was sufficient for testing over a 37-day period. Analytical techniques that did not decompose the polymer matrix were applied. Emission rates for TDA and MDA isomers were less than the limit of quantitation (LOQ) of 0.008-0.07 µg.m-2.h-1. Migration was studied using samples of the same thermally treated foams over a 35-day period. Quantifiable migration of MDA from the MDI-based foam was only observed on Days 1 and 2. From Day 3 onward, migration rates were less than the LOQ. Quantifiable migration of TDA from the TDI-based foam rapidly decreased with time and was only observed on Days 1 thru 3. From Day 4 onward, migration rates were less than the LOQ. Theoretically, the migration rate should be inversely proportional to the square root of time (t) as t-0.5. This relationship was confirmed by the experimental data and enables extrapolating migration values to more extended time periods to conduct RAs.


Subject(s)
Occupational Exposure , Toluene 2,4-Diisocyanate , Polyurethanes , Diamines , Toluene 2,4-Diisocyanate/analysis , Amines , Occupational Exposure/analysis
15.
Angew Chem Int Ed Engl ; 62(17): e202300334, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36859620

ABSTRACT

We herein describe the chiral diboron-templated asymmetric homocoupling of aryl alkyl ketimines, providing for the first time a series of chiral vicinal tetrasubstituted diamines with excellent ee values and good to high yields. The powerful and efficient diboron-participated [3,3]-sigmatropic rearrangement is successfully demonstrated by the homocoupling of a variety of ketimines thanks to the rational design and engineering of chiral diborons. Systematic DFT studies suggest that two chiral diborons adopt different conformational assembling strategies to couple the diboron template with ketimine substrates in their tight concerted transition states to ensure the excellent enantioselectivities. The synthetic value of chiral vicinal tetrasubstituted diamines is demonstrated by the asymmetric α-bromination of aliphatic aldehydes by employing a chiral vicinal tetrasubstituted diamine-based organocatalyst.

16.
Molecules ; 28(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36771181

ABSTRACT

Ten novel bifunctional quaternary ammonium salt phase-transfer organocatalysts were synthesized in four steps from (+)-camphor-derived 1,3-diamines. These quaternary ammonium salts contained either (thio)urea or squaramide hydrogen bond donor groups in combination with either trifluoroacetate or iodide as the counteranion. Their organocatalytic activity was evaluated in electrophilic heterofunctionalizations of ß-keto esters and in the Michael addition of a glycine Schiff base with methyl acrylate. α-Fluorination and chlorination of ß-keto esters proceeded with full conversion and low enantioselectivities (up to 29% ee). Similarly, the Michael addition of a glycine Schiff base with methyl acrylate proceeded with full conversion and up to 11% ee. The new catalysts have been fully characterized; the stereochemistry at the C-2 chiral center was unambiguously determined.

17.
Angew Chem Int Ed Engl ; 62(16): e202215935, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36840725

ABSTRACT

Aliphatic α,ω-diamines (DAs) are important monomer precursors that are industrially produced by energy-intensive, multistage chemical reactions that are harmful to the environment. Therefore, the development of sustainable green DA synthetic routes is highly desired. Herein, we report an efficient one-pot in vivo biocatalytic cascade for the transformation of cycloalkanes into DAs with the aid of advanced techniques, including the RetroBioCat tool for biocatalytic route design, enzyme mining for finding appropriate enzymes and microbial consortia construction for efficient pathway assembly. As a result, DAs were successfully produced by the designed microbial consortia-based biocatalytic system. In particular, the highest biosynthesis productivity record of 1,6-hexanediamine was achieved when using either cyclohexanol or cyclohexane as a substrate. Thus, the developed biocatalytic process provides a promising alternative to the dominant industrial process for manufacturing DAs.


Subject(s)
Cycloparaffins , Cycloparaffins/metabolism , Catalysis , Biocatalysis , Diamines
18.
Biotechnol Adv ; 62: 108070, 2023.
Article in English | MEDLINE | ID: mdl-36462631

ABSTRACT

Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.


Subject(s)
Diamines , Nylons , Nylons/metabolism , Diamines/metabolism , Polymers , Metabolic Engineering , Fermentation
19.
J Hazard Mater ; 443(Pt A): 130133, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36274546

ABSTRACT

Adsorptive removal of aromatic diamines such as methylenedianiline (MDA) and p-phenylenediamine (PPD) was firstly investigated with nitro-functionalized metal-organic frameworks (MOFs, MIL-101(Cr)-NO2). The MIL-101(Cr)-NO2 showed much better performances in the removal of MDA and PPD, in both adsorption capacity and kinetics, than any other adsorbents. For example, MIL-101(Cr)-NO2 had a much higher maximum adsorption capacity for MDA (1111 mg·g-1) than activated carbon (208 mg·g-1) or a reported adsorbent (391 mg·g-1). Based on experimental results, hydrogen bonding (especially, via the formation of a 6-membered ring (6-MR) between -NO2 of the adsorbent and -NH2 of the adsorbates) could be suggested as the main mechanism to interpret the noticeable adsorption of the diamines. Importantly, this is the first example to confirm that MOFs with nitro group can be a competitive adsorbent to remove organics composed of amino group, especially via making 6-MR through hydrogen bonding. Higher adsorption of MDA than that of PPD over MIL-101(Cr)-NO2 might be explained with π-π interaction between aromatic rings (π-lean aromatics of MOF and π-rich aromatics of the adsorbates). Moreover, MIL-101(Cr)-NO2 could be recycled after simple washing, suggesting the potential use of the MOF in adsorptive purification of contaminated water with organics with amino groups.

20.
Trends Biotechnol ; 41(2): 150-153, 2023 02.
Article in English | MEDLINE | ID: mdl-36180355

ABSTRACT

Nylons are important polyamide (PA) materials that can be polymerized from different monomers. Bio-based nylon monomers are traditionally obtained through chemical conversion from vegetable oils, but they can be more sustainably obtained through multienzymatic catalysis. For large-scale application of this process, enzyme engineering and process innovation must be combined.


Subject(s)
Nylons , Plant Oils
SELECTION OF CITATIONS
SEARCH DETAIL
...