Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
J Hazard Mater ; 476: 135191, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39013318

ABSTRACT

Phthalate esters (PAEs) are emerging hazardous and toxic chemicals that are extensively used as plasticizers or additives. Diethyl phthalate (DEP) and dimethyl phthalate (DMP), two kinds of PAEs, have been listed as the priority pollutants by many countries. PAE hydrolases are the most effective enzymes in PAE degradation, among which family IV esterases are predominate. However, only a few PAE hydrolases have been characterized, and as far as we know, no crystal structure of any PAE hydrolases of the family IV esterases is available to date. HylD1 is a PAE hydrolase of the family IV esterases, which can degrade DMP and DEP. Here, the recombinant HylD1 was characterized. HylD1 maintained a dimer in solution, and functioned under a relatively wide pH range. The crystal structures of HylD1 and its complex with monoethyl phthalate were solved. Residues involved in substrate binding were identified. The catalytic mechanism of HylD1 mediated by the catalytic triad Ser140-Asp231-His261 was further proposed. The hylD1 gene is widely distributed in different environments, suggesting its important role in PAEs degradation. This study provides a better understanding of PAEs hydrolysis, and lays out favorable bases for the rational design of highly-efficient PAEs degradation enzymes for industrial applications in future.

2.
Environ Pollut ; 358: 124499, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964648

ABSTRACT

To investigate the impact of different H2O2 concentrations on the Fenton-like systems of H2O2/biochar, this study examined the mechanism of the physical structure and environmental persistent free radicals (EPFRs) of biochar during diethyl phthalate (DEP) removal by the Fenton-like system. The peak-splitting method was utilized to differentiate EPFRs types in cotton stalk biochar produced at different temperatures. High-temperature environments promote π-electron delocalization, which facilitates phenyl π free radicals and σ-π oxygen-containing free radicals. By analyzing relationships between the removal rate K1 and removal constant Kobs of DEP with the structural properties of biochar, it was discovered that EPFRs concentrations in biochar had a significant positive correlation with K1 (r = 0.92) and Kobs (r = 0.97). Different H2O2 concentrations added to the biochar removal system resulted in varied DEP removal efficiency. Among them, CS500, CS550, and CS600 exhibited superior DEP removal efficiency when H2O2 concentration was 5 mM.

3.
Environ Res ; : 119588, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019136

ABSTRACT

The extensive use of plasticizers in various industries has made Diethyl phthalate (DEP), a serious threat to the environment and ecological water security, owing to its complex-structure and low-biodegradability. Thus, the present study aimed to design a sustainable sand-coated nano glutathione (GSH) -Fe3O4-loaded/activated carbon (AC) bionanocomposite (AC-GSH-Fe3O4@sand bionanocomposite) for effective removal of DEP from water. Characterization results suggested bionanocomposites' rough and irregular texture due to the uneven distribution of AC and Fe3O4 nanoparticles over the sand. The XRD spectra indicated high crystallinity of bionanocomposites, while the FTIR spectra confirmed the presence of all individual components, i.e., GSH, AC, Fe3O4, and sand. EDX-mapping, AFM, and TGA further verified its elemental composition, topographical changes and thermal stability. The influence of pH (3, 7, 9), bed height (2, 4, 6) cm, and flow rate (2.5, 3.5, 4.5) mL min-1 were studied in a dynamic system with an initial DEP concentration of 50 mg L-1 to investigate the removal behavior of the bionanocomposites. The best DEP removal efficiency (90.18 %) was achieved over 28-hours at pH 9, bed-height-4 cm, and flow-rate-3.5 mL min-1, with an optimum qmax-200.25 mg g-1 as determined through Thomas-model. Breakthrough curves were predicted using various column models, and the corresponding parameters essential for column-reactor process design were calculated. The high reusability up to the 10th cycle (≥ 83.32%) and the effective treatment in complex matrices (tap-water: 90.11 %, river-water: 89.72 %, wastewater: 83.83%) demonstrated bionanocomposites' prominent sustainability. Additionally, the production cost at 6.64 USD per Kg, underscores its potentiality for industrial application. Phytotoxicity assessment on mung-bean revealed better root (5.02 ± 0.27) cm and shoot (17.64 ± 0.35) cm growth in the bionanocomposite-treated DEP samples over the untreated samples. Thus, AC-GSH-Fe3O4@sand bionanocomposites could be considered a highly-sustainable, low-cost technique for the effective removal of DEP and other phthalate-esters from contaminated matrices.

4.
Sci Total Environ ; 945: 173933, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38880153

ABSTRACT

Observed nowadays wide pollution of the environment with microplastic and phthalic acid esters (PAEs) (such as dimethyl phthalate, DMP; diethyl phthalate, DEP; dibutyl phthalate, DBP; benzyl butyl phthalate, BBP; di-(2-ethylhexyl) phthalate, DEHP and di-n-octyl phthalate, DNOP) is a result of their increased production and usage. Weak bonding with polymer matrix enables their easier mobilization in the environment and increased bioavailability. The aim of the presented studies was the estimation of the fate of six priority PAEs in the soil-vegetable system and the application of biochar to immobilize PAEs in the soil preventing their bioavailability to lettuce. Both the acute (one full lettuce development period) and prolongated effect (lettuce cultivated after 10 weeks from the first PAEs contamination) were estimated to examine the long-time exposure under crop rotation. The addition of 1 % of corn-derived biochar immobilized PAEs in the soil efficiently (up to 4 times increased concentration) with the following order: DBP < DEP < DMP < DEHP < DNOP < BBP. Bioavailable PAEs were determined in lettuce roots (DMP, BBP, DEHP), and lettuce leaves (DEP, DBP, DNOP) but the presence of biochar lowered their content. PAEs, although not available for lettuce, were available for other organisms, confirming that the bioavailability or lack of nutrients is of great importance in PAEs-polluted soil. In long-time experiments, without biochar amendment, all PAEs were 3-12 times more bioavailable and were mainly accumulated in lettuce roots. The biochar addition significantly reduces (1.5-11 times) PAEs bioavailability over time. However, the PAEs content in roots remained significantly higher in samples with crop rotation compared to samples where only lettuce was grown. The results confirmed that biochar addition to the soil reduces their bioavailability and mobility inside the plant, limiting their transport from roots to leaves and reducing the exposure risk but confirming that lettuce leaves may be a safe food when cultivated in PAEs-polluted soil.


Subject(s)
Charcoal , Lactuca , Phthalic Acids , Soil Pollutants , Soil , Charcoal/chemistry , Soil/chemistry , Esters , Biological Availability , Diethylhexyl Phthalate
5.
Ecotoxicol Environ Saf ; 279: 116473, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38781890

ABSTRACT

The toxicity of three phthalates (PAEs) - butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and di-(2-ethylhexyl) phthalate (DEHP) - was tested on the Mediterranean sea urchin Paracentrotus lividus. Fertilized eggs were exposed to environmental and high PAE concentrations for 72 h. The potential toxic effects on larval development and any morphological anomalies were then assessed to estimate PAEs impact. Environmental concentrations never affected development, while high concentrations induced toxic effects in larvae exposed to BBP (EC50: 2.9 ×103 µg/L) and DEHP (EC50: 3.72 ×103 µg/L). High concentrations caused skeletal anomalies, with a slight to moderate impact for DEP/DEHP and BBP, respectively. PAE toxicity was: BBP>DEHP>DEP. In conclusion, the three PAEs at environmental concentrations do not pose a risk to sea urchins. However, PAE concentrations should be further monitored in order not to constitute a concern to marine species, especially at their early developmental stages.


Subject(s)
Larva , Paracentrotus , Phthalic Acids , Water Pollutants, Chemical , Animals , Phthalic Acids/toxicity , Paracentrotus/drug effects , Water Pollutants, Chemical/toxicity , Larva/drug effects , Larva/growth & development , Diethylhexyl Phthalate/toxicity
6.
J Xenobiot ; 14(2): 497-515, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38651380

ABSTRACT

Hypertensive disorders in pregnancy (HDP) are the most prevalent diseases during pregnancy. In addition to the already identified risk factors, exposure to environmental contaminants has been also considered a new one. Phthalates, which are classified as priority environmental pollutants due to their ubiquitousness and endocrine disrupting properties, have been implicated in HDP in some epidemiological studies. Nevertheless, phthalates' vascular impacts still need to be clarified. Thus, we aimed to understand the connection between phthalates exposure and the occurrence of gestational hypertension, as well as the pathway involved in the pathological vascular effects. We investigated diethyl phthalate's (DEP) effect on the vascular reactivity of the human umbilical arteries (HUAs) from normotensive and hypertensive pregnant women. Both DEP's nongenomic (within minutes effect) and genomic (24 h exposure to DEP) actions were evaluated, as well as the contribution of cyclic guanosine monophosphate and Ca2+ channel pathways. The results show that short-term exposure to DEP interferes with serotonin and histamine receptors, while after prolonged exposure, DEP seems to share the same vasorelaxant mechanism as estrogens, through the NO/sGC/cGMP/PKG signaling pathway, and to interfere with the L-type Ca2+ channels. Thus, the vascular effect induced by DEP is similar to that observed in HUA from hypertensive pregnancies, demonstrating that the development of HDP may be a consequence of DEP exposure.

7.
Environ Pollut ; 341: 122915, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37952917

ABSTRACT

In this work, the removal and transformation process of diethyl phthalate (DEP) in UV/dichloroisocyanurate (UV/DCCNa) and UV/sodium hypochlorite (UV/NaClO) systems were compared to evaluate the application potential of UV/DCCNa technology. Compared with UV/NaClO, UV/DCCNa process has the advantage of DEP removal and caused a higher degradation efficiency (93.8%) within 45 min of oxidation in ultrapure water due to the sustained release of hypochloric acid (HOCl). Fourteen intermediate products were found by high-resolution mass spectrometry, and the transformation patterns including hydroxylation, hydrolysis, chlorination, cross-coupling, and nitrosation were proposed. The oxidation processes were also performed under quasi-realistic environmental conditions, and it was found that DEP could be effectively removed in both systems, with yields of disinfection byproduct meeting the drinking water disinfection standard (<60.0 µg/L). Comparing the single system, the removal of DEP decreased in the mixed system containing five kinds of PAEs, which could be attributed to the regeneration of DEP and the competitive effect of •OH occurred among the Dimethyl phthalate (DMP), DEP, Dipropyl phthalate (DPrP), Diallyl phthalate (DAP) and Diisobutyl phthalate (DiBP). However, a greater removal performance presented in UV/DCCNa system compared with UV/NaClO system (69.4% > 62.1%). Further, assessment of mutagenicity and developmental toxicity by Toxicity Estimation Software Tool (T.E.S.T) software indicated that UV/DCCNa process has fewer adverse effects on the environment and is a more environmentally friendly chlorination method. This study may provide some guidance for selecting the suitable disinfection technology for drinking water treatment.


Subject(s)
Drinking Water , Phthalic Acids , Water Pollutants, Chemical , Water Purification , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Phthalic Acids/toxicity , Oxidation-Reduction , Water Purification/methods
8.
J Biochem Mol Toxicol ; 38(1): e23561, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37942807

ABSTRACT

The incidence of metabolic diseases is increasing alarmingly in recent times. Parallel to nutritional excess and sedentary lifestyle, the random usage of several endocrine disrupting chemicals including plasticizers is reported to be closely associated with metabolic diseases. Diethyl phthalate (DEP) is a widely used plasticizer in a host of consumer and daily care products. Adipose tissue plays a central role in energy storage and whole-body metabolism. The impairment of adipose function is critically implicated in the pathogenesis of insulin resistance, diabetes, and related metabolic diseases. Recently, exposure to certain phthalate esters has been linked to the development of obesity and diabetes, although there are contradictions and the mechanisms are not clearly understood. In an effort to ascertain the metabolic consequences of chronic phthalate exposure and the underlying mechanism, the present study was designed to examine the effects of long-term dietary consumption of DEP in adipocytes. DEP-treated mice were hyperglycemic but nonobese; their body weight initially increased which subsequently was reduced compared to control. DEP exposure at lower levels impaired adipogenesis by downregulating the key transcription factor, peroxisome proliferator-activated receptor γ and its downstream insulin-sensitizing adipokine, adiponectin, thereby severely compromising adipocyte function. The activation of master regulator nuclear factor κB led to rise in proinflammatory cytokines. We found that DEP triggered intrinsic apoptotic pathways through activated cytochrome c-Apaf1-caspase 9-caspase 3 axis in adipocytes. Taken together, our data revealed that chronic administration of dietary DEP could unleash adverse metabolic outcomes by initiating oxidative stress, inflammation, and apoptosis in the adipocytes, thus leading to adipose tissue dysfunction.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Phthalic Acids , Mice , Animals , Plasticizers/toxicity , Plasticizers/metabolism , Adipocytes , Obesity/chemically induced , Obesity/metabolism , Diabetes Mellitus/metabolism , Apoptosis , Inflammation/chemically induced , Inflammation/metabolism
9.
Sci Total Environ ; 912: 168876, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38013100

ABSTRACT

As a ubiquitous contaminant in aquatic environments, diethyl phthalate (DEP) is a major threat to ecosystems because of its increasing utilization. However, the ecological responses to and toxicity mechanisms of DEP in aquatic organisms remain poorly understood. To address this environmental concern, we selected Chlorella vulgaris (C. vulgaris) as a model organism and investigated the toxicological effects of environmentally relevant DEP concentrations at the individual, physiological, biochemical, and molecular levels. Results showed that the incorporation of DEP significantly inhibited the growth of C. vulgaris, with inhibition rates ranging from 10.3 % to 83.47 %, and disrupted intracellular chloroplast structure at the individual level, while the decrease in photosynthetic pigments, with inhibition rates ranging from 8.95 % to 73.27 %, and the imbalance of redox homeostasis implied an adverse effect of DEP at the physio-biochemical level. Furthermore, DEP significantly reduced the metabolic activity of algal cells and negatively altered the cell membrane integrity and mitochondrial membrane potential. In addition, the apoptosis rate of algal cells presented a significant dose-effect relationship, which was mainly attributed to the fact that DEP pollutants regulated Ca2+ homeostasis and further increased the expression of Caspase-8, Caspase-9, and Caspase-3, which are associated with internal and external pathways. The gene transcriptional expression profile further revealed that DEP-mediated toxicity in C. vulgaris was mainly related to the destruction of the photosynthetic system, terpenoid backbone biosynthesis, and DNA replication. Overall, this study offers constructive understandings for a comprehensive assessment of the toxicity risks posed by DEP to C. vulgaris.


Subject(s)
Chlorella vulgaris , Phthalic Acids , Water Pollutants, Chemical , Chlorella vulgaris/metabolism , Ecosystem , Environmental Health , Phthalic Acids/metabolism , Water Pollutants, Chemical/metabolism
10.
Environ Pollut ; 340(Pt 1): 122849, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37926418

ABSTRACT

Phthalates are a family of industrial and consumer product chemicals, among which diethyl phthalate (DEP) has been widely used. DEP is metabolized into the active metabolite monoethyl phthalate (MEP) and exposure to DEP may induce male reproductive toxicity, developmental toxicity and hepatotoxicity. To better assess the toxicity of DEP and MEP, it is important to understand and predict their internal concentrations, especially in reproductive organs. Here we present a human physiologically based pharmacokinetic (PBPK) model of DEP. Implemented in R, the PBPK model consists of seven tissue compartments, including blood, gut, liver, fat, skin, gonad, and rest of body (RB). In the blood both DEP and MEP partition into free and bound forms, and tissue distribution is considered as blood flow-limited. DEP is metabolized in the gut and liver into MEP which is further glucuronidated and cleared through the urine. The chemical-specific parameters of the model were predicted in silico or estimated based on published human urinary MEP data after exposure to DEP in the air at 250 or 300 µg/m3 for 3 or 6 h through inhalation and dermal absorption. Sensitivity analysis identified important parameters including partition coefficients of DEP for fat, RB, and skin compartments, and the rate constants for glucuronidation of MEP and urinary excretion, with regard to Cmax, area under the curve (AUC), and clearance half-lives of DEP and MEP. A subset of the sensitive parameters was then included in hierarchical population Bayesian Markov chain Monte Carlo (MCMC) simulations to characterize the uncertainty and variability of these parameters. The model is consistent with the notion that dermal absorption represents a significant route of exposure to DEP in ambient air and clothing can be an effective barrier. The developed human PBPK model can be utilized upon further refinement as a quantitative tool for DEP risk assessment.


Subject(s)
Body Fluids , Humans , Male , Bayes Theorem , Liver
11.
Food Chem X ; 19: 100768, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780332

ABSTRACT

Beer is one of the most consumed beverages worldwide. Different materials used along its production and packaging can result in human exposure to phthalates and adipates. The aim of this study was to assess simultaneously the levels of phthalates and di-ethylhexyl adipate (DEHA) in commercial beer samples (n = 66) with a method based on DLLME and detection with GC-MS/MS, and further evaluate human exposure. Six out of seven compounds studied were found in the beers analysed, with levels ranging from 1.77 to 205.40 µg/L. The most prevalent was DEHA at 205.40 µg/L, while dimethyl phthalate (DMP) was not present in any sample. Samples with 5-6 % alcohol, packed in aluminium cans and produced in an industrial environment presented the highest level of these contaminants. Despite low-risk exposure to phthalates and adipate with beer, it is important to remember the ubiquitous nature of these compounds, which can lead to cumulative exposure.

12.
3 Biotech ; 13(10): 329, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37670801

ABSTRACT

Extensive use of phthalic acid esters (PAEs) as plasticizer causes diffusion into the environment, which posed a great threat to mankind. It was reported that Comamonas sp. was a potentially robust aromatic biodegrader. Although the biodegradation of several PAEs by Comamonas sp. was studies, the comprehensive genomic analysis of Comamonas sp. was few reported. In the present study, one promising bacterial strain for biodegrading diethyl phthalate (DEP) was successfully isolated from activated sludge and characterized as Comamonas sp. USTBZA1 based on the 16S rRNA sequence analysis. The results showed that pH 7.5, 30 °C and inoculum volume ratio of 6% were optimal for biodegradation. Initial DEP of 50 mg/L could be completely biodegrade by strain USTBZA1 within 24 h which conformed to the Gompertz model. Based on the Q-TOF LC/MS analysis, monoethyl phthalate (MEP) and phthalic acid (PA) were identified as the metabolic products of DEP biodegradation by USTBZA1. Furthermore, the whole genome of Comamonas sp. USTBZA1 was analyzed to clarify the molecular mechanism for PAEs biodegradation by USTBZA1. There were 3 and 41 genes encoding esterase/arylesterase and hydrolase, respectively, and two genes regions (pht34512 and pht4253) were responsible for the conversion of PA to protocatechuate (PCA), and two genes regions (ligCBAIKJ) were involved in PCA metabolism in USTBZA1. These results substantiated that Comamonas sp. USTBZA1 has potential application in the DEP bioremediation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03736-3.

13.
Article in English | MEDLINE | ID: mdl-37689172

ABSTRACT

Bisphenol A (BPA) and diethyl phthalate (DEP) are estrogenic endocrine disrupting chemicals (EEDCs). The present study reconfirmed that the angle of the ceratohyal cartilage (CH) in embryos were larger from maternal BPA and E2, but smaller from DEP compared to the control. However, it is still unknown whether both the BPA and DEP chemicals disrupted the action of E2 and thereby influence the estrogen signaling pathways. Additionally, it remains unclear whether they also disrupted certain related genes in the migratory pathways of neural crest cells (NCCs) in their offspring. The present data showed that nuclear estrogen receptors and membrane estrogen receptors have different disrupted profiles among female zebrafish exposed to BPA (F-BPA), and DEP (F-DEP), and external E2 (F-E2). However, certain related genes in the migratory pathways of NCCs in embryos from F-BPA and F-E2 such as the sox10, chm1, and tgfbr1a mRNA expressions showed a positive relationship compared with CH angles; the gene expressions of sox9a, smad3, and col2a1a and the CH angles of embryos exhibited an opposite relationship upon F-DEP treatments. Thus, we suggested that the genes involved in NCCs migration were potentially induced by the residual maternal DEP contents. Two sets of genes, chm1/tgfb3 and chm1/gper1, exhibited an identical profile in the ovary and its offspring at 2 h of post fertilization upon F-E2 and F-BPA treatments, respectively. We suggested that the maternal mRNA from female to embryos were transferred before the maternal-to-zygotic transition stage.


Subject(s)
Endocrine Disruptors , Receptors, Estrogen , Female , Animals , Humans , Receptors, Estrogen/genetics , Chondrogenesis , Zebrafish/genetics , Maternal Exposure/adverse effects , Endocrine Disruptors/toxicity , Estrogens/toxicity
14.
Chemosphere ; 340: 139904, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611763

ABSTRACT

Phthalates are classified as priority environmental pollutants, since they are ubiquitous in the environment, have endocrine disrupting properties and can contribute to impaired health. Used primarily in personal care products and excipients for pharmaceuticals, diethyl phthalate (DEP) is a short-chain alkyl phthalate that has been linked to decreased blood pressure, glucose tolerance, and increased gestational weight gain in humans, while in animals it has been associated with atherosclerosis and metabolic syndrome. Although all these findings are related to risk factors or cardiovascular diseases, DEP's vascular impacts still need to be clarified. Thus, performing ex vivo and in vitro experiments, we aimed to understand the vascular DEP effects in rat. To evaluate the vascular contractility of rat aorta exposed to different doses of DEP (0.001-1000 µM), an organs bath was used; and resorting to a cell line of the rat aorta vascular smooth muscle, electrophysiology experiments were performed to analyse the effects of a rapid (within minutes with no genomic effects) and a long-term (24 h with genomic effects) exposure of DEP on the L-type Ca2+ current (ICa,L), and the expression of several genes related with the vascular function. For the first time, vascular electrophysiological properties of an EDC were analysed after a long-term genomic exposure. The results show a hormetic response of DEP, inducing a Ca2+ current inhibition of the rat aorta, which may be responsible for impaired cardiovascular electrical health. Thus, these findings contribute to a greater scientific knowledge about DEP's effects in the cardiovascular system, specifically its implications in the development of electrical disturbances like arrhythmias and its possible mechanisms.


Subject(s)
Cardiovascular Diseases , Drug-Related Side Effects and Adverse Reactions , Phthalic Acids , Humans , Animals , Rats , Phthalic Acids/toxicity , Aorta
15.
Talanta ; 261: 124652, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37207508

ABSTRACT

The traditional immunoassay is widely used for pollutant detection and bioanalysis, but there are still some challenges in ensuring its sensitivity and reliable accuracy. Dual-optical measurement can prove mutual evidence to effectively improve the accuracy of the method by self-correction, which will overcome this problem. In this study, we developed a "visualization and sensing" dual-modal immunoassay based on blue carbon dots@SiO2@MnO2 (B-CDs@SiO2@MnO2) as "color and fluorescence" immunosensors. Here, MnO2 nanosheets have the activity of simulating oxidase. 3,3', 5,5'-Tetramethylbenzidine (TMB) can be oxidized to TMB2+ under acidic conditions and the color of the solution from colorless to yellow. On the other hand, the MnO2 nanosheets can quench the fluorescence of B-CDs@SiO2. After adding ascorbic acid (AA), MnO2 nanosheets were reduced to Mn2+, thereby the fluorescence of B-CDs@SiO2 was restored. Under the optimum conditions, as the concentration of target substance (diethyl phthalate) increased from 0.05 to 100 ng/mL, the method showed a good linear relationship. The fluorescence measurement signal and the color change signal of the solution visualization support each other and give the information of the corresponding material content. The results of the dual-optical immunoassay maintain good consistency, which proves the accuracy of the developed dual-optical immunoassay for detection of diethyl phthalate is reliable. Additionally, it is demonstrated that the dual-modal method exhibits high accuracy and stability in the assays, pointing to a broad range of application prospects in pollutant analysis.


Subject(s)
Biosensing Techniques , Silicon Dioxide , Limit of Detection , Silicon Dioxide/chemistry , Carbon/chemistry , Immunoassay/methods
16.
Aquat Toxicol ; 257: 106432, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36841068

ABSTRACT

Phthalic acid esters (PAEs) are a class of chemicals that are usually incorporated as additives in the manufacturing of plastics. PAEs are not covalently bound to the material matrix and can, consequently, be leached into the environment. PAEs have been reported to act as endocrine disruptors, neurotoxins, metabolic stressors, and immunotoxins to aquatic organisms but there is a lack of information regarding the impact of sub-lethal concentrations to target organisms. The freshwater crustacean Daphnia magna, a commonly used model organism in aquatic toxicity, was exposed to four phthalate pollutants: dimethyl phthalate (DMP), diethyl phthalate (DEP), monomethyl phthalate (MMP), and monoethyl phthalate (MEP). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed in a targeted metabolomic approach to quantify polar metabolites extracted from a single Daphnia body. Individual metabolite percent changes and hierarchical clustering heatmap analysis showed unique metabolic profiles for each phthalate pollutant. Metabolite percent changes were mostly downregulated or presented opposing responses for the low and high concentrations tested. Meanwhile, pathway analyses suggest the disruption of related and unique pathways, mostly connected with amino acid and energy metabolism. The pathways aminoacyl-tRNA biosynthesis, arginine biosynthesis, and glutathione metabolism were disrupted by most selected PAEs. Overall, this study indicates that although phthalate pollutants can elicit distinct metabolic perturbations to each PAE, they still impacted related biochemical pathways. These chemical-class based responses could be associated with a common toxic mechanism of action. The reported findings show how targeted metabolomic approaches can lead to a better understanding of sub-lethal exposure to pollutants, revealing metabolomic endpoints do not hold a close relationship with traditional acute toxicity endpoints.


Subject(s)
Environmental Pollutants , Phthalic Acids , Water Pollutants, Chemical , Animals , Daphnia/metabolism , Amino Acids/metabolism , Chromatography, Liquid , Water Pollutants, Chemical/toxicity , Tandem Mass Spectrometry , Phthalic Acids/toxicity , Energy Metabolism , Esters , Dibutyl Phthalate
17.
Sci Total Environ ; 865: 161221, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36587692

ABSTRACT

This paper presents the development of a dielectric spectroscopy-based method using a customized, transmission line probe, fabricated on a printed circuit board (PCB), for monitoring the effect of diethyl phthalate (DEP) microplastics on marine algae growth. Experiments were performed by exposing marine algae (Chlorella pyrenoidosa) to DEP (0-50 mg) for up to 6 days. In order to amplify the electrophysiological effects and improve the sensing, a glutaraldehyde crosslinking agent was used and encapsulated on the surface of the probe. The reflection coefficient (S11) and the complex permittivity (ɛ' & ɛ″) of the Medium Under Test (MUT) were investigated in the frequency range of 30 kHz-800 MHz. Without the presence of DEP, the number of algae (104 cells/mL) and chlorophyll content (mg/L) increased at the rates of 207.73 × 104 cells/mL and 148.1 mg/L per day, respectively. After 6 days of exposing Chlorella pyrenoidosa (C. pyrenoidosa) algae to different DEP concentrations, the growth rate decreased down to -11.92 × 104 cells/mL and -19.19 mg/L (50 mg DEP), respectively. Additionally, the linearity of the relationship kept decreasing as the DEP content increased from R2 = 0.9716 to R2 = 0.1050 and from R2 = 0.9293 to R2 = 0.4961, respectively. Dielectric spectroscopy using the custom, transmission line probe, at 740 MHz, showed linear relationship (-1.22 dB/day) between the reflection coefficient (S11) and hence complex permittivity (ɛ' & ɛ″) without the presence of DEP. However, as the DEP content increased, algae growth was prohibited more intensely, shown both from the number of algae and the chlorophyll content. This trend was reflected on S11 and subsequently on the complex permittivity. This relationship confirms the capability of this method to monitor the growth of marine algae in almost real-time. This dielectric spectroscopy method could be a potential, low-cost tool to examine the impact of microplastic pollutants on marine microorganisms.


Subject(s)
Chlorella , Water Pollutants, Chemical , Microplastics , Plastics/toxicity , Dielectric Spectroscopy , Chlorophyll , Water Pollutants, Chemical/analysis
18.
J Fluoresc ; 33(2): 487-495, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36445510

ABSTRACT

Carbon dots as new nanomaterials, have been widely used in rapid detection because of their nondestructive, real-time detection characteristics. Improving the sensitivity and selectivity of the method in complex real samples is new challenge and requirement for sensing technology. Here, we report an ultrasensitive fluorescence immunoassay (FIA) for trace diethyl phthalate (DEP) using red carbon dots@SiO2 (R-CDs@SiO2) as tags. SiO2 as a nanocarrier can effectively improve the bio-functionalization and utilization rate of carbon dots. Moreover, several R-CDs embedded in SiO2 nanospheres can magnify the fluorescence signal and improve sensitivity. R-CDs@SiO2 conjugate anti-DEP antibody (Ab) as fluorescent immunosensor, which can specifically recognize DEP. Under optimization conditions, the detection limit (LOD) of this FIA was calculated as 0.0011 ng/mL. In addition, the recoveries of this established FIA ranged from 96.8 to 108.5%, showing satisfactory accuracy. Compared with GC-MS/MS (LOD µg/mL), the sensitivity of the FIA was significantly improved. As a result, the FIA developed using R-CDs@SiO2 as tags has a high potential for determining trace DEP.


Subject(s)
Biosensing Techniques , Quantum Dots , Carbon , Immunoassay/methods , Silicon Dioxide , Biosensing Techniques/methods , Tandem Mass Spectrometry , Limit of Detection
19.
Inflammation ; 46(1): 175-189, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35900689

ABSTRACT

Cardiac failure accounts for many deaths worldwide. Increasing experimental evidence suggests that exposure to chemicals such as bisphenol-S (BPS) and diethyl phthalate (DEP) exacerbate cardiac injuries. Morin is a flavonoid with reported cardioprotective activity. This study evaluated the modulation of pathways relevant to cardiac endothelial function in rats exposed to BPS and DEP mixture (Mix). Thirty male albino rats were distributed across five groups (n = 6): control received dimethyl sulfoxide (DMSO) as vehicle, Mix dissolved in DMSO, Mix + morin (25 mg/kg), Mix + morin (50 mg/kg), and morin (50 mg/kg). After 21 days of oral exposure at 1 ml/kg bodyweight of the Mix and treatment with morin, the animals were sacrificed, and their hearts were excised for biochemical, histological, immunohistochemical, and gene expression analyses. Exposure to the Mix caused a significant increase in oxidative stress indices (H2O2, malondialdehyde, DNA fragmentation, and advanced oxidation protein products). Also, arginase, phosphodiesterase 5', and the relative expression of TNF-α, interleukin-1ß, Bax, androgen receptor, and vascular endothelial growth factor were markedly increased. In contrast, nitric oxide, reduced glutathione, interleukin-10 levels, superoxide dismutase, catalase, and glutathione peroxidase activities decreased significantly. Furthermore, p-NF-kB-p65 expression increased markedly in the Mix-exposed group. Morin treatment significantly reversed these perturbations in a dose-dependent manner in most instances. This study concludes that morin might offer a cardioprotective effect by enhancing the cardiac endothelial system and attenuating oxidative stress, inflammation, and apoptosis elicited by BPS and DEP co-exposure in male Wistar rats.


Subject(s)
Dimethyl Sulfoxide , Hydrogen Peroxide , Animals , Rats , Male , Dimethyl Sulfoxide/pharmacology , Hydrogen Peroxide/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Rats, Wistar , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Oxidative Stress , Flavonoids/pharmacology , Flavonoids/therapeutic use , Signal Transduction
20.
Food Chem ; 402: 134015, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36137382

ABSTRACT

Cooking improves food aroma, but few studies have explored how cooking affects food aromas. Here, aroma changes in mildly salted large yellow croaker (Larimichthys crocea, MSLYC) after steaming, baking, frying, and deep frying was investigated. The raw fish was dominated by fishy notes but after cooking, the aroma became dominated by fatty notes. Nine volatiles, including hexanal, nonanal, (E, Z)-2, 6-nonadienal, (E, E)-2, 4-decadienal, 1-octen-3-ol, linalool, ethyl hexanoate, acetic acid and anethole, were identified as key odor-active compounds using GC-MS, OAV, and omission tests analyses. Changes in the concentrations of key odor-active compounds were mainly due to evaporation, oxidation of linolenic acids, and thermal catalyzed reactions. Interestingly, anethole was the key odor-active compound, providing new insight into the underlying reactions of cooked fish aroma.


Subject(s)
Perciformes , Volatile Organic Compounds , Animals , Odorants/analysis , Volatile Organic Compounds/analysis , Cooking/methods , Linolenic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...