Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Heliyon ; 10(12): e31722, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975169

ABSTRACT

Lonicerae japonicae flos (LJF), Lonicerae japonicae caulis (LJC), Lonicerae folium (LF) and Lonicerae fructus (LFR) are derived from Lonicera japonica Thunb., which are formed due to different medicinal parts. The efficacy of the 4 medicinal materials has similarities and differences. However, little attention has been paid to illustrate the differences in efficacy from the perspective of phytochemistry. In this study, ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry (UPLC-Q-Exactive-Orbitrap-MS) was used to qualitatively analyze the ingredients in 4 herbs. A total of 86 compounds were plausibly or unambiguously identified, there were 54 common components among the 4 medicinal materials, and each kind of medicinal materials had its own unique components. On the basis of qualitative analysis, ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-QQQ-MS/MS) was used to quantitatively analyze 31 components contained in 4 medicinal materials, and principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and other multivariate statistical analysis were furtherly performed for comparing the component contents. The results showed that the samples from the same parts were clustered into one group, and the samples from different medicinal parts were significantly different. The analysis of variable importance projection (VIP) value of the OPLS-DA model showed that 10 components including chlorogenic acid, secologanic acid, isochlorogenic acid A, loganin, lonicerin, loganic acid, secoxyloganin, sweroside, luteolin and rhoifolin were the main difference components among the 4 medicinal materials. The study not only lays a solid foundation for the intrinsic quality control of 4 medicinal materials and the study of different effects of the 4 medicinal materials at the phytochemical level, but also provides a basis for more rational utilization of various parts of L. japonica and expansion of medicinal resources.

2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 968-980, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621904

ABSTRACT

This study aims to characterize and identify the chemical constituents in 11 parts of Forsythia suspensa by using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry(UPLC-Q-TOF-MS) combined with a self-established chemical constituent database, including leaves, flowers, fruits, green F. suspensa, old F. suspensa, and seeds. The quality attributes and differences of different parts of F. suspensa were evaluated by principal component analysis, partial least square discriminant analysis, and other stoichiometric methods. A total of 79 compounds were identified, including 13 phenylethanol glycosides, 10 lignans, 12 flavonoids, 10 organic acids, 14 terpenoids, and 20 other types of compounds. Among them, 34 compounds were the main variables of difference between the different parts of F. suspensa, and the content of each component was relatively higher in the leaves and green F. suspensa. The LPS-induced inflammation model of RAW264.7 cells was applied to study the anti-inflammatory activity of the extracts of the different parts of F. suspensa and the main constituents. The results show that the extracts of green F. suspensa, flower, twig, and stem exhibited anti-inflammatory activity, and the constituents such as forsythoside A, phyllyrin, phillygenin, and(+)-pinoresinol-ß-D-glucopyranoside could significantly inhibit anti-inflammatory activity released by NO. The chemical constituent in different parts of F. suspensa is analyzed comprehensively, and the anti-inflammatory activity is evaluated in this study, which provides a reference for the development and comprehensive utilization of F. suspensa resources.


Subject(s)
Forsythia , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Forsythia/chemistry , Chromatography, High Pressure Liquid , Flavonoids , Anti-Inflammatory Agents/pharmacology
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1217-1224, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621968

ABSTRACT

To investigate the quality differences between the seeds and husks of Amomum villosum and explore the rationality of using the seeds without husks, this study determined the content of protocatechuic acid, vanillic acid, epicatechin, quercitrin, volatile oil, water extract, and ethanol extract. The 2,2-diphenyl-1-picrylhydrazyl(DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS), and hydroxyl radical scavenging activities were determined to evaluate the antioxidant activities of seeds and husks. The quality differences between the seeds and husks were assessed through orthogonal partial least squares-discriminant analysis(OPLS-DA) and analytic hierarchy process(AHP) combined with the entropy weight method(EWM). Significant differences(P<0.05) were observed in all 10 indicators between the seeds and husks. The levels of epicatechin, quercetin, and volatile oil were higher in the seeds, whereas those of protocatechuic acid, vanillic acid, water extract, and ethanol extract were higher in the husks. The seeds showed stronger scavenging ability against DPPH and ABTS radicals, while the husks showed a stronger scavenging effect on hydroxyl radicals. OPLS-DA significantly discriminated between the seeds and husks. Furthermore, volatile oil, water extract, DPPH radical scavenging rate, quercitrin, ABTS radical scavenging rate, hydroxyl radical scavenging rate, and vanillic acid were selected as the main differential indicators by variable importance in projection(VIP). Comprehensive scores calculated by AHP combined with EWM indicated that the seeds were superior to husks in terms of overall quality. However, there are still some dominant components and a certain antioxidant effect in the husks. Therefore, it is suggested to using Amomi Fructus with a certain amount of husks or utilizing the husks for other purposes.


Subject(s)
Amomum , Benzothiazoles , Catechin , Hydroxybenzoates , Oils, Volatile , Sulfonic Acids , Hydroxyl Radical , Vanillic Acid , Antioxidants/chemistry , Water , Ethanol , Oils, Volatile/chemistry
4.
Biol Trace Elem Res ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630342

ABSTRACT

In this study, the degree of accumulation of biogenic element and heavy metal contents of different parts and edible layers of leeks cultivated in Konya in Turkey was revealed. The amounts of P and K of leek were determined from 154.69 (leaf top of leek) and 985.05 mg/kg (root of leek) to 1377.63 (onion part of leek) and 2688.50 mg/kg (root of leek), respectively. P and K contents of leek layers changed from 139.45 (1st layer) and 446.63 mg/kg (7th layer) to 1596.69 (2nd layer) and 2201.53 mg/kg (4th layer), respectively. While Ca amounts of leek parts vary between 577.09 (leaf of leek) and 666.87 mg/kg (root of leek), Mg contents of leek parts were determined between 130.70 (onion part of leek) and 264.58 mg/kg (root of leek). All of the macro elements were detected in the highest amount in the root of the leek, followed by the leaf and bulb parts in decreasing order. Fe and Zn contents of different parts of leeks varied from 0.506 (onion part of leek) and 22.71 mg/kg (root of leek) to 1.53 (leaf top of leek) and 5.85 mg/kg (root of leek), respectively. In general, the heavy metals found in the highest amount both in different parts of the leek and in the edible bulbous layers were As and Ba. The layers of the leeks are rich in potassium, phosphorus, iron, and zinc.

5.
Biomed Chromatogr ; 38(6): e5861, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501361

ABSTRACT

Fraxinus mandshurica (Oleaceae) is used as a traditional medicinal plant for the treatment of red eyes, menstrual disorders, excessive leucorrhea, chronic bronchitis and psoriasis. To perform chemical characterization of the secondary metabolites of F. mandshurica roots, bark, stems and leaves, 32 samples were collected from eight provinces in this study. A total of 64 chemical components were detected from four different parts of F. mandshurica by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Meanwhile, a total of nine secoiridoids were obtained by natural product chemical extraction, isolation and identification methods. Quantitative analysis by high-performance liquid chromatography-diode array detection-mass spectrometry showed the highest total content of secoiridoids in the bark, which is also consistent with the traditional medicinal parts. The results of methodological validation showed that the correlation coefficient (R2) values were all >0.9993, indicating a good linear range of the standard curve, while the relative standard deviations of precision, reproducibility and stability were <3%, and the spiked recoveries ranged from 98.22 to 102.27%, indicating that the experimental method was reliable and stable. In addition, fingerprinting and a heatmap were established to demonstrate the content trends of F. mandshurica more visually from different origins. Multivariate analysis, including principal component analysis and partial least squares discriminant analysis, was performed to determine the chemical characteristics of different parts of F. mandshurica, and six characteristic secoiridoids that could be used to distinguish different origins were screened. Finally, the inhibition of tyrosinase, α-glucosidase, acetylcholinesterase and pancreatic lipase activities by the nine characteristic compounds and extracts from different parts were investigated, and the results showed that they all exhibited different degrees of enzyme activity inhibition and thus have potential applications in whitening and blemish removal, hypoglycemia, anti-Alzheimer's disease and anti-obesity as a new source of natural enzyme activity inhibitors. This study establishes an identification and evaluation method applicable to phytochemistry of different origins, which is a guideline for quality control, origin evaluation and clinical application of traditional medicinal plants. This is also an unprecedented study on the identification of the chemical composition of different parts of F. mandshurica, characteristic compounds and the inhibition of enzyme activity of extracts from different parts.


Subject(s)
Fraxinus , Plant Extracts , Fraxinus/chemistry , Chromatography, High Pressure Liquid/methods , Multivariate Analysis , Reproducibility of Results , Plant Extracts/chemistry , Linear Models , Mass Spectrometry/methods , Limit of Detection , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis
6.
Foods ; 12(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38137234

ABSTRACT

In this study, the bighead carp (Aristichthys nobilis) was the object of research to compare and analyze the contents of conventional nutrients, amino acids, fatty acids, inosinic acid, and earthy-smelling compounds (geosmin and 2-methylisoborneol) in muscles of its dorsal, belly, tail, opercula, eye socket, and mandible in order to evaluate their quality. The findings could inform recommendations for the consumption and processing of different muscle parts of the bighead carp. The results showed that the water content in the abdominal muscle was significantly lower than that in other parts, and the crude fat content was significantly higher than that in other parts (p < 0.05, the same below). Seventeen kinds of amino acids were detected in the muscles of the six parts of the fish, and the dorsal muscles had the highest umami amino acids, essential amino acids and total amino acids, which were 6.45 g/100 g, 6.82 g/100 g and 17.26 g/100 g, respectively. The total amount of essential amino acids in the muscle was higher than that in the FAO/WHO standard model. According to the AAS standard, the first limiting amino acid in the muscle of the six parts was valine (Val). There were 26 kinds of fatty acids in the abdomen, under the gill cover and in the eye socket muscles, and the content of polyunsaturated fatty acids in the mandibular muscles was the highest (45.41%). The content of inosine in the dorsal muscle was significantly higher than that in other parts. Geosmin was the main substance in the muscle. There was no correlation between the distribution of earthy-smelling compounds and fat content, but the content of earthy-smelling compounds in the muscle of the belly and eye socket was the highest. Therefore, the muscle quality of different parts of the bighead carp has its own characteristics, and targeted development and utilization can make more efficient use of bighead carp resources.

7.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4097-4105, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802777

ABSTRACT

To explore the resource components and availability of different parts of Panax quinquefolium in Shandong province, the paper employed the non-targeted metabolomics technology based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) to analyze the metabolites and their metabolic pathways in the root, fibril, stem, and leaf of P. quinquefolium. The content of seven ginsenosides and polysaccharides in different parts was determined by high performance liquid chromatography(HPLC) and ultraviolet-visible spectrophotometry(UV-Vis). The results showed that the metabolites were mainly sugars, glycosides, organic acids, amino acids and their derivatives, terpenoids, etc. The total abundance of metabolites followed the trend of leaf > root > fibril > stem. Most of the differential metabolites were concentrated in phenylpropane biosynthesis, flavonoid biosynthesis, citric acid cycle, and amino acid biosynthesis. The leaf contained high levels of sugars, glycosides, amino acids and their derivatives, and flavonoids; the root was rich in terpenoids, volatile oils, vitamins, and lignin; the fibril contained rich organic acids; and the stem had high content of nucleotides and their derivatives. The content of ginsenosides Re and Rb_1 was significantly higher in the root; the content of ginsenosides Rg_1, Rg_2, Rd, F_(11), and polysaccharide was significantly higher in the leaf; and the content of ginsenoside Rb_2 was significantly higher in the stem. We analyzed the resource components and availability of different parts of P. quinquefolium, aiming to provide basic information for the comprehensive development and utilization of P. quinquefolium resources in Shandong province.


Subject(s)
Ginsenosides , Panax , Ginsenosides/analysis , Plant Roots/chemistry , Tandem Mass Spectrometry/methods , Panax/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Sugars
8.
Front Plant Sci ; 14: 1265018, 2023.
Article in English | MEDLINE | ID: mdl-37841630

ABSTRACT

Pomegranate (Punica granatum L.), with its abundant phenolic substances and strong antioxidant activity, holds significant research and utilization potential across various organs. However, there have been few studies on the phenolic content and antioxidant activity of different parts of pomegranate, especially the placenta. This study investigated the phenolic content and antioxidant activity of fruits, flowers, and leaves of two pomegranate varieties, 'Tunisia' and 'Qingpi', throughout their growth and development. Results indicated significant variations in phenolic content among different organs, with petals exhibiting the highest total polyphenol content (TPC, 49.40 mg GAE/g FW) and total anthocyanin content (TMAC, 1938.54 nmol/g FW). Placenta contained the highest levels of total flavonoids (TFC, 173.58 mg RE/g FW) and punicalagin (109.30 mg/g FW). The peel had the highest content of total flavanols (TFAC, 19.42 mg CE/g FW). Over the course of pomegranate development, total polyphenols, total flavonoids, total flavanols, punicalagin, and antioxidant activity declined in different organs. Antioxidant activity followed the order: fruit > flower > leaf, with the placenta exhibiting the highest antioxidant activity among fruits. Antioxidant activity showed a significant positive correlation with total polyphenols (R2 = 0.77-1.00), total flavonoids (R2 = 0.71-0.99, except tegmens), and punicalagin (R2 = 0.71-1.00). This study provides a comparative analysis of the phenolic content and antioxidant activity in different organs of pomegranate, highlighting the placenta as the primary source of punicalagin. This study provides a theoretical basis for the development and utilization of pomegranate phenolic compounds.

9.
Front Plant Sci ; 14: 1243724, 2023.
Article in English | MEDLINE | ID: mdl-37711307

ABSTRACT

Introduction: Paeonia ostii T. Hong & J.X. Zhang (s.s.) (Chinese name, Fengdan) is a widely cultivated food-medicine plant in China, in which root bark, seed kernels, and flowers are utilized for their medicinal and edible values. However, other parts of the plant are not used efficiently, in part due to a poor understanding of their chemical composition and potential biological activity. Methods: Untargeted ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-MS) metabolomics was applied to characterize the metabolic profiles of 10 different parts of P. ostii. Results and discussion: A total of 160 metabolites were alternatively identified definitely or tentatively, which were significantly different in various plant parts by multivariate statistical analysis. Quantitative analysis showed that underutilized plant parts also contain many active ingredients. Compared with the medicinal part of root bark, the root core part still contains a higher content of paeoniflorin (17.60 ± 0.06 mg/g) and PGG (15.50 ± 2.00 mg/g). Petals, as an edible part, contain high levels of quercitrin, and stamens have higher methyl gallate and PGG. Unexpectedly, the ovary has the highest content of methyl gallate and rather high levels of PGG (38.14 ± 1.27 mg/g), and it also contains surprisingly high concentrations of floralalbiflorin I. Paeoniflorin (38.68 ± 0.76 mg/g) is the most abundant in leaves, and the content is even higher than in the root bark. Branches are also rich in a variety of catechin derivatives and active ingredients such as hydrolyzable tannins. Seed kernels also contain fairly high levels of paeoniflorin and albiflorin. Fruit shells still contain a variety of components, although not at high levels. Seed coats, as by-products removed from peony seeds before oil extraction, have high contents of stilbenes, such as trans-gnetin H and suffruticosol B, showing significant potential for exploitation. Except for the seed kernels, extracts obtained from other parts exhibited good antioxidant activity in DPPH, ABTS, and ferric ion reducing antioxidant power (FRAP) assays (0.09-1.52 mmol TE/g). Five compounds (gallic acid, PGG, trans-resveratrol, kaempferol, and quercitrin) were important ingredients that contributed to their antioxidant activities. Furthermore, P. ostii seed cakes were first reported to possess agonistic activity toward CB1/CB2 receptors. This study provides a scientific basis for the further development and utilization of P. ostii plant resources.

10.
Front Chem ; 11: 1203418, 2023.
Article in English | MEDLINE | ID: mdl-37720716

ABSTRACT

Herba Gynostemma (Jiaogulan) is an herbaceous plant of the genus Gynostemma in the family Cucurbitaceae. Gynostemma longipes has lipid-lowering activity, thus, it is used as a medicinal material. However, its medicinal using parts have been recorded as whole plants or aerial parts in different provincial quality standards; therefore, it is necessary to conduct a comprehensive compositional analysis of the different parts of G. longipes (rhizomes, stems, and leaves) used in traditional medicine. In this study, offline two-dimensional liquid chromatography-ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS) was used to analyze the different parts of G. longipes obtained from Shaanxi province, China. By combining the retention times, mass fragments, collision cross-section values, reference standards, and information concerning literature compounds, 396 components were identified from the three parts of the plant, including 94 groups of isomers, and 217 components were identified or tentatively identified as new compounds. In the rhizomes, leaves, and stems, 240, 220, and 168 compounds, respectively, were identified. Differential analysis of the compounds in the rhizomes and aerial parts was also carried out, and 36 differential components were identified, of which 32 had higher contents in the rhizomes. Therefore, these findings indicate that the number of chemical components and the content of major differential components are higher in the rhizomes than the leaves and stems of G. longipes from the Maobaling Planting Base in Pingli county, Shaanxi province. Thus, the rhizomes of G. longipes are also an important part for medicinal use. These results will contribute to the establishment of quality control methods for G. longipes.

11.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3448-3461, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37474982

ABSTRACT

A comprehensive analytical method based on ultra-fast liquid chromatography coupled with triple quadrupole/linear ion trap tandem mass spectrometry(UFLC-QTRAP-MS/MS) was established for simultaneous determination of the content of 45 bioactive constituents including flavonoids, alkaloids, amino acids, phenolic acids, and nucleosides in Epimedium brevicornum. The multiple bioactive constituents in leaves, petioles, stems and rhizomes of E. brevicornum were analyzed. The gradient elution was performed at 30 ℃ in an XBridge~® C_(18) column(4.6 mm×100 mm, 3.5 µm) with 0.4% formic acid aqueous solution-acetonitrile as the mobile phase at a flow rate of 0.8 mL·min~(-1). Single factor experiment and response surface methodology were employed to optimize the extraction conditions. Multivariate statistical analyses including systematic cluster analysis(SCA), principal component analysis(PCA), partial least squares discriminant analysis(PLS-DA), and one-way analysis of variance(One-way ANOVA) were carried out to classify the samples from different parts and identify different constituents. Grey relation analysis(GRA) and entropy weight-TOPSIS analysis were performed to build a multi-index comprehensive evaluation model for different parts of E. brevicornum. The results showed that there was a good relationship between the mass concentrations of 45 constituents and the corresponding peak areas, with the correlation coefficients(r) not less than 0.999 0. The precision, repeatability, and stability of the established method were good for all the target constituents in this study, with the relative standard deviations(RSDs) less than 5.0%(0.62%-4.9%) and the average recovery of 94.51%-105.7%. The above results indicated that the bioactive constituents varied in different parts of E. brevicornum, and the overall quality followed the trend of leaves > petioles > rhizomes > stems. This study verified the rationality of the Chinese Pharmacopoeia(2020 edition) stipulating that the medicinal part of E. brevicornum is the leaf. Moreover, our study indicated that the rhizome had the potential for medicinal development. The established method was accurate and reliable, which can be used to comprehensive evaluate and control the quality of E. brevicornum. This study provides data reference for clarifying the medicinal parts and rationally utilizing the resources of E. brevicornum.


Subject(s)
Epimedium , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Chromatography, Liquid , Multivariate Analysis
12.
J Pharm Biomed Anal ; 234: 115540, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37418871

ABSTRACT

Ligusticum chuanxiong Hort (LCH) is a well-known traditional Chinese medicinal herb for treating coronary heart disease (CHD). This study investigated the differential preventive mechanisms of Rhizome Cortex (RC) and Rhizome Pith (RP) of LCH. Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-tandem mass spectrometry analysis identified 32 differential components, and network pharmacology revealed 11 active ingredients and 191 gene targets in RC, along with 12 active ingredients and 318 gene targets in RP. Primary active ingredients in RC were carotol, epicubenol, fenipentol, and methylisoeugenol acetate, while 3-undecanone, (E)- 5-decen-1-ol acetate, linalyl acetate, and (E)- 2-Methoxy-4-(prop-1-enyl) phenol were dominant in RP. KEGG mapping analysis associated 27 pathways with RC targets and 116 pathways with RP targets. Molecular docking confirmed the efficient activation of corresponding targets by these active ingredients. This study provides valuable insights into the preventive and therapeutic effects of RC and RP in CHD.


Subject(s)
Coronary Disease , Drugs, Chinese Herbal , Ligusticum , Humans , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Network Pharmacology , Molecular Docking Simulation , Ligusticum/chemistry , Coronary Disease/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/analysis
13.
Ultrason Sonochem ; 95: 106416, 2023 May.
Article in English | MEDLINE | ID: mdl-37094477

ABSTRACT

Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.


Subject(s)
Antioxidants , Zea mays , Antioxidants/pharmacology , Antioxidants/chemistry , Polysaccharides/chemistry , Cellulose , Ultrasonography
14.
Foods ; 12(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36832817

ABSTRACT

Pork is the main meat consumed by Chinese people. In this study, the sensory quality of four muscles (loin, shoulder, belly, and ham) under three cooking methods (boiling, scalding, and roasting) was examined, and the edible quality and nutritional quality of fresh meat were determined at the same time. Principal component analysis, cluster analysis, correlation analysis, and analysis of the coefficient of variation were used to determine key quality indicators, from which comprehensive quality evaluation equations were established. The results showed that, when meat was boiled, the comprehensive quality evaluation model was Y=0.1537X1+0.1805X2+0.2145X3+0.2233X4+0.2281X5 (X1~X5 are a*, fat, odor, tenderness, and flavor, respectively) and the most suitable muscle was belly; when meat slices were scalded in a hot pot, the comprehensive quality evaluation model was Y=0.1541X1+0.1787X2+0.2160X3+0.2174X4+0.2337X5 (X1~X5 are a*, fat, odor, tenderness, and flavor, respectively) and the most suitable muscle was belly; when meat was roasted, the comprehensive quality evaluation model was Y=0.1539X1+0.1557X2+0.1572X3+0.1677X4+0.1808X5+0.1845X6 (X1~X6 are flavor, marbling, elasticity, cooked flesh color, tenderness, and flesh color, respectively), and the most suitable muscles were belly and shoulder.

15.
Zhongguo Zhong Yao Za Zhi ; 48(2): 430-442, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725233

ABSTRACT

The chemical constituents in stem leaf, root, and flower of Ixeris sonchifolia were identified by the ultra performance li-quid chromatography coupled with linear ion trap quadrupole-orbitrap mass spectrometry(UPLC-LTQ-Orbitrap-MS~n). The separation was performed on an Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) with a mobile phase of water(containing 0.1% formic acid, A)-acetonitrile(B) with gradient elution. With electrospray ionization source, the data of 70% methanol extract from stem leaf, root and flower of I. sonchifolia were collected by high-resolution full-scan Fourier transform spectroscopy, data dependent acquisition, precursor ion scan, and selected ion monitoring in the negative and positive ion modes. The compounds were identified based on accurate molecular weight, retention time, fragment ions, comparison with reference standard, Clog P and references. A total of 131 compounds were identified from the 70% methanol extract of I. sonchifolia, including nucleosides, flavonoids, organic acids, terpenoids, and phenylpropanoids, and 119, 110, and 126 compounds were identified from the stem leaf, root and flower of I. sonchifolia, respectively. In addition, isorhamnetin, isorhamnetin-7-O-sambubioside and caffeylshikimic acid were discovered from I. sonchifolia for the first time. This study comprehensively analyzed and compared the chemical constituents in different parts of I. sonchifolia, which facilitated the discovery of effective substances and the development and application of medicinal material resources of I. sonchifolia.


Subject(s)
Asteraceae , Drugs, Chinese Herbal , Drugs, Chinese Herbal/chemistry , Methanol , Chromatography, High Pressure Liquid/methods , Mass Spectrometry
16.
Food Res Int ; 163: 112228, 2023 01.
Article in English | MEDLINE | ID: mdl-36596158

ABSTRACT

Actinidia arguta, an edible berry plant with high nutritional values, has been widely used in Asian countries as a food and traditional medicinal herb. The well-recognized health-promoting properties of A. arguta were associated with its bioactive components in its different botanical parts. To rapidly screen and identify chemical components and simultaneously determine the potential metabolites from different parts of A. arguta, UPLC-Q-TOF-MSE coupled with UNIFI platform and multivariate statistical analysis approach was established in this study. As a result, a total of 107 components were identified from the four different parts of A. arguta, in which 31 characteristic chemical markers were discovered among them, including 12, 8, 6, and 5 compounds from the fruits, leaves, roots, and stems, respectively. These results suggested that the combination of UPLC-Q-TOF-MSE and metabolomic analysis is a powerful method to rapidly screen characteristic markers for the quality control of A. arguta.


Subject(s)
Actinidia , Plants, Medicinal , Actinidia/chemistry , Metabolomics , Plant Roots/chemistry , Fruit/chemistry
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970480

ABSTRACT

The chemical constituents in stem leaf, root, and flower of Ixeris sonchifolia were identified by the ultra performance li-quid chromatography coupled with linear ion trap quadrupole-orbitrap mass spectrometry(UPLC-LTQ-Orbitrap-MS~n). The separation was performed on an Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 μm) with a mobile phase of water(containing 0.1% formic acid, A)-acetonitrile(B) with gradient elution. With electrospray ionization source, the data of 70% methanol extract from stem leaf, root and flower of I. sonchifolia were collected by high-resolution full-scan Fourier transform spectroscopy, data dependent acquisition, precursor ion scan, and selected ion monitoring in the negative and positive ion modes. The compounds were identified based on accurate molecular weight, retention time, fragment ions, comparison with reference standard, Clog P and references. A total of 131 compounds were identified from the 70% methanol extract of I. sonchifolia, including nucleosides, flavonoids, organic acids, terpenoids, and phenylpropanoids, and 119, 110, and 126 compounds were identified from the stem leaf, root and flower of I. sonchifolia, respectively. In addition, isorhamnetin, isorhamnetin-7-O-sambubioside and caffeylshikimic acid were discovered from I. sonchifolia for the first time. This study comprehensively analyzed and compared the chemical constituents in different parts of I. sonchifolia, which facilitated the discovery of effective substances and the development and application of medicinal material resources of I. sonchifolia.


Subject(s)
Drugs, Chinese Herbal/chemistry , Methanol , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Asteraceae
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981480

ABSTRACT

A comprehensive analytical method based on ultra-fast liquid chromatography coupled with triple quadrupole/linear ion trap tandem mass spectrometry(UFLC-QTRAP-MS/MS) was established for simultaneous determination of the content of 45 bioactive constituents including flavonoids, alkaloids, amino acids, phenolic acids, and nucleosides in Epimedium brevicornum. The multiple bioactive constituents in leaves, petioles, stems and rhizomes of E. brevicornum were analyzed. The gradient elution was performed at 30 ℃ in an XBridge~® C_(18) column(4.6 mm×100 mm, 3.5 μm) with 0.4% formic acid aqueous solution-acetonitrile as the mobile phase at a flow rate of 0.8 mL·min~(-1). Single factor experiment and response surface methodology were employed to optimize the extraction conditions. Multivariate statistical analyses including systematic cluster analysis(SCA), principal component analysis(PCA), partial least squares discriminant analysis(PLS-DA), and one-way analysis of variance(One-way ANOVA) were carried out to classify the samples from different parts and identify different constituents. Grey relation analysis(GRA) and entropy weight-TOPSIS analysis were performed to build a multi-index comprehensive evaluation model for different parts of E. brevicornum. The results showed that there was a good relationship between the mass concentrations of 45 constituents and the corresponding peak areas, with the correlation coefficients(r) not less than 0.999 0. The precision, repeatability, and stability of the established method were good for all the target constituents in this study, with the relative standard deviations(RSDs) less than 5.0%(0.62%-4.9%) and the average recovery of 94.51%-105.7%. The above results indicated that the bioactive constituents varied in different parts of E. brevicornum, and the overall quality followed the trend of leaves > petioles > rhizomes > stems. This study verified the rationality of the Chinese Pharmacopoeia(2020 edition) stipulating that the medicinal part of E. brevicornum is the leaf. Moreover, our study indicated that the rhizome had the potential for medicinal development. The established method was accurate and reliable, which can be used to comprehensive evaluate and control the quality of E. brevicornum. This study provides data reference for clarifying the medicinal parts and rationally utilizing the resources of E. brevicornum.


Subject(s)
Chromatography, High Pressure Liquid , Epimedium , Tandem Mass Spectrometry , Chromatography, Liquid , Multivariate Analysis
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008605

ABSTRACT

To explore the resource components and availability of different parts of Panax quinquefolium in Shandong province, the paper employed the non-targeted metabolomics technology based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) to analyze the metabolites and their metabolic pathways in the root, fibril, stem, and leaf of P. quinquefolium. The content of seven ginsenosides and polysaccharides in different parts was determined by high performance liquid chromatography(HPLC) and ultraviolet-visible spectrophotometry(UV-Vis). The results showed that the metabolites were mainly sugars, glycosides, organic acids, amino acids and their derivatives, terpenoids, etc. The total abundance of metabolites followed the trend of leaf > root > fibril > stem. Most of the differential metabolites were concentrated in phenylpropane biosynthesis, flavonoid biosynthesis, citric acid cycle, and amino acid biosynthesis. The leaf contained high levels of sugars, glycosides, amino acids and their derivatives, and flavonoids; the root was rich in terpenoids, volatile oils, vitamins, and lignin; the fibril contained rich organic acids; and the stem had high content of nucleotides and their derivatives. The content of ginsenosides Re and Rb_1 was significantly higher in the root; the content of ginsenosides Rg_1, Rg_2, Rd, F_(11), and polysaccharide was significantly higher in the leaf; and the content of ginsenoside Rb_2 was significantly higher in the stem. We analyzed the resource components and availability of different parts of P. quinquefolium, aiming to provide basic information for the comprehensive development and utilization of P. quinquefolium resources in Shandong province.


Subject(s)
Ginsenosides/analysis , Plant Roots/chemistry , Tandem Mass Spectrometry/methods , Panax/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Sugars
20.
Front Plant Sci ; 13: 970535, 2022.
Article in English | MEDLINE | ID: mdl-36518510

ABSTRACT

The Schisandra chinensis is an important edible plant, and previous phytochemical research focused on the S. chinensis fruit (SF) due to its long history as traditional Chinese medicine. Schisandra chinensis fruit was used as an astringent tonic to astringe the lungs and the kidneys, replenish energy, promote the production of body fluids, tonify the kidney, and induce sedation. The components of S. chinensis, such as its stems (SS), leaves (SL), and roots (SR), have drawn little attention regarding their metabolites and bioactivities. In this study, a strategy of combining a chemical database with the Progenesis QI informatics platform was applied to characterize the metabolites. A total of 332 compounds were tentatively identified, including lignans, triterpenoids, flavonoids, tannins, and other compound classes. Heatmap and principal component analysis (PCA) showed remarkable differences in different parts of the plants. By multiple orthogonal partial least-squares discriminant analyses (OPLS-DA), 76 compounds were identified as potential marker compounds that differentiate these different plant parts. Based on the variable influence on the projection score from OPLS-DA, the active substances including gomisin D, schisandrol B, schisantherin C, kadsuranin, and kadlongilactone F supported the fact that the biological activity of the roots was higher than that of the fruit. These substances can be used as marker compounds in the plant roots, which likely contribute to their antioxidant and anti-inflammatory activities. The plant roots could be a new medicinal source that exhibits better activity than that of traditional medicinal parts, which makes them worth exploring.

SELECTION OF CITATIONS
SEARCH DETAIL
...