Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
World Neurosurg ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734176

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine gliomas are aggressive tumors that carry a poor prognosis with a 2-year survival rate of <10%. The imaging appearance is often pathognomonic, and surgical biopsy is not mandatory to initiate treatment in children. Studies of biopsy samples provide insight into the disease's molecular pathobiology and open prospects for targeted therapy. This study was conducted to determine the diagnostic yield and safety of stereotactic biopsies. METHODS: This is a prospective observational study from a single tertiary health care center. All patients with clinical and radiological features diagnostic of diffuse intrinsic pontine gliomas (DIPGs) who underwent biopsy from July 2018 to June 2023 were included. Biopsies were performed using either stereotactic frame-based, frameless, or endoscopic techniques. RESULTS: A total of 165 patients with DIPGs were evaluated in the study period. The option of biopsy with its associated risks and benefits was offered to all patients. A total of 76 biopsies were performed in 74 patients (40 children and 34 adults, including 2 repeat biopsies). The median age was 15 years. Diffuse midline gliomas, H3K27M altered, was the most common histopathological diagnosis (85% pediatric and 55.9% adults). The diagnostic efficacy of the procedure was 94.7%. The complication rate was 10.8%, with no permanent neurological deficits due to surgery. There was no procedure-related mortality. CONCLUSIONS: Establishing the safety of the procedure could be an important step toward popularizing the concept, which might offer a better understanding of the disease. Brainstem eloquence and a lack of direct benefit to patients are the primary obstacles to brainstem biopsy.

2.
Front Neuroimaging ; 2: 1062493, 2023.
Article in English | MEDLINE | ID: mdl-37554653

ABSTRACT

Aims: To determine an imaging protocol that can be used to assess the distribution of infusate in children with DIPG treated with CED. Methods: 13 children diagnosed with DIPG received between 3.8 and 5.7 ml of infusate, through two pairs of catheters to encompass tumor volume on day 1 of cycle one of treatment. Volumetric T2-weighted (T2W) and diffusion-weighted MRI imaging (DWI) were performed before and after day 1 of CED. Apparent diffusion coefficient (ADC) maps were calculated. The tumor volume pre and post CED was automatically segmented on T2W and ADC on the basis of signal intensity. The ADC maps pre and post infusion were aligned and subtracted to visualize the infusate distribution. Results: There was a significant increase (p < 0.001) in mean ADC and T2W signal intensity (SI) ratio and a significant (p < 0.001) increase in mean tumor volume defined by ADC and T2W SI post infusion (mean ADC volume pre: 19.8 ml, post: 24.4 ml; mean T2W volume pre: 19.4 ml, post: 23.4 ml). A significant correlation (p < 0.001) between infusate volume and difference in ADC/T2W SI defined tumor volume was observed (ADC, r = 0.76; T2W, r = 0.70). Finally, pixel-by-pixel subtraction of the ADC maps pre and post infusion demonstrated a volume of high signal intensity, presumed infusate distribution. Conclusions: ADC and T2W MRI are proposed as a combined parameter method for evaluation of CED infusate distribution in brainstem tumors in future clinical trials.

3.
Front Immunol ; 14: 1145706, 2023.
Article in English | MEDLINE | ID: mdl-37251413

ABSTRACT

Background: Diffuse intrinsic pontine gliomas (DIPGs) are rare and fatal pediatric brainstem gliomas with no cure. Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells have been proven effective in treating glioblastoma (GBM) in preclinical studies. However, there are no relevant studies on the CAR-NK treatment for DIPG. Our study is the first to evaluate the anti-tumor activity and safety of GD2-CAR NK-92 cells treatment for DIPG. Methods: Five patient-derived DIPG cells and primary pontine neural progenitor cell (PPC) were used to access disialoganglioside GD2 expression. Cell killing activity of GD2-CAR NK-92 cells was analyzed by in vitro cytotoxicity assays. Two DIPG patient-derived xenograft models were established to detect the anti-tumor efficacy of GD2-CAR NK-92 cells in vivo. Results: Among the five patient-derived DIPG cells, four had high GD2 expression, and one had low GD2 expression. In in vitro assays, GD2-CAR NK-92 cells could effectively kill DIPG cells with high GD2 expression while having limited activity against DIPG cells with low GD2 expression. In in vivo assays, GD2-CAR NK-92 cells could inhibit tumor growth in TT150630 DIPG patient-derived xenograft mice (high GD2 expression) and prolong the overall survival of the mice. However, GD2-CAR NK-92 showed limited anti-tumor activity for TT190326DIPG patient-derived xenograft mice (low GD2 expression). Conclusion: Our study demonstrates the potential and safety of GD2-CAR NK-92 cells for adoptive immunotherapy of DIPG. The safety and anti-tumor effect of this therapy need to be further demonstrated in future clinical trials.


Subject(s)
Diffuse Intrinsic Pontine Glioma , Glioma , Receptors, Chimeric Antigen , Humans , Mice , Animals , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use , Killer Cells, Natural , Immunotherapy, Adoptive , Glioma/drug therapy
4.
Pediatr Neurosurg ; 58(5): 259-266, 2023.
Article in English | MEDLINE | ID: mdl-36642062

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are high-grade gliomas (HGGs) that occur primarily in children, and represent a leading cause of death in pediatric patients with brain tumors with a median overall survival of only 8-11 months. SUMMARY: While these lesions were previously thought to behave similarly to adult HGG, emerging data have demonstrated that DIPG is a biologically distinct entity from adult HGG frequently driven by mutations in the histone genes H3.3 and H3.1 not found in adult glioma. While biopsy of DIPG was historically felt to confer unacceptable risk of morbidity and mortality, multiple studies have demonstrated that stereotactic biopsy of DIPG is safe, allowing not only for improved understanding of DIPG but also forming the basis for protocols for personalized medicine in DIPG. However, current options for personalized medicine in DIPG are limited by the lack of efficacious targeted therapies for the mutations commonly found in DIPG. Multiple treatment modalities including targeted therapies, immunotherapy, convection-enhanced delivery, and focused ultrasound are in various stages of investigation. KEY MESSAGE: Increasing frequency of biopsy for DIPG has identified distinct driving mutations that may serve as therapeutic targets. Novel treatment modalities are under investigation.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Glioma , Adult , Child , Humans , Brain Stem Neoplasms/diagnostic imaging , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/therapy , Diffuse Intrinsic Pontine Glioma/genetics , Diffuse Intrinsic Pontine Glioma/therapy , Diffuse Intrinsic Pontine Glioma/pathology , Glioma/diagnostic imaging , Glioma/genetics , Glioma/therapy , Immunotherapy , Clinical Trials as Topic
5.
Cancers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077842

ABSTRACT

Diffuse midline gliomas (DMGs) originate in the thalamus, brainstem, cerebellum and spine. This entity includes tumors that infiltrate the pons, called diffuse intrinsic pontine gliomas (DIPGs), with a rapid onset and devastating neurological symptoms. Since surgical removal in DIPGs is not feasible, the purpose of this study was to profile circulating miRNA expression in DIPG patients in an effort to identify a non-invasive prognostic signature with clinical impact. Using a high-throughput platform, miRNA expression was profiled in serum samples collected at the time of MRI diagnosis and prior to radiation and/or systemic therapy from 47 patients enrolled in clinical studies, combining nimotuzumab and vinorelbine with concomitant radiation. With progression-free survival as the primary endpoint, a semi-supervised learning approach was used to identify a signature that was also tested taking overall survival as the clinical endpoint. A signature comprising 13 circulating miRNAs was identified in the training set (n = 23) as being able to stratify patients by risk of disease progression (log-rank p = 0.00014; HR = 7.99, 95% CI 2.38-26.87). When challenged in a separate validation set (n = 24), it confirmed its ability to predict progression (log-rank p = 0.00026; HR = 5.51, 95% CI 2.03-14.9). The value of our signature was also confirmed when overall survival was considered (log-rank p = 0.0021, HR = 4.12, 95% CI 1.57-10.8). We have identified and validated a prognostic marker based on the expression of 13 circulating miRNAs that can shed light on a patient's risk of progression. This is the first demonstration of the usefulness of nucleic acids circulating in the blood as powerful, easy-to-assay molecular markers of disease status in DIPG. This study provides Class II evidence that a signature based on 13 circulating miRNAs is associated with the risk of disease progression.

6.
Neurol India ; 70(2): 584-590, 2022.
Article in English | MEDLINE | ID: mdl-35532623

ABSTRACT

Background: Brainstem gliomas (BSG) constitutes very small proportion in adults brain tumors with pons as most common location. There is significant paucity in literature for adult diffuse intrinsic pontine gliomas (DIPG). Objective: In this study, we attempt to review the outcomes of DIPG in single institute. Methods: We performed a retrospective chart review of adult DIPG from last 8 years (2010-2018) in a tertiary institute. DIPG was defined as expansile lesions involving more than 50% of the greatest diameter in the pons. Results: We found a total 46 patients with the diagnosis of adult BSG. Based on the definition, 23 patients with adult DIPG qualified to be included in the study. The median age was 32 years (IQR: 22-41), with a sex ratio of 16/7 (M/F). Cranial palsies were found in 17 (73%) patients. The median duration of symptoms was 6 months. On magnetic resonance imaging (MRI), contrast enhancement was found in seven (30%) patients. Biopsy was done in five patients. Median follow up was 11 months (IQR: 7-15). Median overall survival (OS) was 15 months (95%, CI 8.3-21.6). Fourteen patients had succumbed to death at the latest follow-up, and seven patients were alive. Median OS for the patients with age less than 40 years and more than 40 years was 7 and 22 months, respectively (p = 0.016). Rest of the variables did not effect OS significantly. Conclusion: Adult DIPG's significantly differs from pediatric counterparts in clinical characteristics, as well as OS. Age was the only factor which was significantly associated with survival in our study. Long-term studies with molecular profiling may help in further characterizing these lesions.


Subject(s)
Astrocytoma , Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Glioma , Adult , Astrocytoma/pathology , Brain Stem Neoplasms/diagnostic imaging , Child , Glioma/diagnostic imaging , Glioma/pathology , Humans , Retrospective Studies
7.
Front Cell Dev Biol ; 10: 1089898, 2022.
Article in English | MEDLINE | ID: mdl-36589742

ABSTRACT

Pediatric high-grade gliomas (pHGG) are a molecularly diverse group of malignancies, each incredibly aggressive and in dire need of treatment advancements. Genomic analysis has revolutionized our understanding of these tumors, identifying biologically relevant subgroups with differing canonical mutational profiles that vary based on tumor location and age. In particular, the discovery of recurrent histone H3 mutations (H3K27M in diffuse midline glioma, H3G34R/V in hemispheric pediatric high-grade gliomas) as unique "oncohistone" drivers revealed epigenetic dysregulation as a hallmark of pediatric high-grade gliomas oncogenesis. While reversing this signature through epigenetic programming has proven effective in several pre-clinical survival models, early results from pediatric high-grade gliomas clinical trials suggest that epigenetic modifier monotherapy will likely not provide long-term disease control. In this review we summarize the genetic, epigenetic, and cellular heterogeneity of pediatric high-grade gliomas, and highlight potential paths forward for epigenetic programming in this devastating disease.

8.
Acta Neuropathol Commun ; 9(1): 178, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732238

ABSTRACT

Diffuse intrinsic pontine gliomas (DIPGs) are high-grade tumors of the brainstem that often occur in children, with a median overall survival of less than one year. Given the fact that DIPGs are resistant to chemotherapy and are not amenable to surgical resection, it is imperative to develop new therapeutic strategies for this deadly disease. The p53 pathway is dysregulated by TP53 (~ 60%) or PPM1D gain-of-function mutations (~ 30%) in DIPG cases. PPM1D gain-of-function mutations suppress p53 activity and result in DIPG tumorigenesis. While MDM2 is a major negative regulator of p53, the efficacy of MDM2 inhibitor has not been tested in DIPG preclinical models. In this study, we performed a comprehensive validation of MDM2 inhibitor RG7388 in patient-derived DIPG cell lines established from both TP53 wild-type/PPM1D-mutant and TP53 mutant/PPM1D wild-type tumors, as well in TP53 knockout isogenic DIPG cell line models. RG7388 selectively inhibited the proliferation of the TP53 wild-type/PPM1D mutant DIPG cell lines in a dose- and time-dependent manner. The anti-proliferative effects were p53-dependent. RNA-Seq data showed that differential gene expression induced by RG7388 treatment was enriched in the p53 pathways. RG7388 reactivated the p53 pathway and induced apoptosis as well as G1 arrest. In vivo, RG7388 was able to reach the brainstem and exerted therapeutic efficacy in an orthotopic DIPG xenograft model. Hence, this study demonstrates the pre-clinical efficacy potential of RG7388 in the TP53 wild-type/PPM1D mutant DIPG subgroup and may provide critical insight on the design of future clinical trials applying this drug in DIPG patients.


Subject(s)
Brain Stem Neoplasms/pathology , Diffuse Intrinsic Pontine Glioma/pathology , Protein Phosphatase 2C/genetics , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrrolidines/pharmacology , para-Aminobenzoates/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Brain Stem Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Diffuse Intrinsic Pontine Glioma/genetics , Humans , Mice , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
9.
Neurooncol Adv ; 3(1): vdab042, 2021.
Article in English | MEDLINE | ID: mdl-33977272

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. METHODS: We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. RESULTS: All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61-0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49-0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64-0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51-0.67], Noether's test P = .02). CONCLUSIONS: In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance.

10.
Clin. transl. oncol. (Print) ; 23(3): 501-513, mar. 2021. ilus
Article in English | IBECS | ID: ibc-220885

ABSTRACT

Purpose Diffuse intrinsic pontine gliomas (DIPGs) are the most fatal primary brainstem tumors in pediatric patients. The identification of new molecular features, mediating their formation and progression, as non-coding RNAs (ncRNAs), would be of great importance for the development of effective treatments. Methods We analyzed the DIPGs transcriptome with the HTA2.0 array and it was compared with pediatric non-brainstem astrocytoma expression profiles (GSE72269). Results More than 50% of the differentially expressed transcripts were ncRNAs and based on this, we proposed a DIPGs ncRNA signature. LncRNAs XIST and XIST-210, and the HBII-52 and HBII-85 snoRNA clusters were markedly downregulated in DIPGs. qPCR assays demonstrated XIST downregulation in all non-brainstem astrocytomas, in a gender, age, and brain location-independent manner, as well as in DIPGs affecting boys; however, DIPGs affecting girls showed both downregulation and upregulation of XIST. Girls’ with longer survival positively correlated with XIST expression. Conclusions The involvement of ncRNAs in DIPGs is imminent and their expression profile is useful to differentiate them from non-neoplastic tissues and non-brain stem astrocytomas, which suggests their potential use as DIPG biomarkers. In fact, XIST and XIST-210 are potential DIPG prognostic biomarkers (AU)


Subject(s)
Humans , Male , Female , Infant , Child, Preschool , Child , Adolescent , Brain Neoplasms/diagnosis , Glioma/diagnosis , Transcriptome , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Glioma/genetics , Glioma/metabolism , Biomarkers, Tumor/metabolism , Magnetic Resonance Imaging , MicroRNAs/metabolism , Astrocytoma/metabolism , RNA, Long Noncoding/metabolism , Reverse Transcriptase Polymerase Chain Reaction
11.
J Neuroradiol ; 48(4): 243-247, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32184119

ABSTRACT

BACKGROUND: Diffuse midline gliomas (DMG) are aggressive brain tumours, previously known as diffuse intrinsic pontine gliomas (DIPG), with 10% overall survival (OS) at 18 months. Predicting OS will help refine treatment strategy in this patient group. MRI based texture analysis (MRTA) is novel image analysis technique that provides objective information about spatial arrangement of MRI signal intensity (heterogeneity) and has potential to be imaging biomarker. OBJECTIVES: To investigate MRTA in predicting OS in childhood DMG. METHODS: Retrospective study of patients diagnosed with DMG, based on radiological features, treated at our institution 2007-2017. MRIs were acquired at diagnosis and 6 weeks after radiotherapy (54Gy in 30 fractions). MRTA was performed using commercial available TexRAD research software on T2W sequence and Apparent Diffusion Coefficient (ADC) maps encapsulating tumour in the largest single axial plane. MRTA comprised filtration-histogram technique using statistical and histogram metrics for quantification of texture. Kaplan-Meier survival analysis determined association of MRI texture parameters with OS. RESULTS: In all, 32 children 2-14 years (median 7 years) were included. MRTA was undertaken on T2W (n=32) and ADC (n=22). T2W-MRTA parameters were better at prognosticating than ADC-MRTA. Children with homogenous tumour texture, at medium scale on diagnostic T2W MRI, had worse prognosis (Mean of Positive Pixels (MPP): P=0.005, mean: P=0.009, SD: P=0.011, kurtosis: P=0.037, entropy: P=0.042). Best predictor MPP was able to stratify patients into poor and good prognostic groups with median survival of 7.5 months versus 17.5 months, respectively. CONCLUSIONS: DMG with more homogeneous texture on diagnostic MRI is associated with worse prognosis. Texture parameter MPP is the most predictive marker of OS in childhood DMG.


Subject(s)
Brain Stem Neoplasms , Glioma , Child , Diffusion Magnetic Resonance Imaging , Glioma/diagnostic imaging , Humans , Magnetic Resonance Imaging , Retrospective Studies
12.
Clin Transl Oncol ; 23(3): 501-513, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32661825

ABSTRACT

PURPOSE: Diffuse intrinsic pontine gliomas (DIPGs) are the most fatal primary brainstem tumors in pediatric patients. The identification of new molecular features, mediating their formation and progression, as non-coding RNAs (ncRNAs), would be of great importance for the development of effective treatments. METHODS: We analyzed the DIPGs transcriptome with the HTA2.0 array and it was compared with pediatric non-brainstem astrocytoma expression profiles (GSE72269). RESULTS: More than 50% of the differentially expressed transcripts were ncRNAs and based on this, we proposed a DIPGs ncRNA signature. LncRNAs XIST and XIST-210, and the HBII-52 and HBII-85 snoRNA clusters were markedly downregulated in DIPGs. qPCR assays demonstrated XIST downregulation in all non-brainstem astrocytomas, in a gender, age, and brain location-independent manner, as well as in DIPGs affecting boys; however, DIPGs affecting girls showed both downregulation and upregulation of XIST. Girls' with longer survival positively correlated with XIST expression. CONCLUSIONS: The involvement of ncRNAs in DIPGs is imminent and their expression profile is useful to differentiate them from non-neoplastic tissues and non-brain stem astrocytomas, which suggests their potential use as DIPG biomarkers. In fact, XIST and XIST-210 are potential DIPG prognostic biomarkers.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Stem Neoplasms/diagnosis , Diffuse Intrinsic Pontine Glioma/diagnosis , RNA, Untranslated/metabolism , Transcriptome , Adolescent , Age Factors , Alternative Splicing , Astrocytoma/metabolism , Brain Neoplasms/metabolism , Brain Stem Neoplasms/diagnostic imaging , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/mortality , Child , Child, Preschool , Databases, Genetic , Diffuse Intrinsic Pontine Glioma/diagnostic imaging , Diffuse Intrinsic Pontine Glioma/genetics , Diffuse Intrinsic Pontine Glioma/mortality , Down-Regulation , Female , Humans , Infant , Magnetic Resonance Imaging , Male , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , RNA, Small Nucleolar/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sex Factors , Up-Regulation
13.
Oncol Lett ; 16(5): 6401-6406, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30405776

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is one of the most devastating types of pediatric cancer. Accumulating evidence suggests that the dysregulated expression of long non-coding (lnc)-RNAs is associated with various pathologies of the CNS. However, the expression patterns and prognostic roles of lncRNAs in DIPG have not yet been systematically determined. In the present study, lncRNA expression profiles were obtained from the Gene Expression Omnibus (GEO) database using the lncRNA-mining approach and a differential expression analysis for lncRNAs was performed between DIPG and low-grade brainstem glioma and DIPG and normal pediatric brainstem tissue. Using a two-tailed t-test, 58 and 197 lncRNAs were found to be significantly deferentially expressed (Fold change >2 or <0.5, FDR adjusted P<0.05). To identify the prognostic value of these 255 differentially expressed lncRNAs, univariate and multivariate Cox proportional hazards regression analysis were performed and a 9-lncRNA signature as a potential biomarker for predicting the prognosis of DIPG was constructed. Kaplan-Meier curve analysis showed that patients in the high-risk group exhibited a reduced survival time compared with patients in the low-risk group (median survival of 230 vs. 460 days, log-rank test P<0.001). Moreover, this lncRNA-signature could be used as an independent prognostic marker for DIPG patient survival. The present study provided novel candidates for the investigation of potential diagnostic or prognostic biomarkers and/or therapeutic targets of DIPG, as well as a novel insight into the underlying mechanisms of DIPG.

14.
Front Oncol ; 8: 169, 2018.
Article in English | MEDLINE | ID: mdl-29868485

ABSTRACT

Dramatic advances in the molecular analysis of diffuse intrinsic pontine glioma have occurred over the last decade and resulted in the identification of potential therapeutic targets. In spite of these advances, no significant improvement in the outcome has been achieved and median survival remains approximately 10 months. An understanding of the approaches that have been taken to date, why they failed, and how that information can lead the field forward is critical if we are to change the status quo. In this review, we will discuss the clinical trial landscape in North America with an overview of historical approaches that failed and what might account for this failure. We will then provide a discussion of how our understanding of the genotype of this disease has led to the development of a number of trials targeting the mutations and epigenome of diffuse intrinsic pontine gliomas and the issues related to these trials. Similarly, the introduction of methodologies to address penetration across the blood-brain barrier will be considered in the context of both targeted approaches, epigenetic modification, and immune surveillance of these tumors. The comprehensive analysis of these data, generated through cooperative groups, collaborative clinical trials, and pilot studies in North America will be the focus of the IVth Memorial Alicia Pueyo international symposium in Barcelona on March 12th, 2018 and will be compared and contrasted with a similar comprehensive analysis of the European data with the goal of bringing all of these data together to develop a uniform platform on which new rational trials can be based.

15.
Front Oncol ; 8: 61, 2018.
Article in English | MEDLINE | ID: mdl-29594041

ABSTRACT

Diffuse intrinsic pontine gliomas (DIPGs) are aggressive glial brain tumors that primarily affect children, for which there is no curative treatment. Median overall survival is only one year. Currently, the scientific focus is on expanding the knowledge base of the molecular biology of DIPG, and identifying effective therapies. Oncolytic adenovirus DNX-2401 is a replication-competent, genetically modified virus capable of infecting and killing glioma cells, and stimulating an anti-tumor immune response. Clinical trials evaluating intratumoral DNX-2401 in adults with recurrent glioblastoma have demonstrated that the virus has a favorable safety profile and can prolong survival. Subsequently, these results have encouraged the transition of this biologically active therapy from adults into the pediatric population. To this aim, we have designed a clinical Phase I trial for newly diagnosed pediatric DIPG to investigate the feasibility, safety, and preliminary efficacy of delivering DNX-2401 into tumors within the pons following biopsy. This case report presents a pediatric patient enrolled in this ongoing Phase I trial for children and adolescents with newly diagnosed DIPG. The case involves an 8-year-old female patient with radiologically diagnosed DIPG who underwent stereotactic tumor biopsy immediately followed by intratumoral DNX-2401 in the same biopsy track. Because there were no safety concerns or new neurological deficits, the patient was discharged 3 days after the procedures. To our knowledge, this is the first report of intratumoral DNX-2401 for a patient with DIPG in a clinical trial. We plan to demonstrate that intratumoral delivery of an oncolytic virus following tumor biopsy for pediatric patients with DIPG is a novel and feasible approach and that DNX-2401 represents an innovative treatment for the disease.

16.
Cancer ; 122(18): 2799-809, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27327773

ABSTRACT

Brainstem gliomas in adults are a rare and heterogeneous group of brain tumors that vary with regard to underlying pathology, radiographic appearance, clinical course and prognosis. Diffuse intrinsic pontine gliomas represent the most common subtype. Although still considered aggressive and most often lethal, these brain tumors are associated with a more insidious clinical course and more favorable prognosis compared to the highly aggressive form in children. Treatment options for patients with brainstem gliomas still are limited and insufficiently studied. A better understanding of the pathobiology of these tumors will be crucial for the development of more specific and effective therapies. Cancer 2016. © 2016 American Cancer Society. Cancer 2016;122:2799-2809. © 2016 American Cancer Society.


Subject(s)
Brain Stem Neoplasms/pathology , Glioma/pathology , Adult , Brain Stem Neoplasms/therapy , Glioma/therapy , Humans , Prognosis
17.
Cytokine Growth Factor Rev ; 27: 93-104, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26776312

ABSTRACT

Activin receptor-like kinase-2 (ALK2), the product of ACVR1, is a member of the type I bone morphogenetic protein (BMP) receptor family. ALK2 exerts key and non-redundant roles in numerous developmental processes, including the specification, growth and morphogenesis of endochondral skeletal elements. There is also strong evidence that BMP signaling plays important roles in determination, differentiation and function of neural cells and tissues. Here we focus on the intriguing discovery that common activating mutations in ALK2 occur in Fibrodysplasia Ossificans Progressiva (FOP) and Diffuse Intrinsic Pontine Gliomas (DIPGs), distinct pediatric disorders of significant severity that are associated with premature death. Pathogenesis and treatment remain elusive for both. We consider recent studies on the nature of the ACVR1 mutations, possible modes of action and targets, and plausible therapeutic measures. Comparisons of the diverse - but genetically interrelated - pathologies of FOP and DIPG will continue to be of major mutual benefit with broad biomedical and clinical relevance.


Subject(s)
Activin Receptors, Type I , Brain Stem Neoplasms , Glioma , Mutation , Myositis Ossificans , Neoplasm Proteins , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Animals , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/metabolism , Glioma/genetics , Humans , Myositis Ossificans/genetics , Myositis Ossificans/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...