Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Plants (Basel) ; 13(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39204681

ABSTRACT

The fungi Botryosphaeriaceae are involved in olive declines in both the world hemispheres and in all continents where this species is cultivated. In Salento (Apulia, Italy), the Botryosphaeriaceae Neofusicoccum mediterraneum and N. stellenboschiana have been reported as the agents of a branch and twig dieback that overlaps with olive quick decline syndrome caused by Xylella fastidiosa subsp. pauca. In this study, we report the finding of Diplodia seriata, another Botryosphaeriaceae species, in Salento in Xylella fastidiosa-infected olive trees affected by symptoms of branch and twig dieback. Given that its presence was also reported in olive in the Americas and in Europe (Croatia) with different degrees of virulence, we were prompted to assess its role in the Apulian decline. We identified representative isolates based on morphological features and a multilocus phylogeny. In vitro tests showed that the optimum growth temperature of the isolates is around 25-30 °C, and that they are highly thermo-tolerant. In pathogenicity trials conducted over eleven months, D. seriata expressed a very low virulence. Nonetheless, when we imposed severe water stress before the inoculation, D. seriata significatively necrotized bark and wood in a time frame of 35 days. Moreover, the symptoms which resulted were much more severe in the trial performed in summer compared with that in autumn. In osmolyte-supplemented media with a water potential from -1 to -3 Mpa, the isolates increased or maintained their growth rate compared with non-supplemented media, and they also grew, albeit to a lesser extent, on media with a water potential as low as -7 Mpa. This suggests that olives with a low water potential, namely those subjected to drought, may offer a suitable environment for the fungus' development. The analysis of the meteorological parameters, temperatures and rainfall, in Salento in the timeframe 1989-2023, showed that this area is subjected to a progressive increase of temperature and drought during the summer. Thus, overall, D. seriata has to be considered a contributor to the manifestation of branch and twig dieback of olive in Salento. Coherently with the spiral decline concept of trees, our results suggest that heat and drought act as predisposing/inciting factors facilitating D. seriata as a contributor. The fact that several adverse factors, biotic and abiotic, are simultaneously burdening olive trees in Salento offers a cue to discuss the possible complex nature of the olive decline in Salento.

2.
Microorganisms ; 12(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399754

ABSTRACT

Grapevine trunk diseases (GTDs) attack the vine's wood, devastating vineyards worldwide. Chile is the world's fourth-largest wine exporter, and Cabernet Sauvignon is one of the most economically important red wine varieties. Botryosphaeria dieback is an important GTD, and Diplodia seriata is one of the main pathogenic species. Biocontrol studies of these pathogens are commonly carried out at different incubation times but at a single temperature. This study aimed to evaluate the biocontrol effect of Chilean PGPB and grapevine endophytic bacteria against D. seriata at different temperatures. We analyzed the biocontrol effect of Pseudomonas sp. GcR15a, Pseudomonas sp. AMCR2b and Rhodococcus sp. PU4, with three D. seriata isolates (PUCV 2120, PUCV 2142 and PUCV 2183) at 8, 22 and 35 °C. Two dual-culture antagonism methods (agar plug diffusion and double plate) were used to evaluate the in vitro effect, and an in vivo test was performed with Cabernet Sauvignon cuttings. In vitro, the greatest inhibitions were obtained using the agar plug diffusion method and at a temperature of 8 °C, where Rhodococcus sp. PU4 obtains a 65% control (average) and Pseudomonas sp. GcR15a a 57% average. At 22 °C, only strains of Pseudomonas sp. show control. At 35 °C, one Pseudomonas strain shows the highest control (38%), on average, similar to tebuconazole (33%), and then Rhodococcus sp. (30%). In vivo, a biocontrol effect is observed against two D. seriata isolates, while the PUCV 2142 proves to be more resistant to control. The biocontrol ability at low temperatures is promising for effective control in the field, where infections occur primarily in winter.

3.
Front Cell Infect Microbiol ; 12: 913619, 2022.
Article in English | MEDLINE | ID: mdl-35846770

ABSTRACT

Diplodia seriata in the family Botryosphaeriaceae is a cosmopolitan phytopathogenic fungus and is responsible for causing cankers, fruit rot and leaf spots on economically important plants. In this study, we characterized the virome of a single Pakistani strain (L3) of D. seriata. Several viral-like contig sequences were obtained via a previously conducted next-generation sequencing analysis. Multiple infection of the L3 strain by eight RNA mycoviruses was confirmed through RT-PCR using total RNA samples extracted from this strain; the entire genomes were determined via Sanger sequencing of RT-PCR and RACE clones. A BLAST search and phylogenetic analyses indicated that these eight mycoviruses belong to seven different viral families. Four identified mycoviruses belong to double-stranded RNA viral families, including Polymycoviridae, Chrysoviridae, Totiviridae and Partitiviridae, and the remaining four identified mycoviruses belong to single-stranded RNA viral families, i.e., Botourmiaviridae, and two previously proposed families "Ambiguiviridae" and "Splipalmiviridae". Of the eight, five mycoviruses appear to represent new virus species. A morphological comparison of L3 and partially cured strain L3ht1 suggested that one or more of the three viruses belonging to Polymycoviridae, "Splipalmiviridae" and "Ambiguiviridae" are involved in the irregular colony phenotype of L3. To our knowledge, this is the first report of diverse virome characterization from D. seriata.


Subject(s)
Ascomycota , Fungal Viruses , RNA Viruses , Ascomycota/virology , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Genome, Viral , Pakistan , Phylogeny , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Double-Stranded/genetics , RNA, Viral/genetics
4.
J Fungi (Basel) ; 8(4)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35448640

ABSTRACT

Botryosphaeria dieback (BD) is a grapevine trunk disease (GTD) causing significant yield losses and limiting the lifespan of vineyards worldwide. Fungi responsible for BD infect grapevines primarily through pruning wounds, and thus pruning wound protection, using either synthetic chemicals or biological control agents (BCAs), is the main available management strategy. However, no products to control GTDs are currently registered in Canada. With a focus on more sustainable grapevine production, there is an increasing demand for alternatives to chemical products to manage GTDs. Accordingly, the objective of this study was to identify Trichoderma species from grapevines in British Columbia (BC) and evaluate their potential biocontrol activity against BD fungi Diplodia seriata and Neofusicoccum parvum. Phylogenetic analyses identified seven species, including T. asperelloides, T. atroviride, T. harzianum, T. koningii, T. tomentosum, and two novel species, T. canadense and T. viticola. In vitro dual culture antagonistic assays showed several isolates to inhibit fungal pathogen mycelial growth by up to 75%. In planta detached cane assays under controlled greenhouse conditions identified T. asperelloides, T. atroviride and T. canadense isolates from BC as providing 70% to 100% pruning wound protection against BD fungi for up to 21 days after treatment. In addition, these isolates were shown to provide similar or better control when compared against commercial chemical and biocontrol products. This study demonstrates the potential that locally sourced Trichoderma species can have for pruning wound protection against BD fungi, and further supports the evaluation of these isolates under natural field conditions.

5.
Front Fungal Biol ; 3: 1001143, 2022.
Article in English | MEDLINE | ID: mdl-37746162

ABSTRACT

As grapevines mature in California vineyards they accumulate chronic wood infections by the Ascomycete fungi that cause trunk diseases, including Botryosphaeria dieback (caused by Diplodia seriata and Neofusicoccum parvum) and Esca (caused by Phaeomoniella chlamydospora). It is thought that such mixed infections become localized to separate internal lesions/cankers of the permanent, woody structure of an individual vine, but nonetheless the fungi all colonize the same vascular system. In response to infection by one pathogen, the host may initiate systemic biochemical changes, which in turn may affect the extent of subsequent infections by other pathogens. To test this hypothesis, we measured changes in phenolic compounds in the wood and lesion lengths of the pathogens, during sequential co-inoculations with different or identical pair-wise sequences of infection by D. seriata, N. parvum, or P. chlamydospora. Prior fungal infections only affected the development of subsequent D. seriata infections. Effects of fungal infections on phenolic compounds were variable, yet initial infection by D. seriata was associated with significantly higher concentrations of most phenolic compounds distally, compared to all other initial inoculation treatments. It was hypothesized that pre-existing phenolic levels can slow initial lesion development of fungal trunk pathogens, especially for D. seriata, but over time the pathogens appeared to overcome or neutralize phenolic compounds and grow unimpeded. These results demonstrate that effects of one fungal trunk pathogen infection is generally unable to distally affect another long-term, albeit shifts in host phenolics and other plant defenses do occur.

6.
Plant Dis ; 106(3): 925-937, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34664980

ABSTRACT

In recent years, the number of apple trees affected by Botryosphaeria cankers and dieback has considerably increased in central Chile. This study aimed to identify the species of Botryosphaeriaceae associated with canker and dieback symptoms, estimate disease incidence and distributions, and study their pathogenicity and virulence on apple and other fruit crops. A field survey of 34 commercial orchards of apple (7 to 30 years old) was conducted in 16 localities, obtaining 270 symptomatic branch and trunk samples in 2017 and 2018 growing seasons. The incidence of Botryosphaeria canker and dieback ranged between 5 and 40%, and a total of 255 isolates of Botryosphaeriaceae spp. were obtained from 238 cankers. Morphological identification along with phylogenetic studies of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of the rDNA, part of the translation elongation factor 1-α (tef1-α), and part of the ß-tubulin (tub2) genes allowed us to identify Diplodia mutila (n = 49 isolates), D. seriata (n = 136 isolates), Lasiodiplodia theobromae (n = 16 isolates), and Neofusicoccum arbuti (n = 54 isolates). L. theobromae was isolated mainly from apple dieback from northern localities. All pathogens tested were pathogenic, causing canker and dieback symptoms on lignified twigs of apple, pear, walnut, and green grapevine shoots in the field. Isolates of N. arbuti were the most virulent, reproducing more severe cankers on the lignified tissues inoculated. This study reports, for the first time, D. mutila and L. theobromae associated with Botryosphaeria canker and dieback in Chile, and it is the first description of N. arbuti causing apple dieback worldwide.


Subject(s)
Ascomycota , Malus , Chile , Phylogeny , Plant Diseases , Virulence
7.
Plants (Basel) ; 10(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34579385

ABSTRACT

The work presented herein deals with the characterization and valorization of a halophyte from the cliffs of the Asturian coast: Limonium binervosum (G.E.Sm.) C.E.Salmon (rock sea-lavender). Its biomass and hydromethanolic extracts were studied by elemental and thermal analysis, infrared spectroscopy and gas chromatography-mass spectroscopy. Tetradecanoic acid/esters and 1,2-tetradecanediol were identified in its flower extract, while the leaf extract was rich in linolenic and linoleic acids and their esters, hexadecanoic acid and its esters, and phytol. Both flower and leaf hydromethanolic extracts contained eicosane, sitosterol and tocopherols in significant amounts. With a view to its valorization, the antimicrobial activity of these extracts was investigated against three apple tree and grapevine phytopathogens. Both the hydroalcoholic extracts and their main constituents, alone or in combination with chitosan oligomers (COS), were tested in vitro. A remarkable antibacterial activity was observed for the conjugated complexes of the flower extract with COS, both against Xylophilus ampelinus (MIC = 250 µg·mL-1) and Erwinia amylovora (MIC = 500 µg·mL-1), and complete inhibition of the mycelial growth of Diplodia seriata was found at concentrations <1000 µg·mL-1. In view of these results, this extremophile plant can be put forward as a promising source of bioactive metabolites.

8.
Genes (Basel) ; 12(2)2021 01 27.
Article in English | MEDLINE | ID: mdl-33513975

ABSTRACT

Diplodia seriata, one of the major causal agents of Botryosphaeria dieback, spreads worldwide causing cankers, leaf spots and fruit black rot in grapevine. Vitis rupestris is an American wild grapevine widely used for resistance and rootstock breeding and was found to be highly resistant to Botryosphaeria dieback. The defence responses of V. rupestris to D. seriata 98.1 were analysed by RNA-seq in this study. There were 1365 differentially expressed genes (DEGs) annotated with gene ontology (GO) and enriched by the Kyoto Encyclopedia of gene and genome (KEGG) database. The DEGs could be allocated to the flavonoid biosynthesis pathway and the plant-pathogen interaction pathway. Among them, 53 DEGs were transcription factors (TFs). The expression levels of 12 genes were further verified by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The aggregation of proteins on plasma membrane, formation variations in cytoskeleton and plasmodesmata, as well as hormone regulations revealed a declined physiological status in V. rupestris suspension cells after incubation with the culture filtrates of D. seriata 98.1. This study provides insights into the molecular mechanisms in grapevine cells response to D. seriata 98.1, which will be valuable for the control of Botryosphaeria dieback.


Subject(s)
Ascomycota , Gene Expression Profiling , Plant Cells , Transcriptome , Vitis/genetics , Vitis/microbiology , Computational Biology/methods , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
9.
Plant Dis ; 105(5): 1308-1319, 2021 May.
Article in English | MEDLINE | ID: mdl-33074073

ABSTRACT

Dieback symptoms associated with fungal trunk pathogens cause significant economic losses for farmers of kiwifruit and other woody fruit trees worldwide. This study represents the first attempt to identify and characterize the fungal trunk pathogens associated with cordon dieback disease of kiwifruit in central Chile. Field surveys were conducted throughout the main kiwifruit-growing regions in central Chile to determine the incidence and characterize the fungal trunk pathogens associated with cordon dieback of kiwifruit cultivar Hayward through morphological, molecular, and pathogenicity studies. A total of 250 cordon samples were collected and isolations were performed on 2% acidified potato dextrose agar (APDA) plus antibiotics and Igepal. The incidence of kiwifruit cordon dieback ranged between 5% and 85% in all surveyed areas in central Chile. A total of 246 isolates were isolated and identified using culture and morphological features belonging to three fungal taxa: Diaporthaceae spp. (Diaporthe ambigua and D. australafricana; n = 133 isolates); Botryosphaeriaceae spp. (Diplodia seriata and Neofusicoccum parvum; n = 89 isolates); and Ploettnerulaceae spp. (Cadophora luteo-olivacea and C. malorum; n = 24 isolates). These were identified using phylogenetics studies of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of the rDNA, part of the ß-tubulin gene (tub2), and part of the translation elongation factor 1-α gene (tef1-α). Isolates of N. parvum and D. seriata were the most virulent, causing internal brown lesions and dieback symptoms in attached green shoots, attached lignified canes, and young inoculated kiwifruits. This report is the first to describe D. seriata and C. luteo-olivacea associated with kiwifruit cordon dieback in Chile. It presents the first description of N. parvum causing kiwifruit dieback worldwide.


Subject(s)
Fruit , Plant Diseases , Ascomycota , Chile , Virulence
10.
Plants (Basel) ; 9(11)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114298

ABSTRACT

Botryosphaeria dieback caused by several Botryosphaeriaceae species is one of the most important grapevine trunk diseases affecting vineyards worldwide. These fungi cause wedge-shaped perennial cankers and black streaking of the wood and have also been associated with intervein leaf chlorosis, dried or mummified berries, and eventually, the death of the plant. Early season symptoms may sometimes be disregarded by growers, being mistaken with symptoms from other diseases such as downy mildew or botrytis rot. Currently, few studies are available to determine what species may be causing these early season symptoms in grapevines. During the 2018 season, during the flowering period, grapevine samples showing necrosis on green shoots, dried inflorescences, and flowers, were collected in vineyards throughout the central regions of Portugal. Isolations were performed from symptomatic organs, and twenty-three isolates of Botryosphaeriaceae were selected. An analysis of the ITS and part of the translation elongation factor 1-α sequences was performed, revealing that the two main species apparently responsible for these symptoms were Diplodia seriata and Neofusicoccum parvum. In pathogenicity tests conducted on 1-year-old plants grown under controlled conditions in a greenhouse and on field-grown clusters, symptoms were reproduced, confirming the pathogenic behavior of the selection of isolates.

11.
Antibiotics (Basel) ; 8(3)2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31330856

ABSTRACT

Grapevine trunk diseases (GTDs) are a major threat to the wine and grape industry. The aim of the study was to investigate the antifungal activity against Neofusicoccum parvum, Diplodia seriata, and Botryosphaeria dothidea of ε-polylysine, chitosan oligomers, their conjugates, Streptomyces rochei and S. lavendofoliae culture filtrates, and their binary mixtures with chitosan oligomers. In vitro mycelial growth inhibition tests suggest that the efficacy of these treatments, in particular those based on ε-polylysine and ε-polylysine:chitosan oligomers 1:1 w/w conjugate, against the three Botryosphaeriaceae species would be comparable to or higher than that of conventional synthetic fungicides. In the case of ε-polylysine, EC90 values as low as 227, 26.9, and 22.5 µg·mL-1 were obtained for N. parvum, D. seriata, and B. dothidea, respectively. Although the efficacy of the conjugate was slightly lower, with EC90 values of 507.5, 580.2, and 497.4 µg·mL-1, respectively, it may represent a more cost-effective option to the utilization of pure ε-polylysine. The proposed treatments may offer a viable and sustainable alternative for controlling GTDs.

12.
Front Microbiol ; 9: 3047, 2018.
Article in English | MEDLINE | ID: mdl-30619138

ABSTRACT

Grapevine trunk diseases (GTDs) are one of the major concern amongst grapevine diseases, responsible for the decline of vineyards and for several economical losses. Since grapevine is naturally colonized by resident microorganisms such as Aureobasidium pullulans, the present challenge is to understand their biocontrol potential and how such microorganisms can be successfully integrated in the control of GTDs. In this context, the first priority consists to exploit the plant-beneficial-phytopathogen interactions in plant model systems, to identify the most prevalent equilibrium limiting expression of GTDs. In the current study, we deep characterized the interaction of a resident and abundant microorganism from grapevine - Aureobasidium pullulans strain Fito_F278 - against D. seriata F98.1, a Botryosphaeria dieback agent, and with plant (cv Chardonnay). Results revealed that A. pullulans strain Fito_F278 was able to reduce significantly the mycelium growth of D. seriata F98.1 at 33.41 ± 0.55%, under in vitro conditions, though this reduction is possibly dependent on a direct interaction between strain Fito_F278 and pathogen. Furthermore, strain Fito_F278 was able to promote an induction of some plant defense responses in cutting plants, 1 week after the D. seriata F98.1 infection. Results evidenced that strain Fito_F278 colonized efficiently grapevine at both epiphyte and endophyte level, could persist on plant roots for long-periods (up to 2 months after its inoculation) and grow at different pH and high salinity conditions. Moreover, a significant decrease of the microbial load from soil and rhizosphere was observed in plants treated with the strain Fito_F278, suggesting its competitivity potential in a microbial ecosystem. Altogether, the present study gives the first insights about the interaction of A. pullulans strain Fito_F278, a resident microorganism, with grapevine, its potential role against a Botryosphaeria dieback agent, and highlights its importance to toward more resilient grapevine.

13.
Protoplasma ; 255(2): 613-628, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29043572

ABSTRACT

Grapevine trunk diseases (Eutypa dieback, esca and Botryosphaeria dieback) are caused by a complex of xylem-inhabiting fungi, which severely reduce yields in vineyards. Botryosphaeria dieback is associated with Botryosphaeriaceae. In order to develop effective strategies against Botryosphaeria dieback, we investigated the molecular basis of grapevine interactions with a virulent species, Neofusicoccum parvum, and a weak pathogen, Diplodia seriata. We investigated defenses induced by purified secreted fungal proteins within suspension cells of Vitis (Vitis rupestris and Vitis vinifera cv. Gewurztraminer) with putative different susceptibility to Botryosphaeria dieback. Our results show that Vitis cells are able to detect secreted proteins produced by Botryosphaeriaceae, resulting in a rapid alkalinization of the extracellular medium and the production of reactive oxygen species. Concerning early defense responses, N. parvum proteins induced a more intense response compared to D. seriata. Early and late defense responses, i.e., extracellular medium alkalinization, cell death, and expression of PR defense genes were stronger in V. rupestris compared to V. vinifera, except for stilbene production. Secreted Botryosphaeriaceae proteins triggered a high accumulation of δ-viniferin in V. vinifera suspension cells. Artificial inoculation assays on detached canes with N. parvum and D. seriata showed that the development of necrosis is reduced in V. rupestris compared to V. vinifera cv. Gewurztraminer. This may be related to a more efficient induction of defense responses in V. rupestris, although not sufficient to completely inhibit fungal colonization. Overall, our work shows a specific signature of defense responses depending on the grapevine genotype and the fungal species.


Subject(s)
Ascomycota/physiology , Fungal Proteins/metabolism , Plant Cells/metabolism , Vitis/immunology , Vitis/microbiology , Cell Death , Extracellular Space/metabolism , Fluorescence , Gene Expression Regulation, Plant , Plant Stems/microbiology , Principal Component Analysis , Reactive Oxygen Species/metabolism , Stilbenes/metabolism , Vitis/cytology , Vitis/genetics
14.
Int J Mol Sci ; 18(2)2017 Feb 13.
Article in English | MEDLINE | ID: mdl-28208805

ABSTRACT

As a result of the increasing economic impact of grapevine trunk diseases on viticulture worldwide, efficient and viable control strategies are urgently needed. However, understanding both plant-pathogen interactions and plant physiological changes related to these diseases is fundamental to such an achievement. In this study, we analyzed the effect of inoculation with the Botryosphaeria dieback fungal agents, Neofusicoccum parvum and Diplodia seriata, with and without inflorescence removal at the onset of G stage (separated clusters), I stage (flowering) and M stage (veraison). A measure of lesion size and real-time reverse-transcription polymerase chain reaction-based analysis were carried out. The results clearly show the importance of inflorescences in the development of lesions associated with Botryosphaeria dieback pathogens inoculated on green stems of adult vines, especially at the onset of flowering. At flowering, the biggest necroses were observed with the inflorescences present, as well as an activation of the studied defense responses. Thus, an ineffective response to the pathogen could be consistent with a possible metabolic reprogramming linked to the host phenophase.


Subject(s)
Ascomycota , Disease Resistance , Host-Pathogen Interactions , Plant Diseases/microbiology , Vitis/microbiology , Vitis/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL