Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
J Neurosurg Case Lessons ; 8(2)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976917

ABSTRACT

BACKGROUND: The dilemma of neuro-oncological surgery involving suspected eloquent cortex is to maximize the extent of resection while minimizing neurological morbidity, referred to as the "onco-functional balance." Diffuse lower-grade gliomas are capable of infiltrating or displacing neural function within cortical regions and subcortical white matter tracts, which can render classical anatomic associations of eloquent function misleading. OBSERVATIONS: This study employed presurgical navigated transcranial magnetic stimulation (nTMS) to determine the motor eloquence of a diffuse lower-grade glioma at the superior frontal gyrus extending and intrinsic to the primary motor cortex in a 45-year-old female. Positive nTMS findings were confirmed intraoperatively with high-frequency direct cortico-subcortical stimulation (HF-DCS). Modification of the HF-DCS train count from train-of-five to train-of-two permitted resection beyond classic anatomical boundaries and conventional HF-DCS safe stopping criteria. LESSONS: Anatomical correlates of function can inaccurately inform the surgical management of diffuse lower-grade glioma, which represents the utmost opportunity for progression-free survival. Integrating an individually tailored nTMS-DCS surgical strategy contributed to complete resection, negating the requirement for adjuvant therapy. Serial nTMS follow-up may assist with the characterization of tumor-induced functional reorganization. https://thejns.org/doi/10.3171/CASE24197.

2.
Front Neurosci ; 18: 1428256, 2024.
Article in English | MEDLINE | ID: mdl-38988764

ABSTRACT

Encoding artificial perceptions through brain stimulation, especially that of higher cognitive functions such as speech perception, is one of the most formidable challenges in brain-computer interfaces (BCI). Brain stimulation has been used for functional mapping in clinical practices for the last 70 years to treat various disorders affecting the nervous system, including epilepsy, Parkinson's disease, essential tremors, and dystonia. Recently, direct electrical stimulation has been used to evoke various forms of perception in humans, ranging from sensorimotor, auditory, and visual to speech cognition. Successfully evoking and fine-tuning artificial perceptions could revolutionize communication for individuals with speech disorders and significantly enhance the capabilities of brain-computer interface technologies. However, despite the extensive literature on encoding various perceptions and the rising popularity of speech BCIs, inducing artificial speech perception is still largely unexplored, and its potential has yet to be determined. In this paper, we examine the various stimulation techniques used to evoke complex percepts and the target brain areas for the input of speech-like information. Finally, we discuss strategies to address the challenges of speech encoding and discuss the prospects of these approaches.

4.
J Anesth Analg Crit Care ; 4(1): 29, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698460

ABSTRACT

Chronic pain, a complex and debilitating condition, poses a significant challenge to both patients and healthcare providers worldwide. Conventional pharmacological interventions often prove inadequate in delivering satisfactory relief while carrying the risks of addiction and adverse reactions. In recent years, electric neuromodulation emerged as a promising alternative in chronic pain management. This method entails the precise administration of electrical stimulation to specific nerves or regions within the central nervous system to regulate pain signals. Through mechanisms that include the alteration of neural activity and the release of endogenous pain-relieving substances, electric neuromodulation can effectively alleviate pain and improve patients' quality of life. Several modalities of electric neuromodulation, with a different grade of invasiveness, provide tailored strategies to tackle various forms and origins of chronic pain. Through an exploration of the anatomical and physiological pathways of chronic pain, encompassing neurotransmitter involvement, this narrative review offers insights into electrical therapies' mechanisms of action, clinical utility, and future perspectives in chronic pain management.

5.
J Clin Med ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792507

ABSTRACT

Intraoperative neurophysiological monitoring (IONM) is a crucial advancement in neurosurgery, enhancing procedural safety and precision. This technique involves continuous real-time assessment of neurophysiological signals, aiding surgeons in timely interventions to protect neural structures. In addition to inherent limitations, IONM necessitates a detailed anesthetic plan for accurate signal recording. Given the growing importance of IONM in neurosurgery, we conducted a narrative review including the most relevant studies about the modalities and their application in different fields of neurosurgery. In particular, this review provides insights for all physicians and healthcare professionals unfamiliar with IONM, elucidating commonly used techniques in neurosurgery. In particular, it discusses the roles of IONM in various neurosurgical settings such as tumoral brain resection, neurovascular surgery, epilepsy surgery, spinal surgery, and peripheral nerve surgery. Furthermore, it offers an overview of the anesthesiologic strategies and limitations of techniques essential for the effective implementation of IONM.

6.
Cortex ; 174: 189-200, 2024 05.
Article in English | MEDLINE | ID: mdl-38569257

ABSTRACT

BACKGROUND: Former comparisons between direct cortical stimulation (DCS) and navigated transcranial magnetic stimulation (nTMS) only focused on cortical mapping. While both can be combined with diffusion tensor imaging, their differences in the visualization of subcortical and even network levels remain unclear. Network centrality is an essential parameter in network analysis to measure the importance of nodes identified by mapping. Those include Degree centrality, Eigenvector centrality, Closeness centrality, Betweenness centrality, and PageRank centrality. While DCS and nTMS have repeatedly been compared on the cortical level, the underlying network identified by both has not been investigated yet. METHOD: 27 patients with brain lesions necessitating preoperative nTMS and intraoperative DCS language mapping during awake craniotomy were enrolled. Function-based connectome analysis was performed based on the cortical nodes obtained through the two mapping methods, and language-related network centralities were compared. RESULTS: Compared with DCS language mapping, the positive predictive value of cortical nTMS language mapping is 74.1%, with good consistency of tractography for the arcuate fascicle and superior longitudinal fascicle. Moreover, network centralities did not differ between the two mapping methods. However, ventral stream tracts can be better traced based on nTMS mappings, demonstrating its strengths in acquiring language-related networks. In addition, it showed lower centralities than other brain areas, with decentralization as an indicator of language function loss. CONCLUSION: This study deepens the understanding of language-related functional anatomy and proves that non-invasive mapping-based network analysis is comparable to the language network identified via invasive cortical mapping.


Subject(s)
Brain Neoplasms , Connectome , Humans , Diffusion Tensor Imaging/methods , Brain Neoplasms/surgery , Brain Mapping/methods , Brain , Transcranial Magnetic Stimulation/methods , Language
7.
Expert Rev Med Devices ; 21(5): 373-379, 2024 May.
Article in English | MEDLINE | ID: mdl-38629964

ABSTRACT

INTRODUCTION: During intraoperative neurophysiological monitoring in neurosurgery, brain electrodes are placed to record electrocorticography or to inject current for direct cortical stimulation. A low impedance electrode may improve signal quality. AREAS COVERED: We review here a brain electrode (WISE Cortical Strip, WCS®), where a thin polymer strip embeds platinum nanoparticles to create conductive electrode contacts. The low impedance contacts enable a high signal-to-noise ratio, allowing for better detection of small signals such as high-frequency oscillations (HFO). The softness of the WCS may hinder sliding the electrode under the dura or advancing it to deeper structures as the hippocampus but assures conformability with the cortex even in the resection cavity. We provide an extensive review on WCS including a market overview, an introduction to the device (mechanistics, cost aspects, performance standards, safety and contraindications) and an overview of the available pre- and post-approval data. EXPERT OPINION: The WCS improves signal detection by lower impedance and better conformability to the cortex. The higher signal-to-noise ratio improves the detection of challenging signals. The softness of the electrode may be a disadvantage in some applications and an advantage in others.


Subject(s)
Intraoperative Neurophysiological Monitoring , Humans , Intraoperative Neurophysiological Monitoring/instrumentation , Intraoperative Neurophysiological Monitoring/methods , Electrodes , Electric Impedance , Signal-To-Noise Ratio
8.
Ann Med Surg (Lond) ; 86(4): 1861-1866, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576956

ABSTRACT

Introduction: Direct cortical stimulation has been used for brain mapping and localization of eloquent areas in awake patients. This simplified technique is to provide the positive areas, which can be preserved if the tumor or lesions are involved eloquent areas. Objective: The main objective of this study is to determine whether direct cortical stimulation in awake brain mapping for low-grade glioma patients increases the rate of resection or not. Method: The authors present a retrospective study between 2020 to 2022 that includes 35 cases in a single center, to get higher resection rate, and their consequences in awake craniotomy in low-grade glioma patients. Here, two neurosurgeons were involved and the minimum follow-up was 12 months. Results: The authors achieved 80% removal of tumors. To get higher resection rate we emphasized negative mapping with prior anatomical analysis to understand functional realignment. Stimulation-related complications will be thoroughly discussed with a potential future direction to minimize the issues. The authors used PROMIS score to measure patients physical and mental health status and kernofsky score to measure performance status before and after successful surgery. The authors found three cases of transient deficit in repetitive stimulation. Repeated stimulation to identify the eloquent areas with low voltage frequency is a good option. Numbness in the face related to stimulation may continue for 6 weeks. Conclusion: Functional realignment in shifted brain and edema can be seen while doing cortical and subcortical stimulation. Most of the stimulation from low to high for language mapping may vary from patient to patient. For safe removal of low-grade glioma a steep learning curve is needed to find out the negative areas, though the authors emphasize positive mapping of areas to secure the maximum eloquence.

9.
J Neurosurg Case Lessons ; 7(13)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38531084

ABSTRACT

BACKGROUND: During brain tumor resection, neurophysiological mapping and monitoring help surgeons locate, characterize, and functionally assess eloquent brain areas in real time. The selection of mapping and monitoring targets has implications for successful surgery. Here, the authors compare direct cortical stimulation (DCS) as suggested by median nerve (MN) with posterior tibial nerve (PTN) cortical sensory mapping (SM) during mesial lesion resection. OBSERVATIONS: Recordings from a 6-contact cortical strip served to generate an MN and a PTN sensory map, which indicated the strip was anterior to the central sulcus. Responses exhibited an amplitude gradient with no phase reversal (PR). DCS, elicited through a stimulus probe or contact(s) of the strip, yielded larger responses from the corresponding sensory mapped limb; that is, PTN SM resulted in larger lower limb muscle responses than those suggested by MN SM. LESSONS: SM of the MN and PTN is effective for localizing eloquent cortical areas wherein the PTN is favored in surgery for mesial cortical tumors. The recorded amplitude of the cortical somatosensory evoked potential is a valuable criterion for defining the optimal location for DCS, despite an absent PR. The pathway at risk dictates the specifics of SM, which subsequently defines the optimal location for DCS.

10.
Neuropsychologia ; 198: 108876, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38555064

ABSTRACT

We retrospectively analyzed data from 15 patients, with a normal pre-operative cognitive performance, undergoing awake surgery for left fronto-temporal low-grade glioma. We combined a pre-surgical measure (fMRI maps of motor- and language-related centers) with intra-surgical measures (MNI-registered cortical sites data obtained during intra-operative direct electrical stimulation, DES, while they performed the two most common language tasks: number counting and picture naming). Selective DES effects along the precentral gyrus/inferior frontal gyrus (and/or the connected speech articulation network) were obtained. DES of the precentral gyrus evoked the motor speech arrest, i.e., anarthria (with apparent mentalis muscle movements). We calculated the number of shared voxels between the lip-tongue and overt counting related- and silent naming-related fMRI maps and the Volumes of Interest (VOIs) obtained by merging together the MNI sites at which a given speech disturbance was observed, normalized on their mean the values (i.e., Z score). Both tongue- and lips-related movements fMRI maps maximally overlapped (Z = 1.05 and Z = 0.94 for lips and tongue vs. 0.16 and -1.003 for counting and naming) with the motor speech arrest seed. DES of the inferior frontal gyrus, pars opercularis and the rolandic operculum induced speech arrest proper (without apparent mentalis muscle movements). This area maximally overlapped with overt counting-related fMRI map (Z = -0.11 and Z = 0.09 for lips and tongue vs. 0.9 and 0.0006 for counting and naming). Interestingly, our fMRI maps indicated reduced Broca's area activity during silent speech compared to overt speech. Lastly, DES of the inferior frontal gyrus, pars opercularis and triangularis evoked variations of the output, i.e., dysarthria, a motor speech disorder occurring when patients cannot control the muscles used to produce articulated sounds (phonemes). Silent object naming-related fMRI map maximally overlapped (Z = -0.93 and Z = -1.04 for lips and tongue vs. -1.07 and 0.99 for counting and naming) with this seed. Speech disturbances evoked by DES may be thought of as selective interferences with specific recruitment of left inferior frontal gyrus and precentral cortex which are differentiable in terms of the specific interference induced.


Subject(s)
Brain Mapping , Brain Neoplasms , Electric Stimulation , Magnetic Resonance Imaging , Speech , Humans , Male , Female , Adult , Speech/physiology , Middle Aged , Brain Neoplasms/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/physiopathology , Retrospective Studies , Glioma/surgery , Glioma/diagnostic imaging , Glioma/physiopathology , Young Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Multimodal Imaging
11.
Clin Neurophysiol ; 158: 16-26, 2024 02.
Article in English | MEDLINE | ID: mdl-38134532

ABSTRACT

OBJECTIVE: This study aims to investigate the potential of direct cortical stimulation (DCS) to modulate tactile categorization and decision-making, as well as to identify the specific locations where these cognitive functions occur. METHODS: We analyzed behavioral changes in three epilepsy patients with implanted electrodes using electrocorticography (ECoG) and a vibrotactile discrimination task. DCS was applied to investigate its impact on tactile categorization and decision-making processes. We determined the precise location of the electrodes where each cognitive function was modulated. RESULTS: This functional discrimination was related with gamma band activity from ECoG. DCS selectively affected either tactile categorization or decision-making processes. Tactile categorization was modulated by stimulating the rostral part of the supramarginal gyrus, while decision-making was modulated by stimulating the caudal part. CONCLUSIONS: DCS can enhance cognitive processes and map brain regions responsible for tactile categorization and decision-making within the supramarginal gyrus. This study also demonstrates that DCS and the gamma activity of ECoG can concordantly identify the detailed brain mapping in a tactile process compared to other functional neuroimaging. SIGNIFICANCE: The combination of DCS and ECoG gamma activity provides a more nuanced and detailed understanding of brain function than traditional neuroimaging techniques alone.


Subject(s)
Brain , Electrocorticography , Humans , Brain/physiology , Brain Mapping/methods , Parietal Lobe , Electrodes, Implanted
12.
Heliyon ; 9(11): e21984, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38045205

ABSTRACT

Objective: Stimulation-based language mapping relies on identifying stimulation-induced language disruptions, which preexisting speech disorders affecting the laryngeal and orofacial speech system can confound. This study ascertained the effects of preexisting stuttering on pre- and intraoperative language mapping to improve the reliability and specificity of established language mapping protocols in the context of speech fluency disorders. Method: Differentiation-ability of a speech therapist and two experienced nrTMS examiners between stuttering symptoms and stimulation-induced language errors during preoperative mappings were retrospectively compared (05/2018-01/2021). Subsequently, the impact of stuttering on intraoperative mappings was evaluated in all prospective patients (01/2021-12/2022). Results: In the first part, 4.85 % of 103 glioma patients stuttered. While both examiners had a significant agreement for misclassifying pauses in speech flow and prolongations (Κ ≥ 0.50, p ≤ 0.02, respectively), less experience resulted in more misclassified stuttering symptoms. In one awake surgery case within the second part, stuttering decreased the reliability of intraoperative language mapping.Comparison with Existing Method(s): By thoroughly differentiating speech fluency symptoms from stimulation-induced disruptions, the reliability and proportion of stuttering symptoms falsely attributed to stimulation-induced language network disruptions can be improved. This may increase the consistency and specificity of language mapping results in stuttering glioma patients. Conclusions: Preexisting stuttering negatively impacted language mapping specificity. Thus, surgical planning and the functional outcome may benefit substantially from thoroughly differentiating speech fluency symptoms from stimulation-induced disruptions by trained specialists.

13.
Brain Stimul ; 16(6): 1653-1665, 2023.
Article in English | MEDLINE | ID: mdl-37949296

ABSTRACT

Functions of the human insula have been explored extensively with neuroimaging methods and intracranial electrical stimulation studies that have highlighted a functional segregation across its subregions. A recently developed cytoarchitectonic map of the human insula has also segregated this brain region into various areas. Our knowledge of the functional organization of this brain region at the level of these fine-parceled microstructural areas remains only partially understood. We address this gap of knowledge by applying a multimodal approach linking direct electrical stimulation and task-evoked intracranial EEG recordings with microstructural subdivisions of the human insular cortex. In 17 neurosurgical patients with 142 implanted electrodes, stimulation of 40 % of the sites induced a reportable change in the conscious experience of the subjects in visceral/autonomic, anxiety, taste/olfactory, pain/temperature as well as somatosensory domains. These subjective responses showed a topographical allocation to microstructural areas defined by probabilistic cytoarchitectonic parcellation maps of the human insula. We found the pain and thermal responses to be located in areas lg2/ld2, while non-painful/non-thermal somatosensory responses corresponded to area ld3 and visceroceptive responses to area Id6. Lastly, the stimulation of area Id7 in the dorsal anterior insula, failed to induce reportable changes to subjective experience even though intracranial EEG recordings from this region captured significant time-locked high-frequency activity (HFA). Our results provide a multimodal map of functional subdivisions within the human insular cortex at the individual brain basis and characterize their anatomical association with fine-grained cytoarchitectonic parcellations of this brain structure.


Subject(s)
Cerebral Cortex , Insular Cortex , Humans , Cerebral Cortex/physiology , Brain Mapping/methods , Electric Stimulation , Pain
14.
Cureus ; 15(8): e44046, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37746490

ABSTRACT

A typical spine is straight and symmetrical, with all of the vertebrae facing forward when viewed from the posterior. Scoliosis is a term used to describe a lateral deviation of the spine's normal vertical line that is greater than 10° on an X-ray. More severe curves are sometimes accompanied by medical issues such as increased back discomfort and cardiorespiratory difficulties along with the cosmetic components of the deformity. The test for spinal cord integrity prior to the widespread adoption of intraoperative neurophysiologic monitoring (IOM) was the wake-up test. In this article, we review the challenges faced by anesthesiologists and surgeons during intraoperative monitoring and the importance of clinical assessment of surgical outcomes.

15.
Epilepsia Open ; 8(3): 1084-1095, 2023 09.
Article in English | MEDLINE | ID: mdl-37437189

ABSTRACT

OBJECTIVE: Cortical stimulation is an important component of stereoelectroencephalography (SEEG). Despite this, there is currently no standardized approach and significant heterogeneity in the literature regarding cortical stimulation practices. Via an international survey of SEEG clinicians, we sought to examine the spectrum of cortical stimulation practices to reveal areas of consensus and variability. METHODS: A 68-item questionnaire was developed to understand cortical stimulation practices including neurostimulation parameters, interpretation of epileptogenicity, functional and cognitive assessment and subsequent surgical decisions. Multiple recruitment pathways were pursued, with the questionnaire distributed directly to 183 clinicians. RESULTS: Responses were received from 56 clinicians across 17 countries with experience ranging from 2 to 60 years (M = 10.73, SD = 9.44). Neurostimulation parameters varied considerably, with maximum current ranging from 3 to 10 mA (M = 5.33, SD = 2.29) for 1 Hz and from 2 to 15 mA (M = 6.54, SD = 3.68) for 50 Hz stimulation. Charge density ranged from 8 to 200 µC/cm2 , with up to 43% of responders utilizing charge densities higher than recommended upper safety limits, i.e. 55 µC/cm2 . North American responders reported statistically significant higher maximum current (P < 0.001) for 1 Hz stimulation and lower pulse width for 1 and 50 Hz stimulation (P = 0.008, P < 0.001, respectively) compared to European responders. All clinicians evaluated language, speech, and motor function during cortical stimulation; in contrast, 42% assessed visuospatial or visual function, 29% memory, and 13% executive function. Striking differences were reported in approaches to assessment, classification of positive sites, and surgical decisions guided by cortical stimulation. Patterns of consistency were observed for interpretation of the localizing capacity of stimulated electroclinical seizures and auras, with habitual electroclinical seizures induced by 1 Hz stimulation considered the most localizing. SIGNIFICANCE: SEEG cortical stimulation practices differed vastly across clinicians internationally, highlighting the need for consensus-based clinical guidelines. In particular, an internationally standardized approach to assessment, classification, and functional prognostication will provide a common clinical and research framework for optimizing outcomes for people with drug-resistant epilepsy.


Subject(s)
Electroencephalography , Stereotaxic Techniques , Humans , Electrodes, Implanted , Seizures , Surveys and Questionnaires
16.
J Neurooncol ; 163(3): 505-514, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438656

ABSTRACT

INTRODUCTION: Brain malignancy and, at the same time central nervous system malignancy are two of the most difficult problems in the oncology field of practice. Brain tumors located near or within eloquent areas may represent another challenge toward neurosurgeon treatment. As such, electrical stimulation, either directly or through other methods, may prove necessary as proper mapping of the eloquent area thus may create a proper resection guide. Minimal resection will hopefully preserve patient neurological function and ensure patient quality of life. METHODS: This research is a systematic review and meta-analysis that aim to compare outcomes, primarily adverse event analysis, between direct cortical stimulation and transcortical magnetic stimulation. RESULTS: Fourteen studies were identified between 2010 and the 2023 interval. While this number is sufficient, most studies were not randomized and were not accompanied by blinding. Meta-analysis was then applied as a hypothesis test, which showed that TMS were not inferior compared to DCS in terms of motoric and lingual outcome which were marked subjectively by diamond location and objectively through a p-value above 0.05. CONCLUSION: TMS is a noninvasive imaging method for the evaluation of eloquent brain areas that is not inferior compared to the invasive gold-standard imaging method (DCS). However its role as adjuvant to DCS and alternative only when awake surgery is not available must be emphasized.


Subject(s)
Brain Neoplasms , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Quality of Life , Brain Mapping/methods , Wakefulness/physiology , Magnetic Resonance Imaging
17.
Front Hum Neurosci ; 17: 1170419, 2023.
Article in English | MEDLINE | ID: mdl-37520929

ABSTRACT

In recent years, a paradigm shift in neuroscience has been occurring from "localizationism," or the idea that the brain is organized into separately functioning modules, toward "connectomics," or the idea that interconnected nodes form networks as the underlying substrates of behavior and thought. Accordingly, our understanding of mechanisms of neurological function, dysfunction, and recovery has evolved to include connections, disconnections, and reconnections. Brain tumors provide a unique opportunity to probe large-scale neural networks with focal and sometimes reversible lesions, allowing neuroscientists the unique opportunity to directly test newly formed hypotheses about underlying brain structural-functional relationships and network properties. Moreover, if a more complete model of neurological dysfunction is to be defined as a "disconnectome," potential avenues for recovery might be mapped through a "reconnectome." Such insight may open the door to novel therapeutic approaches where previous attempts have failed. In this review, we briefly delve into the most clinically relevant neural networks and brain mapping techniques, and we examine how they are being applied to modern neurosurgical brain tumor practices. We then explore how brain tumors might teach us more about mechanisms of global brain dysfunction and recovery through pre- and postoperative longitudinal connectomic and behavioral analyses.

18.
Korean J Radiol ; 24(6): 553-563, 2023 06.
Article in English | MEDLINE | ID: mdl-37271209

ABSTRACT

OBJECTIVE: Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging-derived tractography (DTI-t) contribute to the localization of language areas, but their accuracy remains controversial. This study aimed to investigate the diagnostic performance of preoperative fMRI and DTI-t obtained with a simultaneous multi-slice technique using intraoperative direct cortical stimulation (DCS) or corticocortical evoked potential (CCEP) as reference standards. MATERIALS AND METHODS: This prospective study included 26 patients (23-74 years; male:female, 13:13) with tumors in the vicinity of Broca's area who underwent preoperative fMRI and DTI-t. A site-by-site comparison between preoperative (fMRI and DTI-t) and intraoperative language mapping (DCS or CCEP) was performed for 226 cortical sites to calculate the sensitivity and specificity of fMRI and DTI-t for mapping Broca's areas. For sites with positive signals on fMRI or DTI-t, the true-positive rate (TPR) was calculated based on the concordance and discordance between fMRI and DTI-t. RESULTS: Among 226 cortical sites, DCS was performed in 100 sites and CCEP was performed in 166 sites. The specificities of fMRI and DTI-t ranged from 72.4% (63/87) to 96.8% (122/126), respectively. The sensitivities of fMRI (except for verb generation) and DTI-t were 69.2% (9/13) to 92.3% (12/13) with DCS as the reference standard, and 40.0% (16/40) or lower with CCEP as the reference standard. For sites with preoperative fMRI or DTI-t positivity (n = 82), the TPR was high when fMRI and DTI-t were concordant (81.2% and 100% using DCS and CCEP, respectively, as the reference standards) and low when fMRI and DTI-t were discordant (≤ 24.2%). CONCLUSION: fMRI and DTI-t are sensitive and specific for mapping Broca's area compared with DCS and specific but insensitive compared with CCEP. A site with a positive signal on both fMRI and DTI-t represents a high probability of being an essential language area.


Subject(s)
Brain Neoplasms , Diffusion Tensor Imaging , Humans , Male , Female , Diffusion Tensor Imaging/methods , Prospective Studies , Brain Mapping/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Evoked Potentials , Language
19.
Seizure ; 109: 1-4, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37172443

ABSTRACT

INTRODUCTION: The neural bases for language perception have been studied elsewhere using Transcranial Magnetic Stimulation, functional Magnetic Resonance Imaging and Direct Cortical Stimulation. However, to our knowledge, there is no previous report about a patient identifying the change in his voice tone, speed, and prosody because of right temporal cortical stimulation. Nor has there been a cortico-cortical evoked potential (CCEP) assessment of the network underlying this process. CASE REPORT: We present CCEP from a patient with right focal refractory temporal lobe epilepsy of tumoral etiology who reported changes in the perception of his own speech prosody during stimulation. This report will serve as a complement to the understanding of the neural networks of language and prosody. CONCLUSION: The present report shows that right superior temporal gyrus, transverse temporal gyrus, right amygdala, hippocampus, and fusiform gyrus (FG) are part of the neural network subjacent to own human voice perception.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Humans , Adolescent , Epilepsy, Temporal Lobe/diagnostic imaging , Temporal Lobe , Evoked Potentials/physiology , Self Concept , Magnetic Resonance Imaging/methods , Brain Mapping/methods
20.
Neuroimage ; 276: 120197, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37245558

ABSTRACT

Tactile and movement-related somatosensory perceptions are crucial for our daily lives and survival. Although the primary somatosensory cortex is thought to be the key structure of somatosensory perception, various cortical downstream areas are also involved in somatosensory perceptual processing. However, little is known about whether cortical networks of these downstream areas can be dissociated depending on each perception, especially in human. We address this issue by combining data from direct cortical stimulation (DCS) for eliciting somatosensation and data from high-gamma band (HG) elicited during tactile stimulation and movement tasks. We found that artificial somatosensory perception is elicited not only from conventional somatosensory-related areas such as the primary and secondary somatosensory cortices but also from a widespread network including superior/inferior parietal lobules and premotor cortex. Interestingly, DCS on the dorsal part of the fronto-parietal area including superior parietal lobule and dorsal premotor cortex often induces movement-related somatosensations, whereas that on the ventral one including inferior parietal lobule and ventral premotor cortex generally elicits tactile sensations. Furthermore, the HG mapping results of the movement and passive tactile stimulation tasks revealed considerable similarity in the spatial distribution between the HG and DCS functional maps. Our findings showed that macroscopic neural processing for tactile and movement-related perceptions could be segregated.


Subject(s)
Brain Mapping , Cerebral Cortex , Motion Perception , Touch Perception , Cerebral Cortex/physiology , Somatosensory Cortex/physiology , Humans , Male , Female , Adolescent , Young Adult , Adult , Transcranial Direct Current Stimulation , Drug Resistant Epilepsy/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL