Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Foods Hum Nutr ; 79(1): 202-208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38334939

ABSTRACT

Vitamaize lines (VMLs) were created by backcrossing the pigmented aleurone trait into Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) maize lines (CMLs). This study evaluates metabolic differences between the VMLs and their original CMLs. Direct infusion mass spectrometry (DIMS) analyses, carotenoid profiling, total anthocyanins content (TAC) determination, and biochemical evaluation of the quality protein maize (QPM) endosperm trait allowed a comprehensive chemical characterization of the maize lines. DIMS data indicate higher hexoses and trigonelline content for most VMLs; the carotenoid profile revealed a decrease in ß-cryptoxanthin to less than half of the original parent content for two VMLs but an augmentation for one VML. The pigmented aleurone VMLs did not inherit the complex QPM endosperm trait of the QPM CMLs. Except for anthocyanin accumulation, no other metabolites were consistently modified across all the backcross-generated maize lines with a pigmented aleurone trait. These findings suggest using genetic or metabolic markers rather than morphological or visual traits for future breeding programs.


Subject(s)
Anthocyanins , Zea mays , Anthocyanins/metabolism , Zea mays/chemistry , Phenotype , Metabolome , Carotenoids
2.
Plant Sci ; 326: 111530, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368482

ABSTRACT

Plant metabolites are the basis of human nutrition and have biological relevance in ecology. Farmers selected plants with favorable characteristics since prehistoric times and improved the cultivars, but without knowledge of underlying mechanisms. Understanding the genetic basis of metabolite production can facilitate the successful breeding of plants with augmented nutritional value. To identify genetic factors related to the metabolic composition in maize, we generated mass profiles of 198 recombinant inbred lines (RILs) and their parents (B73 and Mo17) using direct-injection electrospray ionization mass spectrometry (DLI-ESI MS). Mass profiling allowed the correct clustering of samples according to genotype. We quantified 71 mass features from grains and 236 mass features from leaf extracts. For the corresponding ions, we identified tissue-specific metabolic 'Quantitative Trait Loci' (mQTLs) distributed across the maize genome. These genetic regions could regulate multiple metabolite biosynthesis pathways. Our findings demonstrate that DLI-ESI MS has sufficient analytical resolution to map mQTLs. These identified genetic loci will be helpful in metabolite-focused maize breeding. Mass profiling is a powerful tool for detecting mQTLs in maize and enables the high-throughput screening of loci responsible for metabolite biosynthesis.


Subject(s)
Plant Breeding , Zea mays , Humans , Zea mays/metabolism , Chromosome Mapping , Quantitative Trait Loci/genetics , Genotype , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL