Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
New Phytol ; 243(2): 765-780, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38798267

ABSTRACT

Mutualisms between plants and fruit-eating animals were key to the radiation of angiosperms. Still, phylogenetic uncertainties limit our understanding of fleshy-fruit evolution, as in the case of Solanum, a genus with remarkable fleshy-fruit diversity, but with unresolved phylogenetic relationships. We used 1786 nuclear genes from 247 species, including 122 newly generated transcriptomes/genomes, to reconstruct the Solanum phylogeny and examine the tempo and mode of the evolution of fruit color and size. Our analysis resolved the backbone phylogeny of Solanum, providing high support for its clades. Our results pushed back the origin of Solanum to 53.1 million years ago (Ma), with most major clades diverging between 35 and 27 Ma. Evolution of Solanum fruit color and size revealed high levels of trait conservatism, where medium-sized berries that remain green when ripe are the likely ancestral form. Our analyses revealed that fruit size and color are evolutionary correlated, where dull-colored fruits are two times larger than black/purple and red fruits. We conclude that the strong phylogenetic conservatism shown in the color and size of Solanum fruits could limit the influences of fruit-eating animals on fleshy-fruit evolution. Our findings highlight the importance of phylogenetic constraints on the diversification of fleshy-fruit functional traits.


Subject(s)
Biological Evolution , Cell Nucleus , Color , Fruit , Phylogeny , Pigmentation , Solanum , Solanum/genetics , Fruit/genetics , Pigmentation/genetics , Cell Nucleus/genetics , Genes, Plant
2.
J Evol Biol ; 37(7): 748-757, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38654518

ABSTRACT

Dispersal is an important facet of the life history of many organisms and is, therefore, subject to selective pressure but does not evolve in isolation. Across nature, there are examples of dispersal syndromes and life history strategies in which suites of traits coevolve and covary with dispersal in combinations that serve to maximize fitness in a given ecological context. The red rust flour beetle, Tribolium castaneum, is a model organism and globally significant post-harvest pest that relies on dispersal to reach new patches of ephemeral habitat. Dispersal behaviour in Tribolium has a strong genetic basis. However, a robust understanding of the relationship between dispersal and other life-history components, which could elucidate evolutionary processes and allow pest managers to control their spread and reduce the impact of infestation, is currently lacking. Here, we use highly replicated lines of T. castaneum previously artificially selected for divergent small-scale dispersal propensity to robustly test several important life history components: reproductive strategy, development time, and longevity. As predicted, we find that a suite of important changes as a result of our selection on dispersal: high dispersal propensity is associated with a lower number of longer mating attempts by males, lower investment in early life reproduction by females, slower development of later-laid offspring, and longer female life span. These findings indicate that correlated intraspecific variation in dispersal and related traits may represent alternative life history strategies in T. castaneum. We therefore suggest that pest management efforts to mitigate the species' agro-economic impact should consider the eco-evolutionary dynamics within multiple life histories. The benefits of doing so could be felt both through improved targeting of efforts to reduce spread and also in forecasting how the selection pressures applied through pest management are likely to affect pest evolution.


Subject(s)
Animal Distribution , Tribolium , Animals , Tribolium/genetics , Tribolium/physiology , Male , Female , Selection, Genetic , Life History Traits , Longevity , Reproduction , Biological Evolution
3.
Proc Biol Sci ; 291(2021): 20240220, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38654642

ABSTRACT

Climate warming and landscape fragmentation are both factors well known to threaten biodiversity and to generate species responses and adaptation. However, the impact of warming and fragmentation interplay on organismal responses remains largely under-explored, especially when it comes to gut symbionts, which may play a key role in essential host functions and traits by extending its functional and genetic repertoire. Here, we experimentally examined the combined effects of climate warming and habitat connectivity on the gut bacterial communities of the common lizard (Zootoca vivipara) over three years. While the strength of effects varied over the years, we found that a 2°C warmer climate decreases lizard gut microbiome diversity in isolated habitats. However, enabling connectivity among habitats with warmer and cooler climates offset or even reversed warming effects. The warming effects and the association between host dispersal behaviour and microbiome diversity appear to be a potential driver of this interplay. This study suggests that preserving habitat connectivity will play a key role in mitigating climate change impacts, including the diversity of the gut microbiome, and calls for more studies combining multiple anthropogenic stressors when predicting the persistence of species and communities through global changes.


Subject(s)
Climate Change , Ecosystem , Gastrointestinal Microbiome , Lizards , Animals , Lizards/physiology , Lizards/microbiology , Biodiversity
4.
Ecol Evol ; 14(2): e10885, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314314

ABSTRACT

Natural range shifts offer the opportunity to study the phenotypic and genetic changes contributing to colonization success. The recent range shift of the Southern small white butterfly (Pieris mannii) from the South to the North of Europe offers a prime example to examine a potential dispersal syndrome in range-expanding individuals. We compared butterflies from the core and edge populations using a multimodal approach addressing behavioral, physiological, and morphological traits related to dispersal capacity. Relative to individuals from the core range (France), individuals from the edge (Germany) showed a higher capacity and motivation to fly, and a higher flight metabolic rate. They were also smaller, which may enhance their flight maneuverability and help them cope with limited resource availability, thereby increasing their settlement success in novel environments. Altogether, the behavioral, physiological, and morphological differences observed between core and edge populations in P. mannii suggest the existence of a dispersal syndrome in range-expanding individuals. Whether these differences result from genetic and/or phenotypic responses remains, however, to be determined.

5.
Evolution ; 77(10): 2144-2161, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37459126

ABSTRACT

Organisms continuously modify their environment, often impacting the fitness of future conspecifics due to ecological inheritance. When this inheritance is biased toward kin, selection favors modifications that increase the fitness of downstream individuals. How such selection shapes trait variation within populations remains poorly understood. Using mathematical modelling, we investigate the coevolution of multiple traits in a group-structured population when these traits affect the group environment, which is then bequeathed to future generations. We examine when such coevolution favors polymorphism as well as the resulting associations among traits. We find in particular that two traits become associated when one trait affects the environment while the other influences the likelihood that future kin experience this environment. To illustrate this, we model the coevolution of (a) the attack rate on a local renewable resource, which deteriorates environmental conditions, with (b) dispersal between groups, which reduces the likelihood that kin suffers from such deterioration. We show this often leads to the emergence of two highly differentiated morphs: one that readily disperses and depletes local resources, and another that maintains these resources and tends to remain philopatric. More broadly, we suggest that ecological inheritance can contribute to phenotypic diversity and lead to complex polymorphism.


Subject(s)
Biological Evolution , Polymorphism, Genetic , Humans , Models, Theoretical , Inheritance Patterns , Phenotype
6.
Am Nat ; 201(4): 523-536, 2023 04.
Article in English | MEDLINE | ID: mdl-36958003

ABSTRACT

AbstractIn most animal species, dispersing individuals possess phenotypic attributes that mitigate the costs of colonization and/or increase settlement success in new areas (dispersal syndromes). This phenotypic integration likely affects population dynamics and the direction of selection, but data are lacking for natural populations. Using an approach that combines population dynamics, quantitative genetics, and phenotypic selection analyses, we reveal the existence of dispersal syndromes in a pied flycatcher (Ficedula hypoleuca) population in the Netherlands: immigrants were larger, tended to have darker plumage, bred earlier, and produced larger clutches than local recruits, and some of these traits were genetically correlated. Over time, the phenotypic profile of the population gradually changed: each generation advanced arrival and breeding and exhibited longer wings as a result of direct and indirect selection on these correlated traits. Although phenotypic attributes of immigrants were favored by selection during the early phase of colonization, observed phenotypic changes were similar for immigrants and local recruits. We propose that immigrants facilitated initial population establishment but that temporal changes likely resulted from climate change-induced large-scale selection. This study highlights that newly established populations are of nonrandom composition and that phenotypic architecture affects evolutionary population trajectories.


Subject(s)
Biological Evolution , Songbirds , Animals , Syndrome , Songbirds/genetics , Population Dynamics , Phenotype
7.
Ecology ; 104(5): e4022, 2023 05.
Article in English | MEDLINE | ID: mdl-36890666

ABSTRACT

Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long-term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole-community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind-dispersed species exhibited significant synchrony at ~6-month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale-specificity and time-localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.


Subject(s)
Plants , Seeds , Seasons , Reproduction , Time Factors , Climate Change
8.
Ecology ; 104(1): e3852, 2023 01.
Article in English | MEDLINE | ID: mdl-36053857

ABSTRACT

Advancing functional ecology depends fundamentally on the availability of data on reproductive traits, including those from tropical plants, which have been historically underrepresented in global trait databases. Although some valuable databases have been created recently, they are mainly restricted to temperate areas and vegetative traits such as leaf and wood traits. Here, we present Rock n' Seeds, a database of seed functional traits and germination experiments from Brazilian rock outcrop vegetation, recognized as outstanding centers of diversity and endemism. Data were compiled through a systematic literature search, resulting in 103 publications from which seed functional traits were extracted. The database includes information on 16 functional traits for 383 taxa from 148 genera, 50 families, and 25 orders. These 16 traits include two dispersal, six production, four morphological, two biophysical, and two germination traits-the major axes of the seed ecological spectrum. The database also provides raw data for 48 germination experiments, for a total of 10,187 records for 281 taxa. Germination experiments in the database assessed the effect of a wide range of abiotic and biotic factors on germination and different dormancy-breaking treatments. Notably, 8255 of these records include daily germination counts. This input will facilitate synthesizing germination data and using this database for a myriad of ecological questions. Given the variety of seed traits and the extensive germination information made available by this database, we expect it to be a valuable resource advancing comparative functional ecology and guiding seed-based restoration and biodiversity conservation in tropical megadiverse ecosystems. There are no copyright restrictions on the data; please cite this paper when using the current data in publications; also the authors would appreciate notification of how the data are used in publications.


O avanço da ecologia funcional depende fundamentalmente da disponibilidade de dados sobre traços reprodutivos, incluindo dados de plantas tropicais, que têm sido historicamente subrepresentados em bancos de dados de traços funcionais globais. Embora alguns bancos de dados valiosos tenham sido criados recentemente, eles são restritos principalmente a áreas temperadas e a traços vegetativos, como traços de folhas e madeira. Neste artigo apresentamos Rock n' Seeds, um banco de dados de traços funcionais de sementes e experimentos de germinação de vegetações associadas a afloramentos rochosos do Brasil, os quais são reconhecidos como centros notáveis de diversidade e endemismo. Os dados foram compilados através de uma revisão sistemática na literatura, resultando em 103 publicações das quais foram extraídos os traços funcionais das sementes. O banco de dados inclui informações de 16 traços funcionais para 383 taxa de 148 gêneros, 50 famílias e 25 ordens. Estes dezesseis traços incluem dois traços de dispersão, seis de produção, quatro morfológicos, dois biofísicos e dois germinativos; os eixos principais do espectro ecológico da semente. O banco de dados também fornece os dados brutos para 48 experimentos de germinação para um total de 10.187 registros para 281 taxa. Os experimentos de germinação no banco de dados avaliaram o efeito de uma ampla gama de fatores abióticos e bióticos sobre a germinação e diferentes tratamentos de quebra de dormência. Particularmente, 8.255 desses registros incluem a contagem diária da germinação. Estas informações facilitarão a síntese de dados de germinação e a utilização deste banco de dados para uma grande variedade de questões ecológicas. Dada a variedade de traços das sementes e as amplas informações sobre germinação disponibilizadas por este banco de dados, esperamos que ele seja um recurso valioso para o avanço da ecologia funcional comparativa e para orientar a restauração baseada em sementes e a conservação da biodiversidade em ecossistemas tropicais megadiversos. Não há restrições de direitos autorais sobre os dados; favor citar este artigo ao utilizar os dados nas publicações e os autores agradeceriam uma notificação de como os dados são utilizados nas publicações.


El avance de la ecología funcional depende fundamentalmente de la disponibilidad de datos sobre rasgos reproductivos-incluyendo los de las plantas tropicales-los cuales han estado poco representados en las bases de datos globales de rasgos. Aunque recientemente se han creado algunas bases de datos valiosas, estas se encuentran restringidas principalmente a las zonas templadas y a los rasgos vegetativos, como los de las hojas y la madera. En este artículo presentamos Rock n' Seeds, una base de datos de rasgos funcionales de semillas y experimentos de germinación de la vegetación asociada a afloramientos rocosos de Brasil, los cuales son destacados centros de diversidad y endemismo. Los datos se recopilaron mediante una búsqueda bibliográfica sistemática, que dio como resultado 103 publicaciones de las que se extrajeron los rasgos funcionales de las semillas. La base de datos incluye información de dieciséis rasgos funcionales para 383 taxones de 148 géneros, 50 familias y 25 órdenes. Estos rasgos incluyen dos rasgos de dispersión, seis de producción, cuatro morfológicos, dos biofísicos y dos de germinación; siendo estos los principales ejes del espectro ecológico de las semillas. La base de datos también proporciona los datos brutos de 48 experimentos de germinación, para un total de 10.187 registros de 281 taxones. Dichos experimentos de germinación evaluaron el efecto de una amplia gama de factores abióticos y bióticos sobre la germinación y de diferentes tratamientos para romper la dormancia. En particular, 8.255 de estos registros cuentan con conteos diarios de germinación. Esto facilitará la síntesis de los datos de germinación y el uso de esta base de datos para una gran diversidad de preguntas ecológicas. Dada la variedad de rasgos de las semillas y la amplia información sobre germinación que ofrece esta base de datos, esperamos que sea un recurso valioso para el avance de la ecología funcional comparativa y para orientar la restauración basada en semillas y la conservación de la biodiversidad en ecosistemas tropicales megadiversos. No hay restricciones de derechos de autor sobre los datos; se solicita citar este documento cuando se utilicen los datos en publicaciones y los autores agradecerán ser notificados sobre cómo se utilizan los datos en las publicaciones.


Subject(s)
Ecosystem , Germination , Humans , Brazil , Seeds , Plants
9.
Mol Ecol ; 31(22): 5714-5728, 2022 11.
Article in English | MEDLINE | ID: mdl-36178057

ABSTRACT

Theoretically, species' characteristics should allow estimation of dispersal potential and, in turn, explain levels of population genetic differentiation. However, a mismatch between traits and genetic patterns is often reported for marine species, and interpreted as evidence that life-history traits do not influence dispersal. Here, we couple ecological and genomic methods to test the hypothesis that species with attributes favouring greater dispersal potential-e.g., longer pelagic duration, higher fecundity and larger population size-have greater realized dispersal overall. We used a natural experiment created by a large-scale and multispecies mortality event which created a "clean slate" on which to study recruitment dynamics, thus simplifying a usually complex problem. We surveyed four species of differing dispersal potential to quantify the abundance and distribution of recruits and to genetically assign these recruits to probable parental sources. Species with higher dispersal potential recolonized a broader extent of the impacted range, did so more quickly and recovered more genetic diversity than species with lower dispersal potential. Moreover, populations of taxa with higher dispersal potential exhibited more immigration (71%-92% of recruits) than taxa with lower dispersal potential (17%-44% of recruits). By linking ecological with genomic perspectives, we demonstrate that a suite of interacting life-history and demographic attributes do influence species' realized dispersal and genetic neighbourhoods. To better understand species' resilience and recovery in this time of global change, integrative eco-evolutionary approaches are needed to more rigorously evaluate the effect of dispersal-linked attributes on realized dispersal and population genetic differentiation.


Subject(s)
Life History Traits , Biological Evolution , Genetic Variation
10.
Am Nat ; 199(4): E111-E123, 2022 04.
Article in English | MEDLINE | ID: mdl-35324379

ABSTRACT

AbstractEnvironmental stress is one of the important causes of biological dispersal. At the same time, the process of dispersal itself can incur and/or increase susceptibility to stress for the dispersing individuals. Therefore, in principle, stress can serve as both a cause and a cost of dispersal. We studied these potentially contrasting roles of a key environmental stress (desiccation) using Drosophila melanogaster. By modulating water and rest availability, we asked whether (a) dispersers are individuals that are more susceptible to desiccation stress, (b) dispersers pay a cost in terms of reduced resistance to desiccation stress, (c) dispersal evolution alters the desiccation cost of dispersal, and (d) females pay a reproductive cost of dispersal. We found that desiccation was a clear cause of dispersal in both sexes, as both male and female dispersal propensity increased with increasing duration of desiccation. However, the desiccation cost of dispersal was male biased, a trend unaffected by dispersal evolution. Instead, females paid a fecundity cost of dispersal. We discuss the complex relationship between desiccation and dispersal, which can lead to both positive and negative associations. Furthermore, the sex differences highlighted here may translate into differences in movement patterns, thereby giving rise to sex-biased dispersal patterns.


Subject(s)
Desiccation , Drosophila melanogaster , Animals , Female , Male , Reproduction , Sex Characteristics , Stress, Physiological
12.
J Evol Biol ; 35(4): 561-574, 2022 04.
Article in English | MEDLINE | ID: mdl-34480809

ABSTRACT

Previous studies have reported functional integration between dispersal and other phenotypic traits allowing individuals to alleviate dispersal costs, and such associations can affect dispersal evolution in return. In sexually reproducing species, assortative mating according to dispersal can shape the maintenance of such trait associations. Despite the potentially crucial consequences of dispersal in natural populations, assortative mating for dispersal and its underlying mechanisms remain largely unexplored. Here, we assessed assortative mating for between-patch dispersal status in a fragmented population of a small passerine bird, the collared flycatcher, and explored whether such assortative mating could result from (i) direct mate choice based on dispersal-related behavioural (aggressiveness and boldness) and morphological traits (tarsus and wing length), (ii) biased mating due to spatio-temporal heterogeneity in the distribution of dispersal phenotypes and/or (iii) post-mating adjustment of dispersal phenotype or dispersal-related traits. We found intrinsic assortative mating (i.e. positive among-pair correlation) for current dispersal status (in the year of mating) but not for natal dispersal status, even though we could not exclude it due to limited power. We also found assortative mating for boldness and age category (yearlings vs. older adults), and the probability for pair members to be assorted for current dispersal status was higher when both pair members were of similar boldness score and of the same age compared with mixed-age pairs. Mate choice based on boldness and age thus appears as a possible mechanism underlying assortative mating for dispersal status. Our analyses however remained correlative, and only an experimental manipulation of these traits could allow inferring causal links. Non-random mating for dispersal-related traits may affect the evolution of dispersal syndromes in this population. More work is nevertheless needed to fully assess the evolutionary implications of age- and behaviour-based assortative mating for dispersal.


Subject(s)
Passeriformes , Reproduction , Aggression , Animals , Animals, Wild , Passeriformes/genetics , Phenotype
13.
Trends Ecol Evol ; 37(4): 322-331, 2022 04.
Article in English | MEDLINE | ID: mdl-34952726

ABSTRACT

Dispersal mediates the flow of organisms in meta-communities and subsequently energy and material flows in meta-ecosystems. Individuals within species often vary in dispersal tendency depending on their phenotypic traits (i.e., dispersal syndromes), but the implications of dispersal syndromes for meta-ecosystems have been rarely studied. Using empirical examples on vertebrates, arthropods, and microbes, we highlight that key functional traits can be linked to dispersal. We argue that this coupling between dispersal and functional traits can have consequences for meta-ecosystem functioning, mediating flows of functional traits and thus the spatial heterogeneity of ecosystem functions. As dispersal syndromes may be genetically determined, the spatial heterogeneity of functional traits may be further carried over across generations and link meta-ecosystem functioning to evolutionary dynamics.


Subject(s)
Biological Evolution , Ecosystem , Animals , Humans , Phenotype , Syndrome
14.
Biol Lett ; 17(9): 20210352, 2021 09.
Article in English | MEDLINE | ID: mdl-34520684

ABSTRACT

Fleshy fruits can be divided between climacteric (CL, showing a typical rise in respiration and ethylene production with ripening after harvest) and non-climacteric (NC, showing no rise). However, despite the importance of the CL/NC traits in horticulture and the fruit industry, the evolutionary significance of the distinction remains untested. In this study, we tested the hypothesis that NC fruits, which ripen only on the plant, are adapted to tree dispersers (feeding in the tree), and CL fruits, which ripen after falling from the plant, are adapted to ground dispersers. A literature review of 276 reports of 80 edible fruits found a strong correlation between CL/NC traits and the type of seed disperser: fruits dispersed by tree dispersers are more likely to be NC, and those dispersed by ground dispersers are more likely to be CL. NC fruits are more likely to have red-black skin and smaller seeds (preferred by birds), and CL fruits to have green-brownish skin and larger seeds (preferred by large mammals). These results suggest that the CL/NC traits have an important but overlooked seed dispersal function, and CL fruits may have an adaptive advantage in reducing ineffective frugivory by tree dispersers by falling before ripening.


Subject(s)
Climacteric , Seed Dispersal , Animals , Birds , Fruit , Seeds
15.
Proc Biol Sci ; 288(1956): 20210312, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34375556

ABSTRACT

Despite the widespread notion that animal-mediated seed dispersal led to the evolution of fruit traits that attract mutualistic frugivores, the dispersal syndrome hypothesis remains controversial, particularly for complex traits such as fruit scent. Here, we test this hypothesis in a community of mutualistic, ecologically important neotropical bats (Carollia spp.) and plants (Piper spp.) that communicate primarily via chemical signals. We found greater bat consumption is significantly associated with scent chemical diversity and presence of specific compounds, which fit multi-peak selective regime models in Piper. Through behavioural assays, we found Carollia prefer certain compounds, particularly 2-heptanol, which evolved as a unique feature of two Piper species highly consumed by these bats. Thus, we demonstrate that volatile compounds emitted by neotropical Piper fruits evolved in tandem with seed dispersal by scent-oriented Carollia bats. Specifically, fruit scent chemistry in some Piper species fits adaptive evolutionary scenarios consistent with a dispersal syndrome hypothesis. While other abiotic and biotic processes likely shaped the chemical composition of ripe fruit scent in Piper, our results provide some of the first evidence of the effect of bat frugivory on plant chemical diversity.


Subject(s)
Chiroptera , Seed Dispersal , Animals , Feeding Behavior , Fruit , Odorants , Symbiosis
16.
Rev. biol. trop ; 69(2)jun. 2021.
Article in Spanish | LILACS, SaludCR | ID: biblio-1387632

ABSTRACT

Resumen Introducción: El banco de semillas en el suelo es uno de los indicadores ecológicos más importantes para la evaluación y monitoreo de recuperación de ecosistemas degradados. Así mismo, actualmente indicadores ecológicos de restauración son usados en áreas afectadas por la ruptura de la represa de relaves de Fundão en Mariana, Minas Gerais, Brasil. Objetivo: En este estudio se evaluó la variación de la riqueza, composición de especies, densidad y parámetros fitosociológicos del banco de semillas en dos profundidades de relaves mineros en Mariana, municipio de Mariana, Minas Gerais, Brasil. Métodos: Se recolectaron 15 muestras por nivel de profundidad, en la capa superior (Profundidad1, P1 = 0-2.5 cm) y capa inferior (Profundidad2, P2 = 2.5-5.0 cm) del relave de minería para examinar el banco de semillas viable, que luego se colocó en un invernadero para la germinación. Posteriormente se contaron e identificaron semanalmente todos los individuos de cada especie durante un período de seis meses. Resultados: Se demostró que existe un banco de semillas en las capas superficiales de relaves mineros acumulados en las áreas afectadas de Mariana, con una marcada diferencia entre profundidades en términos de riqueza de especies y densidad de individuos. Se observó una mayor riqueza y número de individuos en P1, (1 165 semillas germinadas), pertenecientes a 18 familias y 47 especies, en comparación a P2 (197 individuos), pertenecientes a 12 familias y 23 especies. El banco de semillas de la capa P1 está influenciado por la lluvia de semillas del bosque cercano. Por otro lado, el banco de semillas de P2, puede ser característico de los relaves mineros. Conclusiones: El banco de semillas estudiado puede tener efectos positivos sobre la recuperación en el área de estudio, debido a la alta proporción de especies nativas, pioneras y anemocóricas típicas de etapas iniciales de sucesión secundaria.


Abstract Introduction: The soil seed bank is one of the most important ecological indicators for evaluating and monitoring the resilience of degraded ecosystems. Likewise, ecological restoration indicators are currently used in areas affected by the rupture of the Fundão tailings dam in Mariana, Minas Gerais, Brazil. Objective: To evaluate the seed bank at two depths of areas affected by mining tailings, Mariana municipality, Minas Gerais, Brazil. Methods: 15 samples (40 × 40 cm) were collected per level of depth, in the upper layer (Depth1, P1 = 0-2.5 cm), and lower layer (Depth2, P2 = 2.5-5.0 cm) of the mining tailings to survey the viable seed bank, which was later placed in a greenhouse for germination and seedling identification. The samples were placed in plastic trays to germinate in the nursery, then counted and identified weekly for six months. Results: The results showed that there is a seed bank in the surface layers of accumulated mining tailings in the affected areas of Mariana, with a marked difference between depths in terms of species richness and density of individuals. Higher species richness and number of individuals were observed in P1, (1 165 germinated seeds), belonging to 18 families and 47 species, in comparison to P2 (197 individuals), belonging to 12 families and 23 species. Probably the seed bank of layer P1 is influenced by the rain of seeds from the nearby forest. On the other hand, the P2 seed bank can be characteristic of mining tailings. Conclusions: Seed bank patterns can have positive effects on forest resilience at the local-scale, due to the high proportion of native, pioneer and anemochorical species of early successional stages.


Subject(s)
Seed Bank/trends , Mining , Regeneration , Brazil , Seed Dispersal
17.
Plants (Basel) ; 10(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669228

ABSTRACT

Selective abortion, also called selective maturation, is a phenomenon wherein maternal plants selectively mature ovules that have the potential to grow into higher-quality fruits, such as those that contain more seeds. We hypothesized that the effects of selective maturation on fruit traits could be influenced by the dispersal mechanism. However, to date, limited studies have been conducted on selective maturation in bird-dispersed fruits. Unlike self- or wind-dispersed species, bird-dispersed species would not selectively mature fruits that contain more seeds because they are not preferred by birds. Here, we investigated the effect of selective abortion on the fruit traits of a bird-dispersed species, elderberry (Sambucus racemosa L. subsp. kamtschatica). We performed a flower-removal experiment. Half of the inflorescences on each individual tree were removed for the treatment group, whereas the control group was not manipulated. We found that the flower-removed trees showed higher fruit sets, suggesting the existence of resource limitation. The number of seeds per fruit did not increase by the experimental treatment. Additionally, the control individuals did not produce larger fruits. The lack of effects on fruit traits supported our hypothesis that the effect of selective maturation on fruit traits may differ among species with different dispersal mechanisms.

18.
Ecol Lett ; 24(4): 739-750, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33583087

ABSTRACT

Exploitative parasites are predicted to evolve in highly connected populations or in expanding epidemics. However, many parasites rely on host dispersal to reach new populations, potentially causing conflict between local transmission and global spread. We performed experimental range expansions in interconnected microcosms of the protozoan Paramecium caudatum, allowing natural dispersal of hosts infected with the bacterial parasite Holospora undulata. Parasites from range front treatments facilitated host dispersal and were less virulent, but also invested less in horizontal transmission than parasites from range cores. These differences were consistent with parameter estimates derived from an epidemiological model fitted on population-level time-series data. Our results illustrate how dispersal selection can have profound consequences for the evolution of parasite life history and virulence. Decrypting the eco-evolutionary processes that shape parasite 'dispersal syndromes' may be important for the management of spreading epidemics in changing environments, biological invasions or in other spatial non-equilibrium settings.


Subject(s)
Holosporaceae , Paramecium caudatum , Parasites , Animals , Biological Evolution , Host-Parasite Interactions , Paramecium caudatum/genetics , Virulence
19.
J Anim Ecol ; 90(5): 1177-1190, 2021 05.
Article in English | MEDLINE | ID: mdl-33608946

ABSTRACT

The description of functional connectivity is based on the quantification of landscape resistance, which represents species-specific movement costs across landscape features. Connectivity models use these costs to identify movement corridors at both individual and population levels and provide management recommendations for populations of conservation interest. Typically, resistance costs assigned to specific land cover types are assumed to be valid for all individuals of the population. Little attention has been paid to intraspecific variation in resistance costs due to age or dispersal syndrome, which may significantly affect model predictions. We quantified resistance costs in an expanding invasive population of the African clawed frog Xenopus laevis in Western France. In this principally aquatic amphibian, juveniles, sub-adults and adults disperse overland. The enhancement of dispersal traits via spatial sorting has been also observed at the range periphery of the population. Resistance costs, and thus connectivity, might vary as a function of life stage and position within the invaded range. We assessed multiple dimensions of functional connectivity. On various land cover types, we measured locomotion, as crossing speed, in different post-metamorphic age classes, and dehydration, sensitivity of locomotion to dehydration and substrate preference in juveniles. We also tested the effect of the position in the invaded range (core vs. periphery) on individual performances. In juveniles, general trends towards higher resistance costs on grass and lower resistance costs on bare soil and asphalt were observed, although not all experiments provided the same cost configurations. Resistance to locomotion varied between age classes, with adults and sub-adults facing lower costs than juveniles, particularly when crossing structurally complex land cover types such as grass and leaf litter. The position in the range had a minor effect on landscape resistance, and only in the dehydration experiment, where water loss in juveniles was lower at the range periphery. Depicting functional connectivity requires (a) assessing multiple dimensions of behavioural and physiological challenges faced by animals during movement; (b) considering factors, such as age and dispersal syndrome, that may affect movement at both individual and population levels. Ignoring this complexity might generate unreliable connectivity models and provide unsupported management recommendations for conservation.


La description de la connectivité fonctionnelle est basée sur la quantification de la résistance du paysage, lequel représente pour une espèce les coûts de déplacement au travers des éléments du paysage. Les modèles de connectivité utilisent ces coûts pour identifier les corridors de déplacement à l'échelle des individus et des populations et fournir des recommandations de gestion pour les populations présentant un intérêt pour la conservation. En général, les coûts de résistance attribués à chaque type de couverture du sol sont supposés valides pour tous les individus de la population. Peu d'attention a été accordée à la variation intraspécifique des coûts de résistance, due à l'âge ou au syndrome de dispersion, qui pourrait affecter de manière significative les prévisions du modèle. Nous avons quantifié les coûts de résistance dans une population invasive en expansion de Xénope lisse Xenopus laevis dans l'ouest de la France. Chez cet amphibien principalement aquatique, les juvéniles, les sous-adultes et les adultes se dispersent par voie terrestre. Le renforcement des traits liés à la dispersion par le tri spatial a également été observée en périphérie de l'aire de répartition de la population. Les coûts de résistance, et donc la connectivité, pourraient varier en fonction du stade de vie des individus et de leur position dans l'aire colonisée. Nous avons évalué plusieurs dimensions de la connectivité fonctionnelle. Sur divers types de substrat du sol, nous avons mesuré la locomotion (vitesse de déplacement) à tous les stades post-métamorphiques, la déshydratation, la sensibilité de la locomotion à la déshydratation et la préférence de substrat chez les juvéniles. Nous avons également testé l'effet de la position dans l'aire colonisée (centre vs. périphérie) sur les performances individuelles. Chez les juvéniles, des tendances générales vers des coûts de résistance plus élevés sur l'herbe et des coûts de résistance plus faibles sur sol nu et asphalte ont été observées, bien que toutes les expériences n'aient pas produit les mêmes configurations de coûts. La résistance à la locomotion a varié selon les classes d'âge, les adultes et les subadultes subissant des coûts moindres que ceux des juvéniles, en particulier lors de la traversée de substrats structurellement complexes comme l'herbe et la litière de feuilles. La position dans l'aire de répartition a eu un effet mineur sur la résistance du paysage, et seulement dans l'expérience de déshydratation, où la perte d'eau chez les juvéniles était plus faible à la périphérie de l'aire. Pour décrire la connectivité fonctionnelle, il faut: i) évaluer les multiples dimensions des défis comportementaux et physiologiques auxquels les animaux sont confrontés pendant leurs déplacements; ii) en tenant compte des facteurs, tels que l'âge et le syndrome de dispersion, qui peuvent influer sur les déplacements tant au niveau individuel qu'au niveau de la population. Ignorer cette complexité pourrait générer des modèles de connectivité peu fiables et fournir des recommandations de gestion non étayées pour la conservation.


Subject(s)
Anura , Locomotion , Animals , Ecosystem , France , Species Specificity , Xenopus laevis
20.
Ecol Evol ; 11(24): 18477-18491, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003686

ABSTRACT

Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.

SELECTION OF CITATIONS
SEARCH DETAIL
...